Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpab Structured version   Visualization version   GIF version

Theorem xpab 33677
Description: Cross product of two class abstractions. (Contributed by Scott Fenton, 19-Aug-2024.)
Assertion
Ref Expression
xpab ({𝑥𝜑} × {𝑦𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem xpab
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5607 . 2 Rel ({𝑥𝜑} × {𝑦𝜓})
2 relopabv 5731 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
3 df-clab 2716 . . . . 5 (𝑎 ∈ {𝑥𝜑} ↔ [𝑎 / 𝑥]𝜑)
4 df-clab 2716 . . . . 5 (𝑏 ∈ {𝑦𝜓} ↔ [𝑏 / 𝑦]𝜓)
53, 4anbi12i 627 . . . 4 ((𝑎 ∈ {𝑥𝜑} ∧ 𝑏 ∈ {𝑦𝜓}) ↔ ([𝑎 / 𝑥]𝜑 ∧ [𝑏 / 𝑦]𝜓))
6 sban 2083 . . . . . . 7 ([𝑏 / 𝑦](𝜑𝜓) ↔ ([𝑏 / 𝑦]𝜑 ∧ [𝑏 / 𝑦]𝜓))
7 sbsbc 3720 . . . . . . 7 ([𝑏 / 𝑦](𝜑𝜓) ↔ [𝑏 / 𝑦](𝜑𝜓))
8 sbv 2091 . . . . . . . 8 ([𝑏 / 𝑦]𝜑𝜑)
98anbi1i 624 . . . . . . 7 (([𝑏 / 𝑦]𝜑 ∧ [𝑏 / 𝑦]𝜓) ↔ (𝜑 ∧ [𝑏 / 𝑦]𝜓))
106, 7, 93bitr3i 301 . . . . . 6 ([𝑏 / 𝑦](𝜑𝜓) ↔ (𝜑 ∧ [𝑏 / 𝑦]𝜓))
1110sbbii 2079 . . . . 5 ([𝑎 / 𝑥][𝑏 / 𝑦](𝜑𝜓) ↔ [𝑎 / 𝑥](𝜑 ∧ [𝑏 / 𝑦]𝜓))
12 sbsbc 3720 . . . . 5 ([𝑎 / 𝑥][𝑏 / 𝑦](𝜑𝜓) ↔ [𝑎 / 𝑥][𝑏 / 𝑦](𝜑𝜓))
13 sban 2083 . . . . . 6 ([𝑎 / 𝑥](𝜑 ∧ [𝑏 / 𝑦]𝜓) ↔ ([𝑎 / 𝑥]𝜑 ∧ [𝑎 / 𝑥][𝑏 / 𝑦]𝜓))
14 sbv 2091 . . . . . . 7 ([𝑎 / 𝑥][𝑏 / 𝑦]𝜓 ↔ [𝑏 / 𝑦]𝜓)
1514anbi2i 623 . . . . . 6 (([𝑎 / 𝑥]𝜑 ∧ [𝑎 / 𝑥][𝑏 / 𝑦]𝜓) ↔ ([𝑎 / 𝑥]𝜑 ∧ [𝑏 / 𝑦]𝜓))
1613, 15bitri 274 . . . . 5 ([𝑎 / 𝑥](𝜑 ∧ [𝑏 / 𝑦]𝜓) ↔ ([𝑎 / 𝑥]𝜑 ∧ [𝑏 / 𝑦]𝜓))
1711, 12, 163bitr3i 301 . . . 4 ([𝑎 / 𝑥][𝑏 / 𝑦](𝜑𝜓) ↔ ([𝑎 / 𝑥]𝜑 ∧ [𝑏 / 𝑦]𝜓))
185, 17bitr4i 277 . . 3 ((𝑎 ∈ {𝑥𝜑} ∧ 𝑏 ∈ {𝑦𝜓}) ↔ [𝑎 / 𝑥][𝑏 / 𝑦](𝜑𝜓))
19 brxp 5636 . . 3 (𝑎({𝑥𝜑} × {𝑦𝜓})𝑏 ↔ (𝑎 ∈ {𝑥𝜑} ∧ 𝑏 ∈ {𝑦𝜓}))
20 eqid 2738 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)} = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
2120brabsb 5444 . . 3 (𝑎{⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}𝑏[𝑎 / 𝑥][𝑏 / 𝑦](𝜑𝜓))
2218, 19, 213bitr4i 303 . 2 (𝑎({𝑥𝜑} × {𝑦𝜓})𝑏𝑎{⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}𝑏)
231, 2, 22eqbrriv 5701 1 ({𝑥𝜑} × {𝑦𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  [wsb 2067  wcel 2106  {cab 2715  [wsbc 3716   class class class wbr 5074  {copab 5136   × cxp 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator