MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xlemul1a Structured version   Visualization version   GIF version

Theorem xlemul1a 13327
Description: Extended real version of lemul1a 12119. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xlemul1a (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))

Proof of Theorem xlemul1a
StepHypRef Expression
1 0xr 11306 . . . . . 6 0 ∈ ℝ*
2 simpr 484 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → 𝐶 ∈ ℝ*)
3 xrleloe 13183 . . . . . 6 ((0 ∈ ℝ*𝐶 ∈ ℝ*) → (0 ≤ 𝐶 ↔ (0 < 𝐶 ∨ 0 = 𝐶)))
41, 2, 3sylancr 587 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → (0 ≤ 𝐶 ↔ (0 < 𝐶 ∨ 0 = 𝐶)))
5 simpllr 776 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 𝐶 ∈ ℝ*)
6 elxr 13156 . . . . . . . . . . . 12 (𝐶 ∈ ℝ* ↔ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
75, 6sylib 218 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
8 simplrr 778 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ)) → 𝐴𝐵)
9 simprll 779 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ)) → 𝐴 ∈ ℝ)
10 simprlr 780 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ)) → 𝐵 ∈ ℝ)
11 simprr 773 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ)) → 𝐶 ∈ ℝ)
12 simplrl 777 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ)) → 0 < 𝐶)
13 lemul1 12117 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
149, 10, 11, 12, 13syl112anc 1373 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ)) → (𝐴𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
158, 14mpbid 232 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ)) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
16 rexmul 13310 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ·e 𝐶) = (𝐴 · 𝐶))
179, 11, 16syl2anc 584 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ)) → (𝐴 ·e 𝐶) = (𝐴 · 𝐶))
18 rexmul 13310 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ·e 𝐶) = (𝐵 · 𝐶))
1910, 11, 18syl2anc 584 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ)) → (𝐵 ·e 𝐶) = (𝐵 · 𝐶))
2015, 17, 193brtr4d 5180 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ)) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
2120expr 456 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐶 ∈ ℝ → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
22 simprl 771 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 𝐴 ∈ ℝ)
23 0re 11261 . . . . . . . . . . . . . . 15 0 ∈ ℝ
24 lttri4 11343 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴))
2522, 23, 24sylancl 586 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴))
26 simplll 775 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) → 𝐴 ∈ ℝ*)
2726adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 𝐴 ∈ ℝ*)
28 xmulpnf1n 13317 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ*𝐴 < 0) → (𝐴 ·e +∞) = -∞)
2927, 28sylan 580 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐴 < 0) → (𝐴 ·e +∞) = -∞)
30 simpllr 776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) → 𝐵 ∈ ℝ*)
3130adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 𝐵 ∈ ℝ*)
3231adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ*)
33 pnfxr 11313 . . . . . . . . . . . . . . . . . . 19 +∞ ∈ ℝ*
34 xmulcl 13312 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 ·e +∞) ∈ ℝ*)
3532, 33, 34sylancl 586 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐴 < 0) → (𝐵 ·e +∞) ∈ ℝ*)
36 mnfle 13174 . . . . . . . . . . . . . . . . . 18 ((𝐵 ·e +∞) ∈ ℝ* → -∞ ≤ (𝐵 ·e +∞))
3735, 36syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐴 < 0) → -∞ ≤ (𝐵 ·e +∞))
3829, 37eqbrtrd 5170 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐴 < 0) → (𝐴 ·e +∞) ≤ (𝐵 ·e +∞))
3938ex 412 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 < 0 → (𝐴 ·e +∞) ≤ (𝐵 ·e +∞)))
40 oveq1 7438 . . . . . . . . . . . . . . . . . . 19 (𝐴 = 0 → (𝐴 ·e +∞) = (0 ·e +∞))
41 xmul02 13307 . . . . . . . . . . . . . . . . . . . 20 (+∞ ∈ ℝ* → (0 ·e +∞) = 0)
4233, 41ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (0 ·e +∞) = 0
4340, 42eqtrdi 2791 . . . . . . . . . . . . . . . . . 18 (𝐴 = 0 → (𝐴 ·e +∞) = 0)
4443adantl 481 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐴 = 0) → (𝐴 ·e +∞) = 0)
