| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqtrid | Structured version Visualization version GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| Ref | Expression |
|---|---|
| breqtrid.1 | ⊢ 𝐴𝑅𝐵 |
| breqtrid.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| breqtrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrid.1 | . . 3 ⊢ 𝐴𝑅𝐵 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) |
| 3 | breqtrid.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 4 | 2, 3 | breqtrd 5115 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 |
| This theorem is referenced by: breqtrrid 5127 xlemul1a 13187 phicl2 16679 sinq12ge0 26444 siilem1 30831 nmbdfnlbi 32029 nmcfnlbi 32032 unierri 32084 leoprf2 32107 leoprf 32108 2sqr3nconstr 33794 cos9thpinconstrlem2 33803 ballotlemic 34520 ballotlem1c 34521 sumnnodd 45729 |
| Copyright terms: Public domain | W3C validator |