| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqtrid | Structured version Visualization version GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| Ref | Expression |
|---|---|
| breqtrid.1 | ⊢ 𝐴𝑅𝐵 |
| breqtrid.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| breqtrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrid.1 | . . 3 ⊢ 𝐴𝑅𝐵 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) |
| 3 | breqtrid.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 4 | 2, 3 | breqtrd 5150 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 |
| This theorem is referenced by: breqtrrid 5162 phplem3OLD 9235 xlemul1a 13309 phicl2 16792 sinq12ge0 26474 siilem1 30837 nmbdfnlbi 32035 nmcfnlbi 32038 unierri 32090 leoprf2 32113 leoprf 32114 2sqr3nconstr 33820 ballotlemic 34544 ballotlem1c 34545 sumnnodd 45626 |
| Copyright terms: Public domain | W3C validator |