45 simplrr 778 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 𝐴𝐵)
46 breq1 5151 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = 0 → (𝐴𝐵 ↔ 0 ≤ 𝐵))
4745, 46syl5ibcom 245 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 = 0 → 0 ≤ 𝐵))
48 simprr 773 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 𝐵 ∈ ℝ)
49 leloe 11345 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
5023, 48, 49sylancr 587 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
5147, 50sylibd 239 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 = 0 → (0 < 𝐵 ∨ 0 = 𝐵)))
5251imp 406 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐴 = 0) → (0 < 𝐵 ∨ 0 = 𝐵))
53 pnfge 13170 . . . . . . . . . . . . . . . . . . . . 21 (0 ∈ ℝ* → 0 ≤ +∞)
541, 53ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 0 ≤ +∞
55 xmulpnf1 13313 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (𝐵 ·e +∞) = +∞)
5631, 55sylan 580 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 0 < 𝐵) → (𝐵 ·e +∞) = +∞)
5754, 56breqtrrid 5186 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 0 < 𝐵) → 0 ≤ (𝐵 ·e +∞))
58 xrleid 13190 . . . . . . . . . . . . . . . . . . . . . 22 (0 ∈ ℝ* → 0 ≤ 0)
591, 58ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ 0
6059, 42breqtrri 5175 . . . . . . . . . . . . . . . . . . . 20 0 ≤ (0 ·e +∞)
61 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 0 = 𝐵) → 0 = 𝐵)
6261oveq1d 7446 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 0 = 𝐵) → (0 ·e +∞) = (𝐵 ·e +∞))
6360, 62breqtrid 5185 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 0 = 𝐵) → 0 ≤ (𝐵 ·e +∞))
6457, 63jaodan 959 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (0 < 𝐵 ∨ 0 = 𝐵)) → 0 ≤ (𝐵 ·e +∞))
6552, 64syldan 591 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐴 = 0) → 0 ≤ (𝐵 ·e +∞))
6644, 65eqbrtrd 5170 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐴 = 0) → (𝐴 ·e +∞) ≤ (𝐵 ·e +∞))
6766ex 412 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 = 0 → (𝐴 ·e +∞) ≤ (𝐵 ·e +∞)))
68 pnfge 13170 . . . . . . . . . . . . . . . . . 18 (+∞ ∈ ℝ* → +∞ ≤ +∞)
6933, 68ax-mp 5 . . . . . . . . . . . . . . . . 17 +∞ ≤ +∞
7026adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴)) → 𝐴 ∈ ℝ*)
71 simprr 773 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴)) → 0 < 𝐴)
72 xmulpnf1 13313 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
7370, 71, 72syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴)) → (𝐴 ·e +∞) = +∞)
7430adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴)) → 𝐵 ∈ ℝ*)
75 ltletr 11351 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴𝐴𝐵) → 0 < 𝐵))
7623, 75mp3an1 1447 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴𝐴𝐵) → 0 < 𝐵))
7776adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((0 < 𝐴𝐴𝐵) → 0 < 𝐵))
7845, 77mpan2d 694 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (0 < 𝐴 → 0 < 𝐵))
7978impr 454 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴)) → 0 < 𝐵)
8074, 79, 55syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴)) → (𝐵 ·e +∞) = +∞)
8173, 80breq12d 5161 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴)) → ((𝐴 ·e +∞) ≤ (𝐵 ·e +∞) ↔ +∞ ≤ +∞))
8269, 81mpbiri 258 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴)) → (𝐴 ·e +∞) ≤ (𝐵 ·e +∞))
8382expr 456 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (0 < 𝐴 → (𝐴 ·e +∞) ≤ (𝐵 ·e +∞)))
8439, 67, 833jaod 1428 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴) → (𝐴 ·e +∞) ≤ (𝐵 ·e +∞)))
8525, 84mpd 15 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 ·e +∞) ≤ (𝐵 ·e +∞))
86 oveq2 7439 . . . . . . . . . . . . . 14 (𝐶 = +∞ → (𝐴 ·e 𝐶) = (𝐴 ·e +∞))
87 oveq2 7439 . . . . . . . . . . . . . 14 (𝐶 = +∞ → (𝐵 ·e 𝐶) = (𝐵 ·e +∞))
8886, 87breq12d 5161 . . . . . . . . . . . . 13 (𝐶 = +∞ → ((𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶) ↔ (𝐴 ·e +∞) ≤ (𝐵 ·e +∞)))
8985, 88syl5ibrcom 247 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐶 = +∞ → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
90 nltmnf 13169 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ* → ¬ 0 < -∞)
911, 90ax-mp 5 . . . . . . . . . . . . . . . . 17 ¬ 0 < -∞
92 breq2 5152 . . . . . . . . . . . . . . . . 17 (𝐶 = -∞ → (0 < 𝐶 ↔ 0 < -∞))
