HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmbdfnlbi Structured version   Visualization version   GIF version

Theorem nmbdfnlbi 32035
Description: A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
nmbdfnlb.1 (𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ)
Assertion
Ref Expression
nmbdfnlbi (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))

Proof of Theorem nmbdfnlbi
StepHypRef Expression
1 fveq2 6881 . . . . . 6 (𝐴 = 0 → (𝑇𝐴) = (𝑇‘0))
2 nmbdfnlb.1 . . . . . . . 8 (𝑇 ∈ LinFn ∧ (normfn𝑇) ∈ ℝ)
32simpli 483 . . . . . . 7 𝑇 ∈ LinFn
43lnfn0i 32028 . . . . . 6 (𝑇‘0) = 0
51, 4eqtrdi 2787 . . . . 5 (𝐴 = 0 → (𝑇𝐴) = 0)
65abs00bd 15315 . . . 4 (𝐴 = 0 → (abs‘(𝑇𝐴)) = 0)
7 0le0 12346 . . . . 5 0 ≤ 0
8 fveq2 6881 . . . . . . . 8 (𝐴 = 0 → (norm𝐴) = (norm‘0))
9 norm0 31114 . . . . . . . 8 (norm‘0) = 0
108, 9eqtrdi 2787 . . . . . . 7 (𝐴 = 0 → (norm𝐴) = 0)
1110oveq2d 7426 . . . . . 6 (𝐴 = 0 → ((normfn𝑇) · (norm𝐴)) = ((normfn𝑇) · 0))
122simpri 485 . . . . . . . 8 (normfn𝑇) ∈ ℝ
1312recni 11254 . . . . . . 7 (normfn𝑇) ∈ ℂ
1413mul01i 11430 . . . . . 6 ((normfn𝑇) · 0) = 0
1511, 14eqtr2di 2788 . . . . 5 (𝐴 = 0 → 0 = ((normfn𝑇) · (norm𝐴)))
167, 15breqtrid 5161 . . . 4 (𝐴 = 0 → 0 ≤ ((normfn𝑇) · (norm𝐴)))
176, 16eqbrtrd 5146 . . 3 (𝐴 = 0 → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
1817adantl 481 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 = 0) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
193lnfnfi 32027 . . . . . . . . . 10 𝑇: ℋ⟶ℂ
2019ffvelcdmi 7078 . . . . . . . . 9 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℂ)
2120abscld 15460 . . . . . . . 8 (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ∈ ℝ)
2221adantr 480 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(𝑇𝐴)) ∈ ℝ)
2322recnd 11268 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(𝑇𝐴)) ∈ ℂ)
24 normcl 31111 . . . . . . . 8 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
2524adantr 480 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℝ)
2625recnd 11268 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℂ)
27 normne0 31116 . . . . . . 7 (𝐴 ∈ ℋ → ((norm𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
2827biimpar 477 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ≠ 0)
2923, 26, 28divrec2d 12026 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((abs‘(𝑇𝐴)) / (norm𝐴)) = ((1 / (norm𝐴)) · (abs‘(𝑇𝐴))))
3025, 28rereccld 12073 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℝ)
3130recnd 11268 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℂ)
32 simpl 482 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℋ)
333lnfnmuli 32030 . . . . . . . 8 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
3431, 32, 33syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
3534fveq2d 6885 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) = (abs‘((1 / (norm𝐴)) · (𝑇𝐴))))
3620adantr 480 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝑇𝐴) ∈ ℂ)
3731, 36absmuld 15478 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘((1 / (norm𝐴)) · (𝑇𝐴))) = ((abs‘(1 / (norm𝐴))) · (abs‘(𝑇𝐴))))
38 normgt0 31113 . . . . . . . . . . 11 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))
3938biimpa 476 . . . . . . . . . 10 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (norm𝐴))
4025, 39recgt0d 12181 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (1 / (norm𝐴)))
41 0re 11242 . . . . . . . . . 10 0 ∈ ℝ
42 ltle 11328 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (1 / (norm𝐴)) ∈ ℝ) → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
4341, 42mpan 690 . . . . . . . . 9 ((1 / (norm𝐴)) ∈ ℝ → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
4430, 40, 43sylc 65 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (1 / (norm𝐴)))
4530, 44absidd 15446 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(1 / (norm𝐴))) = (1 / (norm𝐴)))
4645oveq1d 7425 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((abs‘(1 / (norm𝐴))) · (abs‘(𝑇𝐴))) = ((1 / (norm𝐴)) · (abs‘(𝑇𝐴))))
4735, 37, 463eqtrrd 2776 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · (abs‘(𝑇𝐴))) = (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
4829, 47eqtrd 2771 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((abs‘(𝑇𝐴)) / (norm𝐴)) = (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
49 hvmulcl 30999 . . . . . 6 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
5031, 32, 49syl2anc 584 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
51 normcl 31111 . . . . . . 7 (((1 / (norm𝐴)) · 𝐴) ∈ ℋ → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
5250, 51syl 17 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
53 norm1 31235 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
54 eqle 11342 . . . . . 6 (((norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) = 1) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
5552, 53, 54syl2anc 584 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
56 nmfnlb 31910 . . . . . 6 ((𝑇: ℋ⟶ℂ ∧ ((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normfn𝑇))
5719, 56mp3an1 1450 . . . . 5 ((((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normfn𝑇))
5850, 55, 57syl2anc 584 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normfn𝑇))
5948, 58eqbrtrd 5146 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((abs‘(𝑇𝐴)) / (norm𝐴)) ≤ (normfn𝑇))
6012a1i 11 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (normfn𝑇) ∈ ℝ)
61 ledivmul2 12126 . . . 4 (((abs‘(𝑇𝐴)) ∈ ℝ ∧ (normfn𝑇) ∈ ℝ ∧ ((norm𝐴) ∈ ℝ ∧ 0 < (norm𝐴))) → (((abs‘(𝑇𝐴)) / (norm𝐴)) ≤ (normfn𝑇) ↔ (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))))
6222, 60, 25, 39, 61syl112anc 1376 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (((abs‘(𝑇𝐴)) / (norm𝐴)) ≤ (normfn𝑇) ↔ (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴))))
6359, 62mpbid 232 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
6418, 63pm2.61dane 3020 1 (𝐴 ∈ ℋ → (abs‘(𝑇𝐴)) ≤ ((normfn𝑇) · (norm𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933   class class class wbr 5124  wf 6532  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   · cmul 11139   < clt 11274  cle 11275   / cdiv 11899  abscabs 15258  chba 30905   · csm 30907  normcno 30909  0c0v 30910  normfncnmf 30937  LinFnclf 30940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-hilex 30985  ax-hv0cl 30989  ax-hvaddid 30990  ax-hfvmul 30991  ax-hvmulid 30992  ax-hvmul0 30996  ax-hfi 31065  ax-his1 31068  ax-his3 31070  ax-his4 31071
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-hnorm 30954  df-nmfn 31831  df-lnfn 31834
This theorem is referenced by:  nmbdfnlb  32036
  Copyright terms: Public domain W3C validator