MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  breqtrid Structured version   Visualization version   GIF version

Theorem breqtrid 5126
Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
Hypotheses
Ref Expression
breqtrid.1 𝐴𝑅𝐵
breqtrid.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
breqtrid (𝜑𝐴𝑅𝐶)

Proof of Theorem breqtrid
StepHypRef Expression
1 breqtrid.1 . . 3 𝐴𝑅𝐵
21a1i 11 . 2 (𝜑𝐴𝑅𝐵)
3 breqtrid.2 . 2 (𝜑𝐵 = 𝐶)
42, 3breqtrd 5115 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   class class class wbr 5089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090
This theorem is referenced by:  breqtrrid  5127  xlemul1a  13187  phicl2  16679  sinq12ge0  26444  siilem1  30831  nmbdfnlbi  32029  nmcfnlbi  32032  unierri  32084  leoprf2  32107  leoprf  32108  2sqr3nconstr  33794  cos9thpinconstrlem2  33803  ballotlemic  34520  ballotlem1c  34521  sumnnodd  45729
  Copyright terms: Public domain W3C validator