MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  breqtrid Structured version   Visualization version   GIF version

Theorem breqtrid 5185
Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
Hypotheses
Ref Expression
breqtrid.1 𝐴𝑅𝐵
breqtrid.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
breqtrid (𝜑𝐴𝑅𝐶)

Proof of Theorem breqtrid
StepHypRef Expression
1 breqtrid.1 . . 3 𝐴𝑅𝐵
21a1i 11 . 2 (𝜑𝐴𝑅𝐵)
3 breqtrid.2 . 2 (𝜑𝐵 = 𝐶)
42, 3breqtrd 5174 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   class class class wbr 5148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149
This theorem is referenced by:  breqtrrid  5186  phplem3OLD  9218  xlemul1a  13266  phicl2  16700  sinq12ge0  26017  siilem1  30099  nmbdfnlbi  31297  nmcfnlbi  31300  unierri  31352  leoprf2  31375  leoprf  31376  ballotlemic  33500  ballotlem1c  33501  sumnnodd  44336
  Copyright terms: Public domain W3C validator