MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xlemul1a Structured version   Visualization version   GIF version

Theorem xlemul1a 12406
Description: Extended real version of lemul1a 11207. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xlemul1a (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))

Proof of Theorem xlemul1a
StepHypRef Expression
1 0xr 10403 . . . . . 6 0 ∈ ℝ*
2 simpr 479 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → 𝐶 ∈ ℝ*)
3 xrleloe 12263 . . . . . 6 ((0 ∈ ℝ*𝐶 ∈ ℝ*) → (0 ≤ 𝐶 ↔ (0 < 𝐶 ∨ 0 = 𝐶)))
41, 2, 3sylancr 583 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → (0 ≤ 𝐶 ↔ (0 < 𝐶 ∨ 0 = 𝐶)))
5 simpllr 795 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 𝐶 ∈ ℝ*)
6 elxr 12236 . . . . . . . . . . . 12 (𝐶 ∈ ℝ* ↔ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
75, 6sylib 210 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
8 simplrr 798 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ)) → 𝐴𝐵)
9 simprll 799 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ)) → 𝐴 ∈ ℝ)
10 simprlr 800 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ)) → 𝐵 ∈ ℝ)
11 simprr 791 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ)) → 𝐶 ∈ ℝ)
12 simplrl 797 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ)) → 0 < 𝐶)
13 lemul1 11205 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
149, 10, 11, 12, 13syl112anc 1499 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ)) → (𝐴𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)))
158, 14mpbid 224 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ)) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
16 rexmul 12389 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ·e 𝐶) = (𝐴 · 𝐶))
179, 11, 16syl2anc 581 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ)) → (𝐴 ·e 𝐶) = (𝐴 · 𝐶))
18 rexmul 12389 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ·e 𝐶) = (𝐵 · 𝐶))
1910, 11, 18syl2anc 581 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ)) → (𝐵 ·e 𝐶) = (𝐵 · 𝐶))
2015, 17, 193brtr4d 4905 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ)) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
2120expr 450 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐶 ∈ ℝ → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
22 simprl 789 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 𝐴 ∈ ℝ)
23 0re 10358 . . . . . . . . . . . . . . 15 0 ∈ ℝ
24 lttri4 10441 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴))
2522, 23, 24sylancl 582 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴))
26 simplll 793 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) → 𝐴 ∈ ℝ*)
2726adantr 474 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 𝐴 ∈ ℝ*)
28 xmulpnf1n 12396 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ*𝐴 < 0) → (𝐴 ·e +∞) = -∞)
2927, 28sylan 577 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐴 < 0) → (𝐴 ·e +∞) = -∞)
30 simpllr 795 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) → 𝐵 ∈ ℝ*)
3130adantr 474 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 𝐵 ∈ ℝ*)
3231adantr 474 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ*)
33 pnfxr 10410 . . . . . . . . . . . . . . . . . . 19 +∞ ∈ ℝ*
34 xmulcl 12391 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 ·e +∞) ∈ ℝ*)
3532, 33, 34sylancl 582 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐴 < 0) → (𝐵 ·e +∞) ∈ ℝ*)
36 mnfle 12255 . . . . . . . . . . . . . . . . . 18 ((𝐵 ·e +∞) ∈ ℝ* → -∞ ≤ (𝐵 ·e +∞))
3735, 36syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐴 < 0) → -∞ ≤ (𝐵 ·e +∞))
3829, 37eqbrtrd 4895 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐴 < 0) → (𝐴 ·e +∞) ≤ (𝐵 ·e +∞))
3938ex 403 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 < 0 → (𝐴 ·e +∞) ≤ (𝐵 ·e +∞)))
40 oveq1 6912 . . . . . . . . . . . . . . . . . . 19 (𝐴 = 0 → (𝐴 ·e +∞) = (0 ·e +∞))
41 xmul02 12386 . . . . . . . . . . . . . . . . . . . 20 (+∞ ∈ ℝ* → (0 ·e +∞) = 0)
4233, 41ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (0 ·e +∞) = 0
4340, 42syl6eq 2877 . . . . . . . . . . . . . . . . . 18 (𝐴 = 0 → (𝐴 ·e +∞) = 0)
4443adantl 475 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐴 = 0) → (𝐴 ·e +∞) = 0)
45 simplrr 798 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 𝐴𝐵)
46 breq1 4876 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = 0 → (𝐴𝐵 ↔ 0 ≤ 𝐵))
