![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phplem3OLD | Structured version Visualization version GIF version |
Description: Obsolete version of phplem1 9203 as of 23-Sep-2024. (Contributed by NM, 26-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
phplem2OLD.1 | ⊢ 𝐴 ∈ V |
phplem2OLD.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
phplem3OLD | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsuci 6421 | . 2 ⊢ (𝐵 ∈ suc 𝐴 → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) | |
2 | phplem2OLD.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | phplem2OLD.2 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | phplem2OLD 9214 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
5 | 2 | enref 8977 | . . . 4 ⊢ 𝐴 ≈ 𝐴 |
6 | nnord 7856 | . . . . . 6 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
7 | orddif 6450 | . . . . . 6 ⊢ (Ord 𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
9 | sneq 4630 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
10 | 9 | difeq2d 4114 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (suc 𝐴 ∖ {𝐴}) = (suc 𝐴 ∖ {𝐵})) |
11 | 10 | eqcoms 2732 | . . . . 5 ⊢ (𝐵 = 𝐴 → (suc 𝐴 ∖ {𝐴}) = (suc 𝐴 ∖ {𝐵})) |
12 | 8, 11 | sylan9eq 2784 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐴 = (suc 𝐴 ∖ {𝐵})) |
13 | 5, 12 | breqtrid 5175 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
14 | 4, 13 | jaodan 954 | . 2 ⊢ ((𝐴 ∈ ω ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
15 | 1, 14 | sylan2 592 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∖ cdif 3937 {csn 4620 class class class wbr 5138 Ord word 6353 suc csuc 6356 ωcom 7848 ≈ cen 8932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-ord 6357 df-on 6358 df-suc 6360 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-om 7849 df-en 8936 |
This theorem is referenced by: phplem4OLD 9216 phpOLD 9218 |
Copyright terms: Public domain | W3C validator |