MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phplem3OLD Structured version   Visualization version   GIF version

Theorem phplem3OLD 9040
Description: Obsolete version of phplem1 9028 as of 23-Sep-2024. (Contributed by NM, 26-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
phplem2OLD.1 𝐴 ∈ V
phplem2OLD.2 𝐵 ∈ V
Assertion
Ref Expression
phplem3OLD ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))

Proof of Theorem phplem3OLD
StepHypRef Expression
1 elsuci 6347 . 2 (𝐵 ∈ suc 𝐴 → (𝐵𝐴𝐵 = 𝐴))
2 phplem2OLD.1 . . . 4 𝐴 ∈ V
3 phplem2OLD.2 . . . 4 𝐵 ∈ V
42, 3phplem2OLD 9039 . . 3 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
52enref 8806 . . . 4 𝐴𝐴
6 nnord 7752 . . . . . 6 (𝐴 ∈ ω → Ord 𝐴)
7 orddif 6376 . . . . . 6 (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))
86, 7syl 17 . . . . 5 (𝐴 ∈ ω → 𝐴 = (suc 𝐴 ∖ {𝐴}))
9 sneq 4575 . . . . . . 7 (𝐴 = 𝐵 → {𝐴} = {𝐵})
109difeq2d 4063 . . . . . 6 (𝐴 = 𝐵 → (suc 𝐴 ∖ {𝐴}) = (suc 𝐴 ∖ {𝐵}))
1110eqcoms 2744 . . . . 5 (𝐵 = 𝐴 → (suc 𝐴 ∖ {𝐴}) = (suc 𝐴 ∖ {𝐵}))
128, 11sylan9eq 2796 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐴 = (suc 𝐴 ∖ {𝐵}))
135, 12breqtrid 5118 . . 3 ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
144, 13jaodan 956 . 2 ((𝐴 ∈ ω ∧ (𝐵𝐴𝐵 = 𝐴)) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
151, 14sylan2 594 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wo 845   = wceq 1539  wcel 2104  Vcvv 3437  cdif 3889  {csn 4565   class class class wbr 5081  Ord word 6280  suc csuc 6283  ωcom 7744  cen 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ord 6284  df-on 6285  df-suc 6287  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-om 7745  df-en 8765
This theorem is referenced by:  phplem4OLD  9041  phpOLD  9043
  Copyright terms: Public domain W3C validator