4745, 46syl5ibcom 237 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 = 0 → 0 ≤ 𝐵))
48 simprr 791 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → 𝐵 ∈ ℝ)
49 leloe 10443 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
5023, 48, 49sylancr 583 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (0 ≤ 𝐵 ↔ (0 < 𝐵 ∨ 0 = 𝐵)))
5147, 50sylibd 231 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 = 0 → (0 < 𝐵 ∨ 0 = 𝐵)))
5251imp 397 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐴 = 0) → (0 < 𝐵 ∨ 0 = 𝐵))
53 pnfge 12250 . . . . . . . . . . . . . . . . . . . . 21 (0 ∈ ℝ* → 0 ≤ +∞)
541, 53ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 0 ≤ +∞
55 xmulpnf1 12392 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (𝐵 ·e +∞) = +∞)
5631, 55sylan 577 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 0 < 𝐵) → (𝐵 ·e +∞) = +∞)
5754, 56syl5breqr 4911 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 0 < 𝐵) → 0 ≤ (𝐵 ·e +∞))
58 xrleid 12270 . . . . . . . . . . . . . . . . . . . . . 22 (0 ∈ ℝ* → 0 ≤ 0)
591, 58ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ 0
6059, 42breqtrri 4900 . . . . . . . . . . . . . . . . . . . 20 0 ≤ (0 ·e +∞)
61 simpr 479 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 0 = 𝐵) → 0 = 𝐵)
6261oveq1d 6920 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 0 = 𝐵) → (0 ·e +∞) = (𝐵 ·e +∞))
6360, 62syl5breq 4910 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 0 = 𝐵) → 0 ≤ (𝐵 ·e +∞))
6457, 63jaodan 987 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ (0 < 𝐵 ∨ 0 = 𝐵)) → 0 ≤ (𝐵 ·e +∞))
6552, 64syldan 587 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐴 = 0) → 0 ≤ (𝐵 ·e +∞))
6644, 65eqbrtrd 4895 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) ∧ 𝐴 = 0) → (𝐴 ·e +∞) ≤ (𝐵 ·e +∞))
6766ex 403 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 = 0 → (𝐴 ·e +∞) ≤ (𝐵 ·e +∞)))
68 pnfge 12250 . . . . . . . . . . . . . . . . . 18 (+∞ ∈ ℝ* → +∞ ≤ +∞)
6933, 68ax-mp 5 . . . . . . . . . . . . . . . . 17 +∞ ≤ +∞
7026adantr 474 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴)) → 𝐴 ∈ ℝ*)
71 simprr 791 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴)) → 0 < 𝐴)
72 xmulpnf1 12392 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
7370, 71, 72syl2anc 581 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴)) → (𝐴 ·e +∞) = +∞)
7430adantr 474 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴)) → 𝐵 ∈ ℝ*)
75 ltletr 10448 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴𝐴𝐵) → 0 < 𝐵))
7623, 75mp3an1 1578 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴𝐴𝐵) → 0 < 𝐵))
7776adantl 475 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((0 < 𝐴𝐴𝐵) → 0 < 𝐵))
7845, 77mpan2d 687 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (0 < 𝐴 → 0 < 𝐵))
7978impr 448 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴)) → 0 < 𝐵)
8074, 79, 55syl2anc 581 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴)) → (𝐵 ·e +∞) = +∞)
8173, 80breq12d 4886 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴)) → ((𝐴 ·e +∞) ≤ (𝐵 ·e +∞) ↔ +∞ ≤ +∞))
8269, 81mpbiri 250 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴)) → (𝐴 ·e +∞) ≤ (𝐵 ·e +∞))
8382expr 450 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (0 < 𝐴 → (𝐴 ·e +∞) ≤ (𝐵 ·e +∞)))
8439, 67, 833jaod 1559 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴) → (𝐴 ·e +∞) ≤ (𝐵 ·e +∞)))
8525, 84mpd 15 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 ·e +∞) ≤ (𝐵 ·e +∞))
86 oveq2 6913 . . . . . . . . . . . . . 14 (𝐶 = +∞ → (𝐴 ·e 𝐶) = (𝐴 ·e +∞))
87 oveq2 6913 . . . . . . . . . . . . . 14 (𝐶 = +∞ → (𝐵 ·e 𝐶) = (𝐵 ·e +∞))
8886, 87breq12d 4886 . . . . . . . . . . . . 13 (𝐶 = +∞ → ((𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶) ↔ (𝐴 ·e +∞) ≤ (𝐵 ·e +∞)))
8985, 88syl5ibrcom 239 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐶 = +∞ → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
90 nltmnf 12249 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ* → ¬ 0 < -∞)
911, 90ax-mp 5 . . . . . . . . . . . . . . . . 17 ¬ 0 < -∞
92 breq2 4877 . . . . . . . . . . . . . . . . 17 (𝐶 = -∞ → (0 < 𝐶 ↔ 0 < -∞))
9391, 92mtbiri 319 . . . . . . . . . . . . . . . 16 (𝐶 = -∞ → ¬ 0 < 𝐶)
9493con2i 137 . . . . . . . . . . . . . . 15 (0 < 𝐶 → ¬ 𝐶 = -∞)
