Proof of Theorem nmbdfnlbi
| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6858 |
. . . . . 6
⊢ (𝐴 = 0ℎ →
(𝑇‘𝐴) = (𝑇‘0ℎ)) |
| 2 | | nmbdfnlb.1 |
. . . . . . . 8
⊢ (𝑇 ∈ LinFn ∧
(normfn‘𝑇)
∈ ℝ) |
| 3 | 2 | simpli 483 |
. . . . . . 7
⊢ 𝑇 ∈ LinFn |
| 4 | 3 | lnfn0i 31971 |
. . . . . 6
⊢ (𝑇‘0ℎ) =
0 |
| 5 | 1, 4 | eqtrdi 2780 |
. . . . 5
⊢ (𝐴 = 0ℎ →
(𝑇‘𝐴) = 0) |
| 6 | 5 | abs00bd 15257 |
. . . 4
⊢ (𝐴 = 0ℎ →
(abs‘(𝑇‘𝐴)) = 0) |
| 7 | | 0le0 12287 |
. . . . 5
⊢ 0 ≤
0 |
| 8 | | fveq2 6858 |
. . . . . . . 8
⊢ (𝐴 = 0ℎ →
(normℎ‘𝐴) =
(normℎ‘0ℎ)) |
| 9 | | norm0 31057 |
. . . . . . . 8
⊢
(normℎ‘0ℎ) =
0 |
| 10 | 8, 9 | eqtrdi 2780 |
. . . . . . 7
⊢ (𝐴 = 0ℎ →
(normℎ‘𝐴) = 0) |
| 11 | 10 | oveq2d 7403 |
. . . . . 6
⊢ (𝐴 = 0ℎ →
((normfn‘𝑇) ·
(normℎ‘𝐴)) = ((normfn‘𝑇) · 0)) |
| 12 | 2 | simpri 485 |
. . . . . . . 8
⊢
(normfn‘𝑇) ∈ ℝ |
| 13 | 12 | recni 11188 |
. . . . . . 7
⊢
(normfn‘𝑇) ∈ ℂ |
| 14 | 13 | mul01i 11364 |
. . . . . 6
⊢
((normfn‘𝑇) · 0) = 0 |
| 15 | 11, 14 | eqtr2di 2781 |
. . . . 5
⊢ (𝐴 = 0ℎ → 0
= ((normfn‘𝑇) ·
(normℎ‘𝐴))) |
| 16 | 7, 15 | breqtrid 5144 |
. . . 4
⊢ (𝐴 = 0ℎ → 0
≤ ((normfn‘𝑇) ·
(normℎ‘𝐴))) |
| 17 | 6, 16 | eqbrtrd 5129 |
. . 3
⊢ (𝐴 = 0ℎ →
(abs‘(𝑇‘𝐴)) ≤
((normfn‘𝑇) ·
(normℎ‘𝐴))) |
| 18 | 17 | adantl 481 |
. 2
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) →
(abs‘(𝑇‘𝐴)) ≤
((normfn‘𝑇) ·
(normℎ‘𝐴))) |
| 19 | 3 | lnfnfi 31970 |
. . . . . . . . . 10
⊢ 𝑇:
ℋ⟶ℂ |
| 20 | 19 | ffvelcdmi 7055 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℂ) |
| 21 | 20 | abscld 15405 |
. . . . . . . 8
⊢ (𝐴 ∈ ℋ →
(abs‘(𝑇‘𝐴)) ∈
ℝ) |
| 22 | 21 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘(𝑇‘𝐴)) ∈ ℝ) |
| 23 | 22 | recnd 11202 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘(𝑇‘𝐴)) ∈ ℂ) |
| 24 | | normcl 31054 |
. . . . . . . 8
⊢ (𝐴 ∈ ℋ →
(normℎ‘𝐴) ∈ ℝ) |
| 25 | 24 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) ∈ ℝ) |
| 26 | 25 | recnd 11202 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) ∈ ℂ) |
| 27 | | normne0 31059 |
. . . . . . 7
⊢ (𝐴 ∈ ℋ →
((normℎ‘𝐴) ≠ 0 ↔ 𝐴 ≠
0ℎ)) |
| 28 | 27 | biimpar 477 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) ≠ 0) |
| 29 | 23, 26, 28 | divrec2d 11962 |
. . . . 5
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((abs‘(𝑇‘𝐴)) / (normℎ‘𝐴)) = ((1 /
(normℎ‘𝐴)) · (abs‘(𝑇‘𝐴)))) |
| 30 | 25, 28 | rereccld 12009 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (1 / (normℎ‘𝐴)) ∈ ℝ) |
| 31 | 30 | recnd 11202 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (1 / (normℎ‘𝐴)) ∈ ℂ) |
| 32 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 𝐴 ∈
ℋ) |
| 33 | 3 | lnfnmuli 31973 |
. . . . . . . 8
⊢ (((1 /
(normℎ‘𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) = ((1 /
(normℎ‘𝐴)) · (𝑇‘𝐴))) |
| 34 | 31, 32, 33 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) = ((1 /
(normℎ‘𝐴)) · (𝑇‘𝐴))) |
| 35 | 34 | fveq2d 6862 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴))) = (abs‘((1 /
(normℎ‘𝐴)) · (𝑇‘𝐴)))) |
| 36 | 20 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (𝑇‘𝐴) ∈
ℂ) |
| 37 | 31, 36 | absmuld 15423 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘((1 / (normℎ‘𝐴)) · (𝑇‘𝐴))) = ((abs‘(1 /
(normℎ‘𝐴))) · (abs‘(𝑇‘𝐴)))) |
| 38 | | normgt0 31056 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ
↔ 0 < (normℎ‘𝐴))) |
| 39 | 38 | biimpa 476 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 < (normℎ‘𝐴)) |
| 40 | 25, 39 | recgt0d 12117 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 < (1 / (normℎ‘𝐴))) |
