MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  siilem1 Structured version   Visualization version   GIF version

Theorem siilem1 30795
Description: Lemma for sii 30798. (Contributed by NM, 23-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
siii.1 𝑋 = (BaseSet‘𝑈)
siii.6 𝑁 = (normCV𝑈)
siii.7 𝑃 = (·𝑖OLD𝑈)
siii.9 𝑈 ∈ CPreHilOLD
siii.a 𝐴𝑋
siii.b 𝐵𝑋
sii1.3 𝑀 = ( −𝑣𝑈)
sii1.4 𝑆 = ( ·𝑠OLD𝑈)
sii1.c 𝐶 ∈ ℂ
sii1.r (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ
sii1.z 0 ≤ (𝐶 · (𝐴𝑃𝐵))
Assertion
Ref Expression
siilem1 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)))

Proof of Theorem siilem1
StepHypRef Expression
1 siii.1 . . . . . . . . . 10 𝑋 = (BaseSet‘𝑈)
2 siii.6 . . . . . . . . . 10 𝑁 = (normCV𝑈)
3 siii.9 . . . . . . . . . . 11 𝑈 ∈ CPreHilOLD
43phnvi 30760 . . . . . . . . . 10 𝑈 ∈ NrmCVec
5 siii.a . . . . . . . . . . 11 𝐴𝑋
6 sii1.c . . . . . . . . . . . . 13 𝐶 ∈ ℂ
76cjcli 15076 . . . . . . . . . . . 12 (∗‘𝐶) ∈ ℂ
8 siii.b . . . . . . . . . . . 12 𝐵𝑋
9 sii1.4 . . . . . . . . . . . . 13 𝑆 = ( ·𝑠OLD𝑈)
101, 9nvscl 30570 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋) → ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)
114, 7, 8, 10mp3an 1463 . . . . . . . . . . 11 ((∗‘𝐶)𝑆𝐵) ∈ 𝑋
12 sii1.3 . . . . . . . . . . . 12 𝑀 = ( −𝑣𝑈)
131, 12nvmcl 30590 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋) → (𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋)
144, 5, 11, 13mp3an 1463 . . . . . . . . . 10 (𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋
151, 2, 4, 14nvcli 30606 . . . . . . . . 9 (𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵))) ∈ ℝ
1615sqge0i 14095 . . . . . . . 8 0 ≤ ((𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵)))↑2)
1714, 5, 113pm3.2i 1340 . . . . . . . . . 10 ((𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)
18 siii.7 . . . . . . . . . . 11 𝑃 = (·𝑖OLD𝑈)
191, 12, 18dipsubdi 30793 . . . . . . . . . 10 ((𝑈 ∈ CPreHilOLD ∧ ((𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)) → ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃(𝐴𝑀((∗‘𝐶)𝑆𝐵))) = (((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) − ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵))))
203, 17, 19mp2an 692 . . . . . . . . 9 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃(𝐴𝑀((∗‘𝐶)𝑆𝐵))) = (((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) − ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵)))
211, 2, 18ipidsq 30654 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋) → ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃(𝐴𝑀((∗‘𝐶)𝑆𝐵))) = ((𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵)))↑2))
224, 14, 21mp2an 692 . . . . . . . . 9 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃(𝐴𝑀((∗‘𝐶)𝑆𝐵))) = ((𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵)))↑2)
237, 8, 113pm3.2i 1340 . . . . . . . . . . . . . . 15 ((∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)
241, 9, 18dipass 30789 . . . . . . . . . . . . . . 15 ((𝑈 ∈ CPreHilOLD ∧ ((∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)) → (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)) = ((∗‘𝐶) · (𝐵𝑃((∗‘𝐶)𝑆𝐵))))
253, 23, 24mp2an 692 . . . . . . . . . . . . . 14 (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)) = ((∗‘𝐶) · (𝐵𝑃((∗‘𝐶)𝑆𝐵)))
268, 6, 83pm3.2i 1340 . . . . . . . . . . . . . . . . 17 (𝐵𝑋𝐶 ∈ ℂ ∧ 𝐵𝑋)
271, 9, 18dipassr2 30791 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ CPreHilOLD ∧ (𝐵𝑋𝐶 ∈ ℂ ∧ 𝐵𝑋)) → (𝐵𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · (𝐵𝑃𝐵)))
283, 26, 27mp2an 692 . . . . . . . . . . . . . . . 16 (𝐵𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · (𝐵𝑃𝐵))