9594ad2antrl 721 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) → ¬ 𝐶 = -∞)
9695adantr 474 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ¬ 𝐶 = -∞)
9796pm2.21d 119 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐶 = -∞ → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
9821, 89, 973jaod 1559 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → ((𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
997, 98mpd 15 . . . . . . . . . 10 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
10099anassrs 461 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
101 xmulcl 12391 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e 𝐶) ∈ ℝ*)
102101adantlr 708 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → (𝐴 ·e 𝐶) ∈ ℝ*)
103102ad2antrr 719 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = +∞) → (𝐴 ·e 𝐶) ∈ ℝ*)
104 pnfge 12250 . . . . . . . . . . . 12 ((𝐴 ·e 𝐶) ∈ ℝ* → (𝐴 ·e 𝐶) ≤ +∞)
105103, 104syl 17 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = +∞) → (𝐴 ·e 𝐶) ≤ +∞)
106 oveq1 6912 . . . . . . . . . . . 12 (𝐵 = +∞ → (𝐵 ·e 𝐶) = (+∞ ·e 𝐶))
107 xmulpnf2 12393 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ* ∧ 0 < 𝐶) → (+∞ ·e 𝐶) = +∞)
108107ad2ant2lr 756 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) → (+∞ ·e 𝐶) = +∞)
109106, 108sylan9eqr 2883 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = +∞) → (𝐵 ·e 𝐶) = +∞)
110105, 109breqtrrd 4901 . . . . . . . . . 10 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = +∞) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
111110adantlr 708 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
112 simplrr 798 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = -∞) → 𝐴𝐵)
113 simpr 479 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = -∞) → 𝐵 = -∞)
11426adantr 474 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = -∞) → 𝐴 ∈ ℝ*)
115 mnfle 12255 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
116114, 115syl 17 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = -∞) → -∞ ≤ 𝐴)
117113, 116eqbrtrd 4895 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = -∞) → 𝐵𝐴)
118 xrletri3 12273 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
119118ad3antrrr 723 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = -∞) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
120112, 117, 119mpbir2and 706 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = -∞) → 𝐴 = 𝐵)
121120oveq1d 6920 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = -∞) → (𝐴 ·e 𝐶) = (𝐵 ·e 𝐶))
122 xmulcl 12391 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ·e 𝐶) ∈ ℝ*)
123122adantll 707 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → (𝐵 ·e 𝐶) ∈ ℝ*)
124123ad2antrr 719 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = -∞) → (𝐵 ·e 𝐶) ∈ ℝ*)
125 xrleid 12270 . . . . . . . . . . . 12 ((𝐵 ·e 𝐶) ∈ ℝ* → (𝐵 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
126124, 125syl 17 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = -∞) → (𝐵 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
127121, 126eqbrtrd 4895 . . . . . . . . . 10 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐵 = -∞) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
128127adantlr 708 . . . . . . . . 9 ((((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
129 elxr 12236 . . . . . . . . . . 11 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
13030, 129sylib 210 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
131130adantr 474 . . . . . . . . 9 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 ∈ ℝ) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
132100, 111, 128, 131mpjao3dan 1562 . . . . . . . 8 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 ∈ ℝ) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
133 simplrr 798 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = +∞) → 𝐴𝐵)
13430adantr 474 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ*)
135 pnfge 12250 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
136134, 135syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = +∞) → 𝐵 ≤ +∞)
137 simpr 479 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = +∞) → 𝐴 = +∞)
138136, 137breqtrrd 4901 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = +∞) → 𝐵𝐴)
139118ad3antrrr 723 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = +∞) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
