HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcfnlbi Structured version   Visualization version   GIF version

Theorem nmcfnlbi 30410
Description: A lower bound for the norm of a continuous linear functional. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcfnex.1 𝑇 ∈ LinFn
nmcfnex.2 𝑇 ∈ ContFn
Assertion
Ref Expression
nmcfnlbi (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))

Proof of Theorem nmcfnlbi
StepHypRef Expression
1 fveq2 6771 . . . . . 6 (𝐴 = 0 → (𝑇𝐴) = (𝑇‘0))
2 nmcfnex.1 . . . . . . 7 𝑇 ∈ LinFn
32lnfn0i 30400 . . . . . 6 (𝑇‘0) = 0
41, 3eqtrdi 2796 . . . . 5 (𝐴 = 0 → (𝑇𝐴) = 0)
54abs00bd 15001 . . . 4 (𝐴 = 0 → (abs‘(𝑇𝐴)) = 0)
6 0le0 12074 . . . . 5 0 ≤ 0
7 fveq2 6771 . . . . . . . 8 (𝐴 = 0 → (norm𝐴) = (norm‘0))
8 norm0 29486 . . . . . . . 8 (norm‘0) = 0
97, 8eqtrdi 2796 . . . . . . 7 (𝐴 = 0 → (norm𝐴) = 0)
109oveq2d 7287 . . . . . 6 (𝐴 = 0 → ((normfn𝑇) · (norm𝐴)) = ((normfn𝑇) · 0))
11 nmcfnex.2 . . . . . . . . 9 𝑇 ∈ ContFn
122, 11nmcfnexi 30409 . . . . . . . 8 (normfn𝑇) ∈ ℝ
1312recni 10990 . . . . . . 7 (normfn𝑇) ∈ ℂ
1413mul01i 11165 . . . . . 6 ((normfn𝑇) · 0) = 0
1510, 14eqtr2di 2797 . . . . 5 (𝐴 = 0 → 0 = ((normfn𝑇) · (norm𝐴)))
166, 15breqtrid 5116 . . . 4 (𝐴 = 0 → 0 ≤ ((normfn𝑇) · (norm𝐴)))
175, 16eqbrtrd 5101 . . 3 (𝐴 = 0 → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
1817adantl 482 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 = 0) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
192lnfnfi 30399 . . . . . . . . . 10 𝑇: ℋ⟶ℂ
2019ffvelrni 6957 . . . . . . . . 9 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℂ)
2120abscld 15146 . . . . . . . 8 (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ∈ ℝ)
2221adantr 481 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(𝑇𝐴)) ∈ ℝ)
2322recnd 11004 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(𝑇𝐴)) ∈ ℂ)
24 normcl 29483 . . . . . . . 8 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
2524adantr 481 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm𝐴) ∈ ℝ)
2625recnd 11004 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm𝐴) ∈ ℂ)
27 norm-i 29487 . . . . . . . . 9 (𝐴 ∈ ℋ → ((norm𝐴) = 0 ↔ 𝐴 = 0))
2827notbid 318 . . . . . . . 8 (𝐴 ∈ ℋ → (¬ (norm𝐴) = 0 ↔ ¬ 𝐴 = 0))
2928biimpar 478 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ¬ (norm𝐴) = 0)
3029neqned 2952 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm𝐴) ≠ 0)
3123, 26, 30divrec2d 11755 . . . . 5 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((abs‘(𝑇𝐴)) / (norm𝐴)) = ((1 / (norm𝐴)) · (abs‘(𝑇𝐴))))
3225, 30rereccld 11802 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (1 / (norm𝐴)) ∈ ℝ)
3332recnd 11004 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (1 / (norm𝐴)) ∈ ℂ)
34 simpl 483 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → 𝐴 ∈ ℋ)
352lnfnmuli 30402 . . . . . . . 8 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
3633, 34, 35syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
3736fveq2d 6775 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) = (abs‘((1 / (norm𝐴)) · (𝑇𝐴))))
3820adantr 481 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (𝑇𝐴) ∈ ℂ)
3933, 38absmuld 15164 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘((1 / (norm𝐴)) · (𝑇𝐴))) = ((abs‘(1 / (norm𝐴))) · (abs‘(𝑇𝐴))))
40 df-ne 2946 . . . . . . . . . . . 12 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
41 normgt0 29485 . . . . . . . . . . . 12 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))
4240, 41bitr3id 285 . . . . . . . . . . 11 (𝐴 ∈ ℋ → (¬ 𝐴 = 0 ↔ 0 < (norm𝐴)))
4342biimpa 477 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → 0 < (norm𝐴))
4425, 43recgt0d 11909 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → 0 < (1 / (norm𝐴)))
