Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpab Structured version   Visualization version   GIF version

Theorem xpab 33208
Description: Cross product of two class abstractions. (Contributed by Scott Fenton, 19-Aug-2024.)
Assertion
Ref Expression
xpab ({𝑥𝜑} × {𝑦𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem xpab
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5546 . 2 Rel ({𝑥𝜑} × {𝑦𝜓})
2 relopabv 5668 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
3 df-clab 2736 . . . . 5 (𝑎 ∈ {𝑥𝜑} ↔ [𝑎 / 𝑥]𝜑)
4 df-clab 2736 . . . . 5 (𝑏 ∈ {𝑦𝜓} ↔ [𝑏 / 𝑦]𝜓)
53, 4anbi12i 629 . . . 4 ((𝑎 ∈ {𝑥𝜑} ∧ 𝑏 ∈ {𝑦𝜓}) ↔ ([𝑎 / 𝑥]𝜑 ∧ [𝑏 / 𝑦]𝜓))
6 sban 2085 . . . . . . 7 ([𝑏 / 𝑦](𝜑𝜓) ↔ ([𝑏 / 𝑦]𝜑 ∧ [𝑏 / 𝑦]𝜓))
7 sbsbc 3702 . . . . . . 7 ([𝑏 / 𝑦](𝜑𝜓) ↔ [𝑏 / 𝑦](𝜑𝜓))
8 sbv 2095 . . . . . . . 8 ([𝑏 / 𝑦]𝜑𝜑)
98anbi1i 626 . . . . . . 7 (([𝑏 / 𝑦]𝜑 ∧ [𝑏 / 𝑦]𝜓) ↔ (𝜑 ∧ [𝑏 / 𝑦]𝜓))
106, 7, 93bitr3i 304 . . . . . 6 ([𝑏 / 𝑦](𝜑𝜓) ↔ (𝜑 ∧ [𝑏 / 𝑦]𝜓))
1110sbbii 2081 . . . . 5 ([𝑎 / 𝑥][𝑏 / 𝑦](𝜑𝜓) ↔ [𝑎 / 𝑥](𝜑 ∧ [𝑏 / 𝑦]𝜓))
12 sbsbc 3702 . . . . 5 ([𝑎 / 𝑥][𝑏 / 𝑦](𝜑𝜓) ↔ [𝑎 / 𝑥][𝑏 / 𝑦](𝜑𝜓))
13 sban 2085 . . . . . 6 ([𝑎 / 𝑥](𝜑 ∧ [𝑏 / 𝑦]𝜓) ↔ ([𝑎 / 𝑥]𝜑 ∧ [𝑎 / 𝑥][𝑏 / 𝑦]𝜓))
14 sbv 2095 . . . . . . 7 ([𝑎 / 𝑥][𝑏 / 𝑦]𝜓 ↔ [𝑏 / 𝑦]𝜓)
1514anbi2i 625 . . . . . 6 (([𝑎 / 𝑥]𝜑 ∧ [𝑎 / 𝑥][𝑏 / 𝑦]𝜓) ↔ ([𝑎 / 𝑥]𝜑 ∧ [𝑏 / 𝑦]𝜓))
1613, 15bitri 278 . . . . 5 ([𝑎 / 𝑥](𝜑 ∧ [𝑏 / 𝑦]𝜓) ↔ ([𝑎 / 𝑥]𝜑 ∧ [𝑏 / 𝑦]𝜓))
1711, 12, 163bitr3i 304 . . . 4 ([𝑎 / 𝑥][𝑏 / 𝑦](𝜑𝜓) ↔ ([𝑎 / 𝑥]𝜑 ∧ [𝑏 / 𝑦]𝜓))
185, 17bitr4i 281 . . 3 ((𝑎 ∈ {𝑥𝜑} ∧ 𝑏 ∈ {𝑦𝜓}) ↔ [𝑎 / 𝑥][𝑏 / 𝑦](𝜑𝜓))
19 brxp 5575 . . 3 (𝑎({𝑥𝜑} × {𝑦𝜓})𝑏 ↔ (𝑎 ∈ {𝑥𝜑} ∧ 𝑏 ∈ {𝑦𝜓}))
20 eqid 2758 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)} = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
2120brabsb 5392 . . 3 (𝑎{⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}𝑏[𝑎 / 𝑥][𝑏 / 𝑦](𝜑𝜓))
2218, 19, 213bitr4i 306 . 2 (𝑎({𝑥𝜑} × {𝑦𝜓})𝑏𝑎{⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}𝑏)
231, 2, 22eqbrriv 5638 1 ({𝑥𝜑} × {𝑦𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  [wsb 2069  wcel 2111  {cab 2735  [wsbc 3698   class class class wbr 5036  {copab 5098   × cxp 5526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-br 5037  df-opab 5099  df-xp 5534  df-rel 5535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator