MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phplem3OLD Structured version   Visualization version   GIF version

Theorem phplem3OLD 9085
Description: Obsolete version of phplem1 9073 as of 23-Sep-2024. (Contributed by NM, 26-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
phplem2OLD.1 𝐴 ∈ V
phplem2OLD.2 𝐵 ∈ V
Assertion
Ref Expression
phplem3OLD ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))

Proof of Theorem phplem3OLD
StepHypRef Expression
1 elsuci 6369 . 2 (𝐵 ∈ suc 𝐴 → (𝐵𝐴𝐵 = 𝐴))
2 phplem2OLD.1 . . . 4 𝐴 ∈ V
3 phplem2OLD.2 . . . 4 𝐵 ∈ V
42, 3phplem2OLD 9084 . . 3 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
52enref 8847 . . . 4 𝐴𝐴
6 nnord 7789 . . . . . 6 (𝐴 ∈ ω → Ord 𝐴)
7 orddif 6398 . . . . . 6 (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))
86, 7syl 17 . . . . 5 (𝐴 ∈ ω → 𝐴 = (suc 𝐴 ∖ {𝐴}))
9 sneq 4584 . . . . . . 7 (𝐴 = 𝐵 → {𝐴} = {𝐵})
109difeq2d 4070 . . . . . 6 (𝐴 = 𝐵 → (suc 𝐴 ∖ {𝐴}) = (suc 𝐴 ∖ {𝐵}))
1110eqcoms 2744 . . . . 5 (𝐵 = 𝐴 → (suc 𝐴 ∖ {𝐴}) = (suc 𝐴 ∖ {𝐵}))
128, 11sylan9eq 2796 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐴 = (suc 𝐴 ∖ {𝐵}))
135, 12breqtrid 5130 . . 3 ((𝐴 ∈ ω ∧ 𝐵 = 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
144, 13jaodan 955 . 2 ((𝐴 ∈ ω ∧ (𝐵𝐴𝐵 = 𝐴)) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
151, 14sylan2 593 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1540  wcel 2105  Vcvv 3441  cdif 3895  {csn 4574   class class class wbr 5093  Ord word 6302  suc csuc 6305  ωcom 7781  cen 8802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-br 5094  df-opab 5156  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6306  df-on 6307  df-suc 6309  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-om 7782  df-en 8806
This theorem is referenced by:  phplem4OLD  9086  phpOLD  9088
  Copyright terms: Public domain W3C validator