![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phplem3OLD | Structured version Visualization version GIF version |
Description: Obsolete version of phplem1 9270 as of 23-Sep-2024. (Contributed by NM, 26-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
phplem2OLD.1 | ⊢ 𝐴 ∈ V |
phplem2OLD.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
phplem3OLD | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsuci 6462 | . 2 ⊢ (𝐵 ∈ suc 𝐴 → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) | |
2 | phplem2OLD.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | phplem2OLD.2 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | phplem2OLD 9281 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
5 | 2 | enref 9045 | . . . 4 ⊢ 𝐴 ≈ 𝐴 |
6 | nnord 7911 | . . . . . 6 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
7 | orddif 6491 | . . . . . 6 ⊢ (Ord 𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
9 | sneq 4658 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
10 | 9 | difeq2d 4149 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (suc 𝐴 ∖ {𝐴}) = (suc 𝐴 ∖ {𝐵})) |
11 | 10 | eqcoms 2748 | . . . . 5 ⊢ (𝐵 = 𝐴 → (suc 𝐴 ∖ {𝐴}) = (suc 𝐴 ∖ {𝐵})) |
12 | 8, 11 | sylan9eq 2800 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐴 = (suc 𝐴 ∖ {𝐵})) |
13 | 5, 12 | breqtrid 5203 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
14 | 4, 13 | jaodan 958 | . 2 ⊢ ((𝐴 ∈ ω ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
15 | 1, 14 | sylan2 592 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 {csn 4648 class class class wbr 5166 Ord word 6394 suc csuc 6397 ωcom 7903 ≈ cen 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-suc 6401 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-om 7904 df-en 9004 |
This theorem is referenced by: phplem4OLD 9283 phpOLD 9285 |
Copyright terms: Public domain | W3C validator |