9391, 92mtbiri 327 . . . . . . . . . . . . . . . 16 (𝐶 = -∞ → ¬ 0 < 𝐶)
9493con2i 139 . . . . . . . . . . . . . . 15 (0 < 𝐶 → ¬ 𝐶 = -∞)
9594ad2antrl 728 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) → ¬ 𝐶 = -∞)
9695adantr 480 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ¬ 𝐶 = -∞)
9796pm2.21d 121 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐶 = -∞ → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
9821, 89, 973jaod 1428 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
997, 98mpd 15 . . . . . . . . . 10 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
10099anassrs 467 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
101 xmulcl 13312 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e 𝐶) ∈ ℝ*)
102101adantlr 715 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → (𝐴 ·e 𝐶) ∈ ℝ*)
103102ad2antrr 726 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = +∞) → (𝐴 ·e 𝐶) ∈ ℝ*)
104 pnfge 13170 . . . . . . . . . . . 12 ((𝐴 ·e 𝐶) ∈ ℝ* → (𝐴 ·e 𝐶) ≤ +∞)
105103, 104syl 17 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = +∞) → (𝐴 ·e 𝐶) ≤ +∞)
106 oveq1 7438 . . . . . . . . . . . 12 (𝐵 = +∞ → (𝐵 ·e 𝐶) = (+∞ ·e 𝐶))
107 xmulpnf2 13314 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ* ∧ 0 < 𝐶) → (+∞ ·e 𝐶) = +∞)
108107ad2ant2lr 748 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) → (+∞ ·e 𝐶) = +∞)
109106, 108sylan9eqr 2797 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = +∞) → (𝐵 ·e 𝐶) = +∞)
110105, 109breqtrrd 5176 . . . . . . . . . 10 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = +∞) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
111110adantlr 715 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
112 simplrr 778 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = -∞) → 𝐴𝐵)
113 simpr 484 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = -∞) → 𝐵 = -∞)
11426adantr 480 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = -∞) → 𝐴 ∈ ℝ*)
115 mnfle 13174 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
116114, 115syl 17 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = -∞) → -∞ ≤ 𝐴)
117113, 116eqbrtrd 5170 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = -∞) → 𝐵𝐴)
118 xrletri3 13193 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
119118ad3antrrr 730 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = -∞) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
120112, 117, 119mpbir2and 713 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = -∞) → 𝐴 = 𝐵)
121120oveq1d 7446 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = -∞) → (𝐴 ·e 𝐶) = (𝐵 ·e 𝐶))
122 xmulcl 13312 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ·e 𝐶) ∈ ℝ*)
123122adantll 714 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → (𝐵 ·e 𝐶) ∈ ℝ*)
124123ad2antrr 726 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = -∞) → (𝐵 ·e 𝐶) ∈ ℝ*)
125 xrleid 13190 . . . . . . . . . . . 12 ((𝐵 ·e 𝐶) ∈ ℝ* → (𝐵 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
126124, 125syl 17 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = -∞) → (𝐵 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
127121, 126eqbrtrd 5170 . . . . . . . . . 10 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = -∞) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
128127adantlr 715 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
129 elxr 13156 . . . . . . . . . . 11 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
13030, 129sylib 218 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
131130adantr 480 . . . . . . . . 9 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 ∈ ℝ) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
132100, 111, 128, 131mpjao3dan 1431 . . . . . . . 8 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 ∈ ℝ) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
133 simplrr 778 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = +∞) → 𝐴𝐵)
13430adantr 480 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ*)
135 pnfge 13170 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
136134, 135syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = +∞) → 𝐵 ≤ +∞)
137 simpr 484 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = +∞) → 𝐴 = +∞)