| 41 | | 0re 11176 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
| 42 | | ltle 11262 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ ∧ (1 / (normℎ‘𝐴)) ∈ ℝ) → (0 < (1 /
(normℎ‘𝐴)) → 0 ≤ (1 /
(normℎ‘𝐴)))) |
| 43 | 41, 42 | mpan 690 |
. . . . . . . . 9
⊢ ((1 /
(normℎ‘𝐴)) ∈ ℝ → (0 < (1 /
(normℎ‘𝐴)) → 0 ≤ (1 /
(normℎ‘𝐴)))) |
| 44 | 30, 40, 43 | sylc 65 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 ≤ (1 / (normℎ‘𝐴))) |
| 45 | 30, 44 | absidd 15389 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘(1 / (normℎ‘𝐴))) = (1 /
(normℎ‘𝐴))) |
| 46 | 45 | oveq1d 7402 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((abs‘(1 / (normℎ‘𝐴))) · (abs‘(𝑇‘𝐴))) = ((1 /
(normℎ‘𝐴)) · (abs‘(𝑇‘𝐴)))) |
| 47 | 35, 37, 46 | 3eqtrrd 2769 |
. . . . 5
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((1 / (normℎ‘𝐴)) · (abs‘(𝑇‘𝐴))) = (abs‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)))) |
| 48 | 29, 47 | eqtrd 2764 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((abs‘(𝑇‘𝐴)) / (normℎ‘𝐴)) = (abs‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)))) |
| 49 | | hvmulcl 30942 |
. . . . . 6
⊢ (((1 /
(normℎ‘𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) ∈
ℋ) |
| 50 | 31, 32, 49 | syl2anc 584 |
. . . . 5
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((1 / (normℎ‘𝐴)) ·ℎ 𝐴) ∈
ℋ) |
| 51 | | normcl 31054 |
. . . . . . 7
⊢ (((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) ∈ ℋ →
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ∈ ℝ) |
| 52 | 50, 51 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) ∈
ℝ) |
| 53 | | norm1 31178 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) = 1) |
| 54 | | eqle 11276 |
. . . . . 6
⊢
(((normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) ∈ ℝ ∧
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) = 1) →
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ≤ 1) |
| 55 | 52, 53, 54 | syl2anc 584 |
. . . . 5
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) ≤ 1) |
| 56 | | nmfnlb 31853 |
. . . . . 6
⊢ ((𝑇: ℋ⟶ℂ ∧
((1 / (normℎ‘𝐴)) ·ℎ 𝐴) ∈ ℋ ∧
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ≤ 1) → (abs‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴))) ≤
(normfn‘𝑇)) |
| 57 | 19, 56 | mp3an1 1450 |
. . . . 5
⊢ ((((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) ∈ ℋ ∧
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ≤ 1) → (abs‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴))) ≤
(normfn‘𝑇)) |
| 58 | 50, 55, 57 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴))) ≤
(normfn‘𝑇)) |
| 59 | 48, 58 | eqbrtrd 5129 |
. . 3
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((abs‘(𝑇‘𝐴)) / (normℎ‘𝐴)) ≤
(normfn‘𝑇)) |
| 60 | 12 | a1i 11 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normfn‘𝑇) ∈ ℝ) |
| 61 | | ledivmul2 12062 |
. . . 4
⊢
(((abs‘(𝑇‘𝐴)) ∈ ℝ ∧
(normfn‘𝑇)
∈ ℝ ∧ ((normℎ‘𝐴) ∈ ℝ ∧ 0 <
(normℎ‘𝐴))) → (((abs‘(𝑇‘𝐴)) / (normℎ‘𝐴)) ≤
(normfn‘𝑇)
↔ (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) ·
(normℎ‘𝐴)))) |
| 62 | 22, 60, 25, 39, 61 | syl112anc 1376 |
. . 3
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (((abs‘(𝑇‘𝐴)) / (normℎ‘𝐴)) ≤
(normfn‘𝑇)
↔ (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) ·
(normℎ‘𝐴)))) |
| 63 | 59, 62 | mpbid 232 |
. 2
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘(𝑇‘𝐴)) ≤ ((normfn‘𝑇) ·
(normℎ‘𝐴))) |
| 64 | 18, 63 | pm2.61dane 3012 |
1
⊢ (𝐴 ∈ ℋ →
(abs‘(𝑇‘𝐴)) ≤
((normfn‘𝑇) ·
(normℎ‘𝐴))) |