291, 2, 18ipidsq 30654 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐵𝑃𝐵) = ((𝑁𝐵)↑2))
304, 8, 29mp2an 692 . . . . . . . . . . . . . . . . 17 (𝐵𝑃𝐵) = ((𝑁𝐵)↑2)
3130oveq2i 7360 . . . . . . . . . . . . . . . 16 (𝐶 · (𝐵𝑃𝐵)) = (𝐶 · ((𝑁𝐵)↑2))
3228, 31eqtri 2752 . . . . . . . . . . . . . . 15 (𝐵𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · ((𝑁𝐵)↑2))
3332oveq2i 7360 . . . . . . . . . . . . . 14 ((∗‘𝐶) · (𝐵𝑃((∗‘𝐶)𝑆𝐵))) = ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))
3425, 33eqtri 2752 . . . . . . . . . . . . 13 (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)) = ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))
3534oveq2i 7360 . . . . . . . . . . . 12 ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵))) = ((𝐶 · (𝐴𝑃𝐵)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))
3635oveq2i 7360 . . . . . . . . . . 11 ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))) = ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))))
371, 2, 4, 5nvcli 30606 . . . . . . . . . . . . . 14 (𝑁𝐴) ∈ ℝ
3837recni 11129 . . . . . . . . . . . . 13 (𝑁𝐴) ∈ ℂ
3938sqcli 14088 . . . . . . . . . . . 12 ((𝑁𝐴)↑2) ∈ ℂ
401, 18dipcl 30656 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝑃𝐴) ∈ ℂ)
414, 8, 5, 40mp3an 1463 . . . . . . . . . . . . 13 (𝐵𝑃𝐴) ∈ ℂ
427, 41mulcli 11122 . . . . . . . . . . . 12 ((∗‘𝐶) · (𝐵𝑃𝐴)) ∈ ℂ
43 sii1.r . . . . . . . . . . . . 13 (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ
4443recni 11129 . . . . . . . . . . . 12 (𝐶 · (𝐴𝑃𝐵)) ∈ ℂ
451, 2, 4, 8nvcli 30606 . . . . . . . . . . . . . . . 16 (𝑁𝐵) ∈ ℝ
4645recni 11129 . . . . . . . . . . . . . . 15 (𝑁𝐵) ∈ ℂ
4746sqcli 14088 . . . . . . . . . . . . . 14 ((𝑁𝐵)↑2) ∈ ℂ
486, 47mulcli 11122 . . . . . . . . . . . . 13 (𝐶 · ((𝑁𝐵)↑2)) ∈ ℂ
497, 48mulcli 11122 . . . . . . . . . . . 12 ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))) ∈ ℂ
50 sub4 11409 . . . . . . . . . . . 12 (((((𝑁𝐴)↑2) ∈ ℂ ∧ ((∗‘𝐶) · (𝐵𝑃𝐴)) ∈ ℂ) ∧ ((𝐶 · (𝐴𝑃𝐵)) ∈ ℂ ∧ ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))) ∈ ℂ)) → ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))))
5139, 42, 44, 49, 50mp4an 693 . . . . . . . . . . 11 ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))))
5236, 51eqtri 2752 . . . . . . . . . 10 ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))))
535, 11, 53pm3.2i 1340 . . . . . . . . . . . . 13 (𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋𝐴𝑋)
541, 12, 18dipsubdir 30792 . . . . . . . . . . . . 13 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋𝐴𝑋)) → ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) = ((𝐴𝑃𝐴) − (((∗‘𝐶)𝑆𝐵)𝑃𝐴)))
553, 53, 54mp2an 692 . . . . . . . . . . . 12 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) = ((𝐴𝑃𝐴) − (((∗‘𝐶)𝑆𝐵)𝑃𝐴))
561, 2, 18ipidsq 30654 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = ((𝑁𝐴)↑2))
574, 5, 56mp2an 692 . . . . . . . . . . . . 13 (𝐴𝑃𝐴) = ((𝑁𝐴)↑2)
587, 8, 53pm3.2i 1340 . . . . . . . . . . . . . 14 ((∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋𝐴𝑋)
591, 9, 18dipass 30789 . . . . . . . . . . . . . 14 ((𝑈 ∈ CPreHilOLD ∧ ((∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋𝐴𝑋)) → (((∗‘𝐶)𝑆𝐵)𝑃𝐴) = ((∗‘𝐶) · (𝐵𝑃𝐴)))
603, 58, 59mp2an 692 . . . . . . . . . . . . 13 (((∗‘𝐶)𝑆𝐵)𝑃𝐴) = ((∗‘𝐶) · (𝐵𝑃𝐴))
6157, 60oveq12i 7361 . . . . . . . . . . . 12 ((𝐴𝑃𝐴) − (((∗‘𝐶)𝑆𝐵)𝑃𝐴)) = (((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴)))
6255, 61eqtri 2752 . . . . . . . . . . 11 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) = (((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴)))
635, 11, 113pm3.2i 1340 . . . . . . . . . . . . 13 (𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)
