Proof of Theorem nmbdfnlbi
Step | Hyp | Ref
| Expression |
1 | | fveq2 6776 |
. . . . . 6
⊢ (𝐴 = 0ℎ →
(𝑇‘𝐴) = (𝑇‘0ℎ)) |
2 | | nmbdfnlb.1 |
. . . . . . . 8
⊢ (𝑇 ∈ LinFn ∧
(normfn‘𝑇)
∈ ℝ) |
3 | 2 | simpli 484 |
. . . . . . 7
⊢ 𝑇 ∈ LinFn |
4 | 3 | lnfn0i 30401 |
. . . . . 6
⊢ (𝑇‘0ℎ) =
0 |
5 | 1, 4 | eqtrdi 2794 |
. . . . 5
⊢ (𝐴 = 0ℎ →
(𝑇‘𝐴) = 0) |
6 | 5 | abs00bd 15001 |
. . . 4
⊢ (𝐴 = 0ℎ →
(abs‘(𝑇‘𝐴)) = 0) |
7 | | 0le0 12072 |
. . . . 5
⊢ 0 ≤
0 |
8 | | fveq2 6776 |
. . . . . . . 8
⊢ (𝐴 = 0ℎ →
(normℎ‘𝐴) =
(normℎ‘0ℎ)) |
9 | | norm0 29487 |
. . . . . . . 8
⊢
(normℎ‘0ℎ) =
0 |
10 | 8, 9 | eqtrdi 2794 |
. . . . . . 7
⊢ (𝐴 = 0ℎ →
(normℎ‘𝐴) = 0) |
11 | 10 | oveq2d 7293 |
. . . . . 6
⊢ (𝐴 = 0ℎ →
((normfn‘𝑇) ·
(normℎ‘𝐴)) = ((normfn‘𝑇) · 0)) |
12 | 2 | simpri 486 |
. . . . . . . 8
⊢
(normfn‘𝑇) ∈ ℝ |
13 | 12 | recni 10987 |
. . . . . . 7
⊢
(normfn‘𝑇) ∈ ℂ |
14 | 13 | mul01i 11163 |
. . . . . 6
⊢
((normfn‘𝑇) · 0) = 0 |
15 | 11, 14 | eqtr2di 2795 |
. . . . 5
⊢ (𝐴 = 0ℎ → 0
= ((normfn‘𝑇) ·
(normℎ‘𝐴))) |
16 | 7, 15 | breqtrid 5113 |
. . . 4
⊢ (𝐴 = 0ℎ → 0
≤ ((normfn‘𝑇) ·
(normℎ‘𝐴))) |
17 | 6, 16 | eqbrtrd 5098 |
. . 3
⊢ (𝐴 = 0ℎ →
(abs‘(𝑇‘𝐴)) ≤
((normfn‘𝑇) ·
(normℎ‘𝐴))) |
18 | 17 | adantl 482 |
. 2
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) →
(abs‘(𝑇‘𝐴)) ≤
((normfn‘𝑇) ·
(normℎ‘𝐴))) |
19 | 3 | lnfnfi 30400 |
. . . . . . . . . 10
⊢ 𝑇:
ℋ⟶ℂ |
20 | 19 | ffvelrni 6962 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℂ) |
21 | 20 | abscld 15146 |
. . . . . . . 8
⊢ (𝐴 ∈ ℋ →
(abs‘(𝑇‘𝐴)) ∈
ℝ) |
22 | 21 | adantr 481 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘(𝑇‘𝐴)) ∈ ℝ) |
23 | 22 | recnd 11001 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘(𝑇‘𝐴)) ∈ ℂ) |
24 | | normcl 29484 |
. . . . . . . 8
⊢ (𝐴 ∈ ℋ →
(normℎ‘𝐴) ∈ ℝ) |
25 | 24 | adantr 481 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) ∈ ℝ) |
26 | 25 | recnd 11001 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) ∈ ℂ) |
27 | | normne0 29489 |
. . . . . . 7
⊢ (𝐴 ∈ ℋ →
((normℎ‘𝐴) ≠ 0 ↔ 𝐴 ≠
0ℎ)) |
28 | 27 | biimpar 478 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) ≠ 0) |
29 | 23, 26, 28 | divrec2d 11753 |
. . . . 5
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((abs‘(𝑇‘𝐴)) / (normℎ‘𝐴)) = ((1 /
(normℎ‘𝐴)) · (abs‘(𝑇‘𝐴)))) |
30 | 25, 28 | rereccld 11800 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (1 / (normℎ‘𝐴)) ∈ ℝ) |
31 | 30 | recnd 11001 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (1 / (normℎ‘𝐴)) ∈ ℂ) |
32 | | simpl 483 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 𝐴 ∈
ℋ) |
33 | 3 | lnfnmuli 30403 |
. . . . . . . 8
⊢ (((1 /
(normℎ‘𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) = ((1 /
(normℎ‘𝐴)) · (𝑇‘𝐴))) |
34 | 31, 32, 33 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) = ((1 /
(normℎ‘𝐴)) · (𝑇‘𝐴))) |
35 | 34 | fveq2d 6780 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴))) = (abs‘((1 /
(normℎ‘𝐴)) · (𝑇‘𝐴)))) |
36 | 20 | adantr 481 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (𝑇‘𝐴) ∈
ℂ) |
37 | 31, 36 | absmuld 15164 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘((1 / (normℎ‘𝐴)) · (𝑇‘𝐴))) = ((abs‘(1 /
(normℎ‘𝐴))) · (abs‘(𝑇‘𝐴)))) |
38 | | normgt0 29486 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ
↔ 0 < (normℎ‘𝐴))) |
39 | 38 | biimpa 477 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 < (normℎ‘𝐴)) |
40 | 25, 39 | recgt0d 11907 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 < (1 / (normℎ‘𝐴))) |
