HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmbdfnlbi Structured version   Visualization version   GIF version

Theorem nmbdfnlbi 29835
Description: A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmbdfnlb.1 (𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ)
Assertion
Ref Expression
nmbdfnlbi (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))

Proof of Theorem nmbdfnlbi
StepHypRef Expression
1 fveq2 6661 . . . . . 6 (𝐴 = 0 → (𝑇𝐴) = (𝑇‘0))
2 nmbdfnlb.1 . . . . . . . 8 (𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ)
32simpli 487 . . . . . . 7 𝑇 ∈ LinFn
43lnfn0i 29828 . . . . . 6 (𝑇‘0) = 0
51, 4syl6eq 2875 . . . . 5 (𝐴 = 0 → (𝑇𝐴) = 0)
65abs00bd 14651 . . . 4 (𝐴 = 0 → (abs‘(𝑇𝐴)) = 0)
7 0le0 11735 . . . . 5 0 ≤ 0
8 fveq2 6661 . . . . . . . 8 (𝐴 = 0 → (norm𝐴) = (norm‘0))
9 norm0 28914 . . . . . . . 8 (norm‘0) = 0
108, 9syl6eq 2875 . . . . . . 7 (𝐴 = 0 → (norm𝐴) = 0)
1110oveq2d 7165 . . . . . 6 (𝐴 = 0 → ((normfn𝑇) · (norm𝐴)) = ((normfn𝑇) · 0))
122simpri 489 . . . . . . . 8 (normfn𝑇) ∈ ℝ
1312recni 10653 . . . . . . 7 (normfn𝑇) ∈ ℂ
1413mul01i 10828 . . . . . 6 ((normfn𝑇) · 0) = 0
1511, 14syl6req 2876 . . . . 5 (𝐴 = 0 → 0 = ((normfn𝑇) · (norm𝐴)))
167, 15breqtrid 5089 . . . 4 (𝐴 = 0 → 0 ≤ ((normfn𝑇) · (norm𝐴)))
176, 16eqbrtrd 5074 . . 3 (𝐴 = 0 → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
1817adantl 485 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 = 0) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
193lnfnfi 29827 . . . . . . . . . 10 𝑇: ℋ⟶ℂ
2019ffvelrni 6841 . . . . . . . . 9 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℂ)
2120abscld 14796 . . . . . . . 8 (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ∈ ℝ)
2221adantr 484 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(𝑇𝐴)) ∈ ℝ)
2322recnd 10667 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(𝑇𝐴)) ∈ ℂ)
24 normcl 28911 . . . . . . . 8 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
2524adantr 484 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℝ)
2625recnd 10667 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℂ)
27 normne0 28916 . . . . . . 7 (𝐴 ∈ ℋ → ((norm𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
2827biimpar 481 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ≠ 0)
2923, 26, 28divrec2d 11418 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((abs‘(𝑇𝐴)) / (norm𝐴)) = ((1 / (norm𝐴)) · (abs‘(𝑇𝐴))))
3025, 28rereccld 11465 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℝ)
3130recnd 10667 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℂ)
32 simpl 486 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℋ)
333lnfnmuli 29830 . . . . . . . 8 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
3431, 32, 33syl2anc 587 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
3534fveq2d 6665 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) = (abs‘((1 / (norm𝐴)) · (𝑇𝐴))))
3620adantr 484 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝑇𝐴) ∈ ℂ)
3731, 36absmuld 14814 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘((1 / (norm𝐴)) · (𝑇𝐴))) = ((abs‘(1 / (norm𝐴))) · (abs‘(𝑇𝐴))))
38 normgt0 28913 . . . . . . . . . . 11 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))
3938biimpa 480 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (norm𝐴))
4025, 39recgt0d 11572 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (1 / (norm𝐴)))
41 0re 10641 . . . . . . . . . 10 0 ∈ ℝ
42 ltle 10727 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (1 / (norm𝐴)) ∈ ℝ) → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
4341, 42mpan 689 . . . . . . . . 9 ((1 / (norm𝐴)) ∈ ℝ → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
4430, 40, 43sylc 65 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (1 / (norm𝐴)))
4530, 44absidd 14782 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(1 / (norm𝐴))) = (1 / (norm𝐴)))
4645oveq1d 7164 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((abs‘(1 / (norm𝐴))) · (abs‘(𝑇𝐴))) = ((1 / (norm𝐴)) · (abs‘(𝑇𝐴))))
4735, 37, 463eqtrrd 2864 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · (abs‘(𝑇𝐴))) = (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
4829, 47eqtrd 2859 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((abs‘(𝑇𝐴)) / (norm𝐴)) = (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
49 hvmulcl 28799 . . . . . 6 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
5031, 32, 49syl2anc 587 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
51 normcl 28911 . . . . . . 7 (((1 / (norm𝐴)) · 𝐴) ∈ ℋ → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
5250, 51syl 17 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
53 norm1 29035 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
54 eqle 10740 . . . . . 6 (((norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) = 1) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
5552, 53, 54syl2anc 587 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
56 nmfnlb 29710 . . . . . 6 ((𝑇: ℋ⟶ℂ ∧ ((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normfn𝑇))
5719, 56mp3an1 1445 . . . . 5 ((((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normfn𝑇))
5850, 55, 57syl2anc 587 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normfn𝑇))
5948, 58eqbrtrd 5074 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((abs‘(𝑇𝐴)) / (norm𝐴)) ≤ (normfn𝑇))
6012a1i 11 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (normfn𝑇) ∈ ℝ)
61 ledivmul2 11517 . . . 4 (((abs‘(𝑇𝐴)) ∈ ℝ ∧ (normfn𝑇) ∈ ℝ ∧ ((norm𝐴) ∈ ℝ ∧ 0 < (norm𝐴))) → (((abs‘(𝑇𝐴)) / (norm𝐴)) ≤ (normfn𝑇) ↔ (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))))
6222, 60, 25, 39, 61syl112anc 1371 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (((abs‘(𝑇𝐴)) / (norm𝐴)) ≤ (normfn𝑇) ↔ (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))))
6359, 62mpbid 235 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
6418, 63pm2.61dane 3101 1 (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3014   class class class wbr 5052  wf 6339  cfv 6343  (class class class)co 7149  cc 10533  cr 10534  0cc0 10535  1c1 10536   · cmul 10540   < clt 10673  cle 10674   / cdiv 11295  abscabs 14593  chba 28705   · csm 28707  normcno 28709  0c0v 28710  normfncnmf 28737  LinFnclf 28740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613  ax-hilex 28785  ax-hv0cl 28789  ax-hvaddid 28790  ax-hfvmul 28791  ax-hvmulid 28792  ax-hvmul0 28796  ax-hfi 28865  ax-his1 28868  ax-his3 28870  ax-his4 28871
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-sup 8903  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-n0 11895  df-z 11979  df-uz 12241  df-rp 12387  df-seq 13374  df-exp 13435  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-hnorm 28754  df-nmfn 29631  df-lnfn 29634
This theorem is referenced by:  nmbdfnlb  29836
  Copyright terms: Public domain W3C validator