641, 12, 18dipsubdir 30792 . . . . . . . . . . . . 13 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)) → ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵)) = ((𝐴𝑃((∗‘𝐶)𝑆𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵))))
653, 63, 64mp2an 692 . . . . . . . . . . . 12 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵)) = ((𝐴𝑃((∗‘𝐶)𝑆𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))
665, 6, 83pm3.2i 1340 . . . . . . . . . . . . . 14 (𝐴𝑋𝐶 ∈ ℂ ∧ 𝐵𝑋)
671, 9, 18dipassr2 30791 . . . . . . . . . . . . . 14 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐶 ∈ ℂ ∧ 𝐵𝑋)) → (𝐴𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · (𝐴𝑃𝐵)))
683, 66, 67mp2an 692 . . . . . . . . . . . . 13 (𝐴𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · (𝐴𝑃𝐵))
6968oveq1i 7359 . . . . . . . . . . . 12 ((𝐴𝑃((∗‘𝐶)𝑆𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵))) = ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))
7065, 69eqtri 2752 . . . . . . . . . . 11 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵)) = ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))
7162, 70oveq12i 7361 . . . . . . . . . 10 (((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) − ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵))) = ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵))))
727, 41, 48subdii 11569 . . . . . . . . . . 11 ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))) = (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))
7372oveq2i 7360 . . . . . . . . . 10 ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))))
7452, 71, 733eqtr4i 2762 . . . . . . . . 9 (((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) − ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))))
7520, 22, 743eqtr3i 2760 . . . . . . . 8 ((𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵)))↑2) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))))
7616, 75breqtri 5117 . . . . . . 7 0 ≤ ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))))
7741, 48subeq0i 11444 . . . . . . . . . 10 (((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))) = 0 ↔ (𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)))
78 oveq2 7357 . . . . . . . . . . 11 (((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))) = 0 → ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))) = ((∗‘𝐶) · 0))
797mul01i 11306 . . . . . . . . . . 11 ((∗‘𝐶) · 0) = 0
8078, 79eqtrdi 2780 . . . . . . . . . 10 (((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))) = 0 → ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))) = 0)
8177, 80sylbir 235 . . . . . . . . 9 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))) = 0)
8281oveq2d 7365 . . . . . . . 8 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − 0))
8337resqcli 14093 . . . . . . . . . . 11 ((𝑁𝐴)↑2) ∈ ℝ
8483recni 11129 . . . . . . . . . 10 ((𝑁𝐴)↑2) ∈ ℂ
8584, 44subcli 11440 . . . . . . . . 9 (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) ∈ ℂ
8685subid1i 11436 . . . . . . . 8 ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − 0) = (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵)))
8782, 86eqtrdi 2780 . . . . . . 7 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))))) = (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))))
8876, 87breqtrid 5129 . . . . . 6 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → 0 ≤ (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))))
8983, 43subge0i 11673 . . . . . 6 (0 ≤ (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) ↔ (𝐶 · (𝐴𝑃𝐵)) ≤ ((𝑁𝐴)↑2))
9088, 89sylib 218 . . . . 5 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (𝐶 · (𝐴𝑃𝐵)) ≤ ((𝑁𝐴)↑2))
9145resqcli 14093 . . . . . . . 8 ((𝑁𝐵)↑2) ∈ ℝ
9245sqge0i 14095 . . . . . . . 8 0 ≤ ((𝑁𝐵)↑2)
