HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmbdfnlbi Structured version   Visualization version   GIF version

Theorem nmbdfnlbi 32078
Description: A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmbdfnlb.1 (𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ)
Assertion
Ref Expression
nmbdfnlbi (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))

Proof of Theorem nmbdfnlbi
StepHypRef Expression
1 fveq2 6907 . . . . . 6 (𝐴 = 0 → (𝑇𝐴) = (𝑇‘0))
2 nmbdfnlb.1 . . . . . . . 8 (𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ)
32simpli 483 . . . . . . 7 𝑇 ∈ LinFn
43lnfn0i 32071 . . . . . 6 (𝑇‘0) = 0
51, 4eqtrdi 2791 . . . . 5 (𝐴 = 0 → (𝑇𝐴) = 0)
65abs00bd 15327 . . . 4 (𝐴 = 0 → (abs‘(𝑇𝐴)) = 0)
7 0le0 12365 . . . . 5 0 ≤ 0
8 fveq2 6907 . . . . . . . 8 (𝐴 = 0 → (norm𝐴) = (norm‘0))
9 norm0 31157 . . . . . . . 8 (norm‘0) = 0
108, 9eqtrdi 2791 . . . . . . 7 (𝐴 = 0 → (norm𝐴) = 0)
1110oveq2d 7447 . . . . . 6 (𝐴 = 0 → ((normfn𝑇) · (norm𝐴)) = ((normfn𝑇) · 0))
122simpri 485 . . . . . . . 8 (normfn𝑇) ∈ ℝ
1312recni 11273 . . . . . . 7 (normfn𝑇) ∈ ℂ
1413mul01i 11449 . . . . . 6 ((normfn𝑇) · 0) = 0
1511, 14eqtr2di 2792 . . . . 5 (𝐴 = 0 → 0 = ((normfn𝑇) · (norm𝐴)))
167, 15breqtrid 5185 . . . 4 (𝐴 = 0 → 0 ≤ ((normfn𝑇) · (norm𝐴)))
176, 16eqbrtrd 5170 . . 3 (𝐴 = 0 → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
1817adantl 481 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 = 0) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
193lnfnfi 32070 . . . . . . . . . 10 𝑇: ℋ⟶ℂ
2019ffvelcdmi 7103 . . . . . . . . 9 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℂ)
2120abscld 15472 . . . . . . . 8 (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ∈ ℝ)
2221adantr 480 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(𝑇𝐴)) ∈ ℝ)
2322recnd 11287 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(𝑇𝐴)) ∈ ℂ)
24 normcl 31154 . . . . . . . 8 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
2524adantr 480 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℝ)
2625recnd 11287 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℂ)
27 normne0 31159 . . . . . . 7 (𝐴 ∈ ℋ → ((norm𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
2827biimpar 477 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ≠ 0)
2923, 26, 28divrec2d 12045 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((abs‘(𝑇𝐴)) / (norm𝐴)) = ((1 / (norm𝐴)) · (abs‘(𝑇𝐴))))
3025, 28rereccld 12092 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℝ)
3130recnd 11287 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℂ)
32 simpl 482 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℋ)
333lnfnmuli 32073 . . . . . . . 8 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
3431, 32, 33syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
3534fveq2d 6911 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) = (abs‘((1 / (norm𝐴)) · (𝑇𝐴))))
3620adantr 480 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝑇𝐴) ∈ ℂ)
3731, 36absmuld 15490 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘((1 / (norm𝐴)) · (𝑇𝐴))) = ((abs‘(1 / (norm𝐴))) · (abs‘(𝑇𝐴))))
38 normgt0 31156 . . . . . . . . . . 11 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))
3938biimpa 476 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (norm𝐴))
4025, 39recgt0d 12200 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (1 / (norm𝐴)))
41 0re 11261 . . . . . . . . . 10 0 ∈ ℝ
42 ltle 11347 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (1 / (norm𝐴)) ∈ ℝ) → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
4341, 42mpan 690 . . . . . . . . 9 ((1 / (norm𝐴)) ∈ ℝ → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
4430, 40, 43sylc 65 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (1 / (norm𝐴)))
4530, 44absidd 15458 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(1 / (norm𝐴))) = (1 / (norm𝐴)))
4645oveq1d 7446 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((abs‘(1 / (norm𝐴))) · (abs‘(𝑇𝐴))) = ((1 / (norm𝐴)) · (abs‘(𝑇𝐴))))
4735, 37, 463eqtrrd 2780 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · (abs‘(𝑇𝐴))) = (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
4829, 47eqtrd 2775 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((abs‘(𝑇𝐴)) / (norm𝐴)) = (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
49 hvmulcl 31042 . . . . . 6 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
5031, 32, 49syl2anc 584 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
51 normcl 31154 . . . . . . 7 (((1 / (norm𝐴)) · 𝐴) ∈ ℋ → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
5250, 51syl 17 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
53 norm1 31278 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
54 eqle 11361 . . . . . 6 (((norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) = 1) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
5552, 53, 54syl2anc 584 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
56 nmfnlb 31953 . . . . . 6 ((𝑇: ℋ⟶ℂ ∧ ((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normfn𝑇))
5719, 56mp3an1 1447 . . . . 5 ((((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normfn𝑇))
5850, 55, 57syl2anc 584 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normfn𝑇))
5948, 58eqbrtrd 5170 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((abs‘(𝑇𝐴)) / (norm𝐴)) ≤ (normfn𝑇))
6012a1i 11 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (normfn𝑇) ∈ ℝ)
61 ledivmul2 12145 . . . 4 (((abs‘(𝑇𝐴)) ∈ ℝ ∧ (normfn𝑇) ∈ ℝ ∧ ((norm𝐴) ∈ ℝ ∧ 0 < (norm𝐴))) → (((abs‘(𝑇𝐴)) / (norm𝐴)) ≤ (normfn𝑇) ↔ (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))))
6222, 60, 25, 39, 61syl112anc 1373 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (((abs‘(𝑇𝐴)) / (norm𝐴)) ≤ (normfn𝑇) ↔ (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))))
6359, 62mpbid 232 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
6418, 63pm2.61dane 3027 1 (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   · cmul 11158   < clt 11293  cle 11294   / cdiv 11918  abscabs 15270  chba 30948   · csm 30950  normcno 30952  0c0v 30953  normfncnmf 30980  LinFnclf 30983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-hilex 31028  ax-hv0cl 31032  ax-hvaddid 31033  ax-hfvmul 31034  ax-hvmulid 31035  ax-hvmul0 31039  ax-hfi 31108  ax-his1 31111  ax-his3 31113  ax-his4 31114
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-hnorm 30997  df-nmfn 31874  df-lnfn 31877
This theorem is referenced by:  nmbdfnlb  32079
  Copyright terms: Public domain W3C validator