45 0re 10978 . . . . . . . . . 10 0 ∈ ℝ
46 ltle 11064 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (1 / (norm𝐴)) ∈ ℝ) → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
4745, 46mpan 687 . . . . . . . . 9 ((1 / (norm𝐴)) ∈ ℝ → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
4832, 44, 47sylc 65 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → 0 ≤ (1 / (norm𝐴)))
4932, 48absidd 15132 . . . . . . 7 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(1 / (norm𝐴))) = (1 / (norm𝐴)))
5049oveq1d 7286 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((abs‘(1 / (norm𝐴))) · (abs‘(𝑇𝐴))) = ((1 / (norm𝐴)) · (abs‘(𝑇𝐴))))
5137, 39, 503eqtrrd 2785 . . . . 5 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((1 / (norm𝐴)) · (abs‘(𝑇𝐴))) = (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
5231, 51eqtrd 2780 . . . 4 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((abs‘(𝑇𝐴)) / (norm𝐴)) = (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
53 hvmulcl 29371 . . . . . 6 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
5433, 34, 53syl2anc 584 . . . . 5 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
55 normcl 29483 . . . . . . 7 (((1 / (norm𝐴)) · 𝐴) ∈ ℋ → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
5654, 55syl 17 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
57 norm1 29607 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
5840, 57sylan2br 595 . . . . . 6 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
59 eqle 11077 . . . . . 6 (((norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) = 1) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
6056, 58, 59syl2anc 584 . . . . 5 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
61 nmfnlb 30282 . . . . . 6 ((𝑇: ℋ⟶ℂ ∧ ((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normfn𝑇))
6219, 61mp3an1 1447 . . . . 5 ((((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normfn𝑇))
6354, 60, 62syl2anc 584 . . . 4 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normfn𝑇))
6452, 63eqbrtrd 5101 . . 3 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → ((abs‘(𝑇𝐴)) / (norm𝐴)) ≤ (normfn𝑇))
6512a1i 11 . . . 4 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (normfn𝑇) ∈ ℝ)
66 ledivmul2 11854 . . . 4 (((abs‘(𝑇𝐴)) ∈ ℝ ∧ (normfn𝑇) ∈ ℝ ∧ ((norm𝐴) ∈ ℝ ∧ 0 < (norm𝐴))) → (((abs‘(𝑇𝐴)) / (norm𝐴)) ≤ (normfn𝑇) ↔ (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))))
6722, 65, 25, 43, 66syl112anc 1373 . . 3 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (((abs‘(𝑇𝐴)) / (norm𝐴)) ≤ (normfn𝑇) ↔ (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))))
6864, 67mpbid 231 . 2 ((𝐴 ∈ ℋ ∧ ¬ 𝐴 = 0) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
6918, 68pm2.61dan 810 1 (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wne 2945   class class class wbr 5079  wf 6428  cfv 6432  (class class class)co 7271  cc 10870  cr 10871  0cc0 10872  1c1 10873   · cmul 10877   < clt 11010  cle 11011   / cdiv 11632  abscabs 14943  chba 29277   · csm 29279  normcno 29281  0c0v 29282  normfncnmf 29309  ContFnccnfn 29311  LinFnclf 29312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-hilex 29357  ax-hv0cl 29361  ax-hvaddid 29362  ax-hfvmul 29363  ax-hvmulid 29364  ax-hvmulass 29365  ax-hvmul0 29368  ax-hfi 29437  ax-his1 29440  ax-his3 29442  ax-his4 29443
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-sup 9179  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-seq 13720  df-exp 13781  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-hnorm 29326  df-hvsub 29329  df-nmfn 30203  df-cnfn 30205  df-lnfn 30206
This theorem is referenced by:  nmcfnlb  30412
  Copyright terms: Public domain W3C validator