138136, 137breqtrrd 5176 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = +∞) → 𝐵𝐴)
139118ad3antrrr 730 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = +∞) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
140133, 138, 139mpbir2and 713 . . . . . . . . . 10 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = +∞) → 𝐴 = 𝐵)
141140oveq1d 7446 . . . . . . . . 9 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = +∞) → (𝐴 ·e 𝐶) = (𝐵 ·e 𝐶))
142123, 125syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → (𝐵 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
143142ad2antrr 726 . . . . . . . . 9 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = +∞) → (𝐵 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
144141, 143eqbrtrd 5170 . . . . . . . 8 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = +∞) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
145 oveq1 7438 . . . . . . . . . 10 (𝐴 = -∞ → (𝐴 ·e 𝐶) = (-∞ ·e 𝐶))
146 xmulmnf2 13316 . . . . . . . . . . 11 ((𝐶 ∈ ℝ* ∧ 0 < 𝐶) → (-∞ ·e 𝐶) = -∞)
147146ad2ant2lr 748 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) → (-∞ ·e 𝐶) = -∞)
148145, 147sylan9eqr 2797 . . . . . . . . 9 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = -∞) → (𝐴 ·e 𝐶) = -∞)
149123ad2antrr 726 . . . . . . . . . 10 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = -∞) → (𝐵 ·e 𝐶) ∈ ℝ*)
150 mnfle 13174 . . . . . . . . . 10 ((𝐵 ·e 𝐶) ∈ ℝ* → -∞ ≤ (𝐵 ·e 𝐶))
151149, 150syl 17 . . . . . . . . 9 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = -∞) → -∞ ≤ (𝐵 ·e 𝐶))
152148, 151eqbrtrd 5170 . . . . . . . 8 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = -∞) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
153 elxr 13156 . . . . . . . . 9 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
15426, 153sylib 218 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
155132, 144, 152, 154mpjao3dan 1431 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
156155exp32 420 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → (0 < 𝐶 → (𝐴𝐵 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))))
157 xmul01 13306 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0)
158157ad2antrr 726 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → (𝐴 ·e 0) = 0)
159 xmul01 13306 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝐵 ·e 0) = 0)
160159ad2antlr 727 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → (𝐵 ·e 0) = 0)
161158, 160breq12d 5161 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → ((𝐴 ·e 0) ≤ (𝐵 ·e 0) ↔ 0 ≤ 0))
16259, 161mpbiri 258 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → (𝐴 ·e 0) ≤ (𝐵 ·e 0))
163 oveq2 7439 . . . . . . . . 9 (0 = 𝐶 → (𝐴 ·e 0) = (𝐴 ·e 𝐶))
164 oveq2 7439 . . . . . . . . 9 (0 = 𝐶 → (𝐵 ·e 0) = (𝐵 ·e 𝐶))
165163, 164breq12d 5161 . . . . . . . 8 (0 = 𝐶 → ((𝐴 ·e 0) ≤ (𝐵 ·e 0) ↔ (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
166162, 165syl5ibcom 245 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → (0 = 𝐶 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
167166a1dd 50 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → (0 = 𝐶 → (𝐴𝐵 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))))
168156, 167jaod 859 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → ((0 < 𝐶 ∨ 0 = 𝐶) → (𝐴𝐵 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))))
1694, 168sylbid 240 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → (0 ≤ 𝐶 → (𝐴𝐵 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))))
170169expimpd 453 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶) → (𝐴𝐵 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))))
1711703impia 1116 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴𝐵 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
172171imp 406 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  (class class class)co 7431  cr 11152  0cc0 11153   · cmul 11158  +∞cpnf 11290  -∞cmnf 11291  *cxr 11292   < clt 11293  cle 11294   ·e cxmu 13151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-xneg 13152  df-xmul 13154
This theorem is referenced by:  xlemul2a  13328  xlemul1  13329  nmoi2  24767  esumcst  34044
  Copyright terms: Public domain W3C validator