HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcfnlbi Structured version   Visualization version   GIF version

Theorem nmcfnlbi 30087
Description: A lower bound for the norm of a continuous linear functional. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcfnex.1 𝑇 ∈ LinFn
nmcfnex.2 𝑇 ∈ ContFn
Assertion
Ref Expression
nmcfnlbi (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))

Proof of Theorem nmcfnlbi
StepHypRef Expression
1 fveq2 6695 . . . . . 6 (𝐴 = 0 → (𝑇𝐴) = (𝑇‘0))
2 nmcfnex.1 . . . . . . 7 𝑇 ∈ LinFn
32lnfn0i 30077 . . . . . 6 (𝑇‘0) = 0
41, 3eqtrdi 2787 . . . . 5 (𝐴 = 0 → (𝑇𝐴) = 0)
54abs00bd 14820 . . . 4 (𝐴 = 0 → (abs‘(𝑇𝐴)) = 0)
6 0le0 11896 . . . . 5 0 ≤ 0
7 fveq2 6695 . . . . . . . 8 (𝐴 = 0 → (norm𝐴) = (norm‘0))
8 norm0 29163 . . . . . . . 8 (norm‘0) = 0
97, 8eqtrdi 2787 . . . . . . 7 (𝐴 = 0 → (norm𝐴) = 0)
109oveq2d 7207 . . . . . 6 (𝐴 = 0 → ((normfn𝑇) · (norm𝐴)) = ((normfn𝑇) · 0))
11 nmcfnex.2 . . . . . . . . 9 𝑇 ∈ ContFn
122, 11nmcfnexi 30086 . . . . . . . 8 (normfn𝑇) ∈ ℝ
1312recni 10812 . . . . . . 7 (normfn𝑇) ∈ ℂ
1413mul01i 10987 . . . . . 6 ((normfn𝑇) · 0) = 0
1510, 14eqtr2di 2788 . . . . 5 (𝐴 = 0 → 0 = ((normfn𝑇) · (norm𝐴)))
166, 15breqtrid 5076 . . . 4 (𝐴 = 0 → 0 ≤ ((normfn𝑇) · (norm𝐴)))
175, 16eqbrtrd 5061 . . 3 (𝐴 = 0 → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
1817adantl 485 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 = 0) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
192lnfnfi 30076 . . . . . . . . . 10 𝑇: ℋ⟶ℂ
2019ffvelrni 6881 . . . . . . . . 9 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℂ)
2120abscld 14965 . . . . . . . 8 (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ∈ ℝ)
2221adantr 484 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(𝑇𝐴)) ∈ ℝ)
2322recnd 10826 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(𝑇𝐴)) ∈ ℂ)
24 normcl 29160 . . . . . . . 8 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
2524adantr 484 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm𝐴) ∈ ℝ)
2625recnd 10826 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm𝐴) ∈ ℂ)
27 norm-i 29164 . . . . . . . . 9 (𝐴 ∈ ℋ → ((norm𝐴) = 0 ↔ 𝐴 = 0))
2827notbid 321 . . . . . . . 8 (𝐴 ∈ ℋ → (¬ (norm𝐴) = 0 ↔ ¬ 𝐴 = 0))
2928biimpar 481 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ¬ (norm𝐴) = 0)
3029neqned 2939 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm𝐴) ≠ 0)
3123, 26, 30divrec2d 11577 . . . . 5 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((abs‘(𝑇𝐴)) / (norm𝐴)) = ((1 / (norm𝐴)) · (abs‘(𝑇𝐴))))
3225, 30rereccld 11624 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (1 / (norm𝐴)) ∈ ℝ)
3332recnd 10826 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (1 / (norm𝐴)) ∈ ℂ)
34 simpl 486 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → 𝐴 ∈ ℋ)
352lnfnmuli 30079 . . . . . . . 8 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
3633, 34, 35syl2anc 587 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
3736fveq2d 6699 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) = (abs‘((1 / (norm𝐴)) · (𝑇𝐴))))
3820adantr 484 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (𝑇𝐴) ∈ ℂ)
3933, 38absmuld 14983 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘((1 / (norm𝐴)) · (𝑇𝐴))) = ((abs‘(1 / (norm𝐴))) · (abs‘(𝑇𝐴))))
40 df-ne 2933 . . . . . . . . . . . 12 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
41 normgt0 29162 . . . . . . . . . . . 12 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))
4240, 41bitr3id 288 . . . . . . . . . . 11 (𝐴 ∈ ℋ → (¬ 𝐴 = 0 ↔ 0 < (norm𝐴)))
4342biimpa 480 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → 0 < (norm𝐴))