41 | | 0re 10975 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
42 | | ltle 11061 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ (1 / (normℎ‘𝐴)) ∈ ℝ) → (0 < (1 /
(normℎ‘𝐴)) → 0 ≤ (1 /
(normℎ‘𝐴)))) |
43 | 41, 42 | mpan 687 |
. . . . . . . . 9
⊢ ((1 /
(normℎ‘𝐴)) ∈ ℝ → (0 < (1 /
(normℎ‘𝐴)) → 0 ≤ (1 /
(normℎ‘𝐴)))) |
44 | 30, 40, 43 | sylc 65 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 ≤ (1 / (normℎ‘𝐴))) |
45 | 30, 44 | absidd 15132 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘(1 / (normℎ‘𝐴))) = (1 /
(normℎ‘𝐴))) |
46 | 45 | oveq1d 7292 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((abs‘(1 / (normℎ‘𝐴))) · (abs‘(𝑇‘𝐴))) = ((1 /
(normℎ‘𝐴)) · (abs‘(𝑇‘𝐴)))) |
47 | 35, 37, 46 | 3eqtrrd 2783 |
. . . . 5
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((1 / (normℎ‘𝐴)) · (abs‘(𝑇‘𝐴))) = (abs‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)))) |
48 | 29, 47 | eqtrd 2778 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((abs‘(𝑇‘𝐴)) / (normℎ‘𝐴)) = (abs‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)))) |
49 | | hvmulcl 29372 |
. . . . . 6
⊢ (((1 /
(normℎ‘𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) ∈
ℋ) |
50 | 31, 32, 49 | syl2anc 584 |
. . . . 5
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((1 / (normℎ‘𝐴)) ·ℎ 𝐴) ∈
ℋ) |
51 | | normcl 29484 |
. . . . . . 7
⊢ (((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) ∈ ℋ →
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ∈ ℝ) |
52 | 50, 51 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) ∈
ℝ) |
53 | | norm1 29608 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) = 1) |
54 | | eqle 11075 |
. . . . . 6
⊢
(((normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) ∈ ℝ ∧
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) = 1) →
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ≤ 1) |
55 | 52, 53, 54 | syl2anc 584 |
. . . . 5
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) ≤ 1) |
56 | | nmfnlb 30283 |
. . . . . 6
⊢ ((𝑇: ℋ⟶ℂ ∧
((1 / (normℎ‘𝐴)) ·ℎ 𝐴) ∈ ℋ ∧
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ≤ 1) → (abs‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴))) ≤
(normfn‘𝑇)) |
57 | 19, 56 | mp3an1 1447 |
. . . . 5
⊢ ((((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) ∈ ℋ ∧
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ≤ 1) → (abs‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴))) ≤
(normfn‘𝑇)) |
58 | 50, 55, 57 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴))) ≤
(normfn‘𝑇)) |
59 | 48, 58 | eqbrtrd 5098 |
. . 3
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((abs‘(𝑇‘𝐴)) / (normℎ‘𝐴)) ≤
(normfn‘𝑇)) |
60 | 12 | a1i 11 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normfn‘𝑇) ∈ ℝ) |
61 | | ledivmul2 11852 |
. . . 4
⊢
(((abs‘(𝑇‘𝐴)) ∈ ℝ ∧
(normfn‘𝑇)
∈ ℝ ∧ ((normℎ‘𝐴) ∈ ℝ ∧ 0 <
(normℎ‘𝐴))) → (((abs‘(𝑇‘𝐴)) / (normℎ‘𝐴)) ≤
(normfn‘𝑇)
↔ (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) ·
(normℎ‘𝐴)))) |
62 | 22, 60, 25, 39, 61 | syl112anc 1373 |
. . 3
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (((abs‘(𝑇‘𝐴)) / (normℎ‘𝐴)) ≤
(normfn‘𝑇)
↔ (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) ·
(normℎ‘𝐴)))) |
63 | 59, 62 | mpbid 231 |
. 2
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) ·
(normℎ‘𝐴))) |
64 | 18, 63 | pm2.61dane 3032 |
1
⊢ (𝐴 ∈ ℋ →
(abs‘(𝑇‘𝐴)) ≤
((normfn‘𝑇) ·
(normℎ‘𝐴))) |