HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcfnlbi Structured version   Visualization version   GIF version

Theorem nmcfnlbi 31988
Description: A lower bound for the norm of a continuous linear functional. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcfnex.1 𝑇 ∈ LinFn
nmcfnex.2 𝑇 ∈ ContFn
Assertion
Ref Expression
nmcfnlbi (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))

Proof of Theorem nmcfnlbi
StepHypRef Expression
1 fveq2 6861 . . . . . 6 (𝐴 = 0 → (𝑇𝐴) = (𝑇‘0))
2 nmcfnex.1 . . . . . . 7 𝑇 ∈ LinFn
32lnfn0i 31978 . . . . . 6 (𝑇‘0) = 0
41, 3eqtrdi 2781 . . . . 5 (𝐴 = 0 → (𝑇𝐴) = 0)
54abs00bd 15264 . . . 4 (𝐴 = 0 → (abs‘(𝑇𝐴)) = 0)
6 0le0 12294 . . . . 5 0 ≤ 0
7 fveq2 6861 . . . . . . . 8 (𝐴 = 0 → (norm𝐴) = (norm‘0))
8 norm0 31064 . . . . . . . 8 (norm‘0) = 0
97, 8eqtrdi 2781 . . . . . . 7 (𝐴 = 0 → (norm𝐴) = 0)
109oveq2d 7406 . . . . . 6 (𝐴 = 0 → ((normfn𝑇) · (norm𝐴)) = ((normfn𝑇) · 0))
11 nmcfnex.2 . . . . . . . . 9 𝑇 ∈ ContFn
122, 11nmcfnexi 31987 . . . . . . . 8 (normfn𝑇) ∈ ℝ
1312recni 11195 . . . . . . 7 (normfn𝑇) ∈ ℂ
1413mul01i 11371 . . . . . 6 ((normfn𝑇) · 0) = 0
1510, 14eqtr2di 2782 . . . . 5 (𝐴 = 0 → 0 = ((normfn𝑇) · (norm𝐴)))
166, 15breqtrid 5147 . . . 4 (𝐴 = 0 → 0 ≤ ((normfn𝑇) · (norm𝐴)))
175, 16eqbrtrd 5132 . . 3 (𝐴 = 0 → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
1817adantl 481 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 = 0) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
192lnfnfi 31977 . . . . . . . . . 10 𝑇: ℋ⟶ℂ
2019ffvelcdmi 7058 . . . . . . . . 9 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℂ)
2120abscld 15412 . . . . . . . 8 (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ∈ ℝ)
2221adantr 480 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(𝑇𝐴)) ∈ ℝ)
2322recnd 11209 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(𝑇𝐴)) ∈ ℂ)
24 normcl 31061 . . . . . . . 8 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
2524adantr 480 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm𝐴) ∈ ℝ)
2625recnd 11209 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm𝐴) ∈ ℂ)
27 norm-i 31065 . . . . . . . . 9 (𝐴 ∈ ℋ → ((norm𝐴) = 0 ↔ 𝐴 = 0))
2827notbid 318 . . . . . . . 8 (𝐴 ∈ ℋ → (¬ (norm𝐴) = 0 ↔ ¬ 𝐴 = 0))
2928biimpar 477 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ¬ (norm𝐴) = 0)
3029neqned 2933 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm𝐴) ≠ 0)
3123, 26, 30divrec2d 11969 . . . . 5 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((abs‘(𝑇𝐴)) / (norm𝐴)) = ((1 / (norm𝐴)) · (abs‘(𝑇𝐴))))
3225, 30rereccld 12016 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (1 / (norm𝐴)) ∈ ℝ)
3332recnd 11209 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (1 / (norm𝐴)) ∈ ℂ)
34 simpl 482 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → 𝐴 ∈ ℋ)
352lnfnmuli 31980 . . . . . . . 8 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
3633, 34, 35syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
3736fveq2d 6865 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) = (abs‘((1 / (norm𝐴)) · (𝑇𝐴))))
3820adantr 480 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (𝑇𝐴) ∈ ℂ)
3933, 38absmuld 15430 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘((1 / (norm𝐴)) · (𝑇𝐴))) = ((abs‘(1 / (norm𝐴))) · (abs‘(𝑇𝐴))))
40 df-ne 2927 . . . . . . . . . . . 12 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
41 normgt0 31063 . . . . . . . . . . . 12 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))
4240, 41bitr3id 285 . . . . . . . . . . 11 (𝐴 ∈ ℋ → (¬ 𝐴 = 0 ↔ 0 < (norm𝐴)))