4425, 43recgt0d 11731 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → 0 < (1 / (norm𝐴)))
45 0re 10800 . . . . . . . . . 10 0 ∈ ℝ
46 ltle 10886 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (1 / (norm𝐴)) ∈ ℝ) → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
4745, 46mpan 690 . . . . . . . . 9 ((1 / (norm𝐴)) ∈ ℝ → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
4832, 44, 47sylc 65 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → 0 ≤ (1 / (norm𝐴)))
4932, 48absidd 14951 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(1 / (norm𝐴))) = (1 / (norm𝐴)))
5049oveq1d 7206 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((abs‘(1 / (norm𝐴))) · (abs‘(𝑇𝐴))) = ((1 / (norm𝐴)) · (abs‘(𝑇𝐴))))
5137, 39, 503eqtrrd 2776 . . . . 5 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((1 / (norm𝐴)) · (abs‘(𝑇𝐴))) = (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
5231, 51eqtrd 2771 . . . 4 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((abs‘(𝑇𝐴)) / (norm𝐴)) = (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
53 hvmulcl 29048 . . . . . 6 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
5433, 34, 53syl2anc 587 . . . . 5 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
55 normcl 29160 . . . . . . 7 (((1 / (norm𝐴)) · 𝐴) ∈ ℋ → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
5654, 55syl 17 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
57 norm1 29284 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
5840, 57sylan2br 598 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
59 eqle 10899 . . . . . 6 (((norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) = 1) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
6056, 58, 59syl2anc 587 . . . . 5 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
61 nmfnlb 29959 . . . . . 6 ((𝑇: ℋ⟶ℂ ∧ ((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normfn𝑇))
6219, 61mp3an1 1450 . . . . 5 ((((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normfn𝑇))
6354, 60, 62syl2anc 587 . . . 4 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normfn𝑇))
6452, 63eqbrtrd 5061 . . 3 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((abs‘(𝑇𝐴)) / (norm𝐴)) ≤ (normfn𝑇))
6512a1i 11 . . . 4 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (normfn𝑇) ∈ ℝ)
66 ledivmul2 11676 . . . 4 (((abs‘(𝑇𝐴)) ∈ ℝ ∧ (normfn𝑇) ∈ ℝ ∧ ((norm𝐴) ∈ ℝ ∧ 0 < (norm𝐴))) → (((abs‘(𝑇𝐴)) / (norm𝐴)) ≤ (normfn𝑇) ↔ (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))))
6722, 65, 25, 43, 66syl112anc 1376 . . 3 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (((abs‘(𝑇𝐴)) / (norm𝐴)) ≤ (normfn𝑇) ↔ (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))))
6864, 67mpbid 235 . 2 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
6918, 68pm2.61dan 813 1 (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  wne 2932   class class class wbr 5039  wf 6354  cfv 6358  (class class class)co 7191  cc 10692  cr 10693  0cc0 10694  1c1 10695   · cmul 10699   < clt 10832  cle 10833   / cdiv 11454  abscabs 14762  chba 28954   · csm 28956  normcno 28958  0c0v 28959  normfncnmf 28986  ContFnccnfn 28988  LinFnclf 28989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-hilex 29034  ax-hv0cl 29038  ax-hvaddid 29039  ax-hfvmul 29040  ax-hvmulid 29041  ax-hvmulass 29042  ax-hvmul0 29045  ax-hfi 29114  ax-his1 29117  ax-his3 29119  ax-his4 29120
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-seq 13540  df-exp 13601  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-hnorm 29003  df-hvsub 29006  df-nmfn 29880  df-cnfn 29882  df-lnfn 29883
This theorem is referenced by:  nmcfnlb  30089
  Copyright terms: Public domain W3C validator