140133, 138, 139mpbir2and 706 . . . . . . . . . 10 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = +∞) → 𝐴 = 𝐵)
141140oveq1d 6920 . . . . . . . . 9 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = +∞) → (𝐴 ·e 𝐶) = (𝐵 ·e 𝐶))
142123, 125syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → (𝐵 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
143142ad2antrr 719 . . . . . . . . 9 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = +∞) → (𝐵 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
144141, 143eqbrtrd 4895 . . . . . . . 8 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = +∞) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
145 oveq1 6912 . . . . . . . . . 10 (𝐴 = -∞ → (𝐴 ·e 𝐶) = (-∞ ·e 𝐶))
146 xmulmnf2 12395 . . . . . . . . . . 11 ((𝐶 ∈ ℝ* ∧ 0 < 𝐶) → (-∞ ·e 𝐶) = -∞)
147146ad2ant2lr 756 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) → (-∞ ·e 𝐶) = -∞)
148145, 147sylan9eqr 2883 . . . . . . . . 9 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = -∞) → (𝐴 ·e 𝐶) = -∞)
149123ad2antrr 719 . . . . . . . . . 10 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = -∞) → (𝐵 ·e 𝐶) ∈ ℝ*)
150 mnfle 12255 . . . . . . . . . 10 ((𝐵 ·e 𝐶) ∈ ℝ* → -∞ ≤ (𝐵 ·e 𝐶))
151149, 150syl 17 . . . . . . . . 9 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = -∞) → -∞ ≤ (𝐵 ·e 𝐶))
152148, 151eqbrtrd 4895 . . . . . . . 8 (((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) ∧ 𝐴 = -∞) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
153 elxr 12236 . . . . . . . . 9 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
15426, 153sylib 210 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
155132, 144, 152, 154mpjao3dan 1562 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (0 < 𝐶𝐴𝐵)) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
156155exp32 413 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → (0 < 𝐶 → (𝐴𝐵 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))))
157 xmul01 12385 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0)
158157ad2antrr 719 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → (𝐴 ·e 0) = 0)
159 xmul01 12385 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (𝐵 ·e 0) = 0)
160159ad2antlr 720 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → (𝐵 ·e 0) = 0)
161158, 160breq12d 4886 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → ((𝐴 ·e 0) ≤ (𝐵 ·e 0) ↔ 0 ≤ 0))
16259, 161mpbiri 250 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → (𝐴 ·e 0) ≤ (𝐵 ·e 0))
163 oveq2 6913 . . . . . . . . 9 (0 = 𝐶 → (𝐴 ·e 0) = (𝐴 ·e 𝐶))
164 oveq2 6913 . . . . . . . . 9 (0 = 𝐶 → (𝐵 ·e 0) = (𝐵 ·e 𝐶))
165163, 164breq12d 4886 . . . . . . . 8 (0 = 𝐶 → ((𝐴 ·e 0) ≤ (𝐵 ·e 0) ↔ (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
166162, 165syl5ibcom 237 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → (0 = 𝐶 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
167166a1dd 50 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → (0 = 𝐶 → (𝐴𝐵 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))))
168156, 167jaod 892 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → ((0 < 𝐶 ∨ 0 = 𝐶) → (𝐴𝐵 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))))
1694, 168sylbid 232 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) → (0 ≤ 𝐶 → (𝐴𝐵 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))))
170169expimpd 447 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶) → (𝐴𝐵 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))))
1711703impia 1151 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴𝐵 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
172171imp 397 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 880  w3o 1112  w3a 1113   = wceq 1658  wcel 2166   class class class wbr 4873  (class class class)co 6905  cr 10251  0cc0 10252   · cmul 10257  +∞cpnf 10388  -∞cmnf 10389  *cxr 10390   < clt 10391  cle 10392   ·e cxmu 12231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-po 5263  df-so 5264  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-1st 7428  df-2nd 7429  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-xneg 12232  df-xmul 12234
This theorem is referenced by:  xlemul2a  12407  xlemul1  12408  nmoi2  22904  esumcst  30670
  Copyright terms: Public domain W3C validator