4342biimpa 476 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → 0 < (norm𝐴))
4425, 43recgt0d 12124 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → 0 < (1 / (norm𝐴)))
45 0re 11183 . . . . . . . . . 10 0 ∈ ℝ
46 ltle 11269 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (1 / (norm𝐴)) ∈ ℝ) → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
4745, 46mpan 690 . . . . . . . . 9 ((1 / (norm𝐴)) ∈ ℝ → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
4832, 44, 47sylc 65 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → 0 ≤ (1 / (norm𝐴)))
4932, 48absidd 15396 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(1 / (norm𝐴))) = (1 / (norm𝐴)))
5049oveq1d 7405 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((abs‘(1 / (norm𝐴))) · (abs‘(𝑇𝐴))) = ((1 / (norm𝐴)) · (abs‘(𝑇𝐴))))
5137, 39, 503eqtrrd 2770 . . . . 5 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((1 / (norm𝐴)) · (abs‘(𝑇𝐴))) = (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
5231, 51eqtrd 2765 . . . 4 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((abs‘(𝑇𝐴)) / (norm𝐴)) = (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
53 hvmulcl 30949 . . . . . 6 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
5433, 34, 53syl2anc 584 . . . . 5 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
55 normcl 31061 . . . . . . 7 (((1 / (norm𝐴)) · 𝐴) ∈ ℋ → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
5654, 55syl 17 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
57 norm1 31185 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
5840, 57sylan2br 595 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
59 eqle 11283 . . . . . 6 (((norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) = 1) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
6056, 58, 59syl2anc 584 . . . . 5 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
61 nmfnlb 31860 . . . . . 6 ((𝑇: ℋ⟶ℂ ∧ ((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normfn𝑇))
6219, 61mp3an1 1450 . . . . 5 ((((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normfn𝑇))
6354, 60, 62syl2anc 584 . . . 4 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normfn𝑇))
6452, 63eqbrtrd 5132 . . 3 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((abs‘(𝑇𝐴)) / (norm𝐴)) ≤ (normfn𝑇))
6512a1i 11 . . . 4 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (normfn𝑇) ∈ ℝ)
66 ledivmul2 12069 . . . 4 (((abs‘(𝑇𝐴)) ∈ ℝ ∧ (normfn𝑇) ∈ ℝ ∧ ((norm𝐴) ∈ ℝ ∧ 0 < (norm𝐴))) → (((abs‘(𝑇𝐴)) / (norm𝐴)) ≤ (normfn𝑇) ↔ (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))))
6722, 65, 25, 43, 66syl112anc 1376 . . 3 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (((abs‘(𝑇𝐴)) / (norm𝐴)) ≤ (normfn𝑇) ↔ (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))))
6864, 67mpbid 232 . 2 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
6918, 68pm2.61dan 812 1 (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   · cmul 11080   < clt 11215  cle 11216   / cdiv 11842  abscabs 15207  chba 30855   · csm 30857  normcno 30859  0c0v 30860  normfncnmf 30887  ContFnccnfn 30889  LinFnclf 30890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-hilex 30935  ax-hv0cl 30939  ax-hvaddid 30940  ax-hfvmul 30941  ax-hvmulid 30942  ax-hvmulass 30943  ax-hvmul0 30946  ax-hfi 31015  ax-his1 31018  ax-his3 31020  ax-his4 31021
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-hnorm 30904  df-hvsub 30907  df-nmfn 31781  df-cnfn 31783  df-lnfn 31784
This theorem is referenced by:  nmcfnlb  31990
  Copyright terms: Public domain W3C validator