9391, 92pm3.2i 470 . . . . . . 7 (((𝑁𝐵)↑2) ∈ ℝ ∧ 0 ≤ ((𝑁𝐵)↑2))
9443, 83, 933pm3.2i 1340 . . . . . 6 ((𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ ((𝑁𝐴)↑2) ∈ ℝ ∧ (((𝑁𝐵)↑2) ∈ ℝ ∧ 0 ≤ ((𝑁𝐵)↑2)))
95 lemul1a 11978 . . . . . 6 ((((𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ ((𝑁𝐴)↑2) ∈ ℝ ∧ (((𝑁𝐵)↑2) ∈ ℝ ∧ 0 ≤ ((𝑁𝐵)↑2))) ∧ (𝐶 · (𝐴𝑃𝐵)) ≤ ((𝑁𝐴)↑2)) → ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴)↑2) · ((𝑁𝐵)↑2)))
9694, 95mpan 690 . . . . 5 ((𝐶 · (𝐴𝑃𝐵)) ≤ ((𝑁𝐴)↑2) → ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴)↑2) · ((𝑁𝐵)↑2)))
9790, 96syl 17 . . . 4 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴)↑2) · ((𝑁𝐵)↑2)))
9838, 46sqmuli 14091 . . . 4 (((𝑁𝐴) · (𝑁𝐵))↑2) = (((𝑁𝐴)↑2) · ((𝑁𝐵)↑2))
9997, 98breqtrrdi 5134 . . 3 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴) · (𝑁𝐵))↑2))
100 sii1.z . . . . 5 0 ≤ (𝐶 · (𝐴𝑃𝐵))
10143, 91mulge0i 11667 . . . . 5 ((0 ≤ (𝐶 · (𝐴𝑃𝐵)) ∧ 0 ≤ ((𝑁𝐵)↑2)) → 0 ≤ ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)))
102100, 92, 101mp2an 692 . . . 4 0 ≤ ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))
10337, 45remulcli 11131 . . . . 5 ((𝑁𝐴) · (𝑁𝐵)) ∈ ℝ
104103sqge0i 14095 . . . 4 0 ≤ (((𝑁𝐴) · (𝑁𝐵))↑2)
10543, 91remulcli 11131 . . . . 5 ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ∈ ℝ
106103resqcli 14093 . . . . 5 (((𝑁𝐴) · (𝑁𝐵))↑2) ∈ ℝ
107105, 106sqrtlei 15296 . . . 4 ((0 ≤ ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ∧ 0 ≤ (((𝑁𝐴) · (𝑁𝐵))↑2)) → (((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴) · (𝑁𝐵))↑2) ↔ (√‘((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))) ≤ (√‘(((𝑁𝐴) · (𝑁𝐵))↑2))))
108102, 104, 107mp2an 692 . . 3 (((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴) · (𝑁𝐵))↑2) ↔ (√‘((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))) ≤ (√‘(((𝑁𝐴) · (𝑁𝐵))↑2)))
10999, 108sylib 218 . 2 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))) ≤ (√‘(((𝑁𝐴) · (𝑁𝐵))↑2)))
1101, 18dipcl 30656 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
1114, 5, 8, 110mp3an 1463 . . . . . 6 (𝐴𝑃𝐵) ∈ ℂ
1126, 111mulcomi 11123 . . . . 5 (𝐶 · (𝐴𝑃𝐵)) = ((𝐴𝑃𝐵) · 𝐶)
113112oveq1i 7359 . . . 4 ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) = (((𝐴𝑃𝐵) · 𝐶) · ((𝑁𝐵)↑2))
11491recni 11129 . . . . 5 ((𝑁𝐵)↑2) ∈ ℂ
115111, 6, 114mulassi 11126 . . . 4 (((𝐴𝑃𝐵) · 𝐶) · ((𝑁𝐵)↑2)) = ((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))
116113, 115eqtri 2752 . . 3 ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) = ((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))
117116fveq2i 6825 . 2 (√‘((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))) = (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2))))
1181, 2nvge0 30617 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (𝑁𝐴))
1194, 5, 118mp2an 692 . . . 4 0 ≤ (𝑁𝐴)
1201, 2nvge0 30617 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → 0 ≤ (𝑁𝐵))
1214, 8, 120mp2an 692 . . . 4 0 ≤ (𝑁𝐵)
12237, 45mulge0i 11667 . . . 4 ((0 ≤ (𝑁𝐴) ∧ 0 ≤ (𝑁𝐵)) → 0 ≤ ((𝑁𝐴) · (𝑁𝐵)))
123119, 121, 122mp2an 692 . . 3 0 ≤ ((𝑁𝐴) · (𝑁𝐵))
124103sqrtsqi 15282 . . 3 (0 ≤ ((𝑁𝐴) · (𝑁𝐵)) → (√‘(((𝑁𝐴) · (𝑁𝐵))↑2)) = ((𝑁𝐴) · (𝑁𝐵)))
125123, 124ax-mp 5 . 2 (√‘(((𝑁𝐴) · (𝑁𝐵))↑2)) = ((𝑁𝐴) · (𝑁𝐵))
126109, 117, 1253brtr3g 5125 1 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009   · cmul 11014  cle 11150  cmin 11347  2c2 12183  cexp 13968  ccj 15003  csqrt 15140  NrmCVeccnv 30528  BaseSetcba 30530   ·𝑠OLD cns 30531  𝑣 cnsb 30533  normCVcnmcv 30534  ·𝑖OLDcdip 30644  CPreHilOLDccphlo 30756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-cn 23112  df-cnp 23113  df-t1 23199  df-haus 23200  df-tx 23447  df-hmeo 23640  df-xms 24206  df-ms 24207  df-tms 24208  df-grpo 30437  df-gid 30438  df-ginv 30439  df-gdiv 30440  df-ablo 30489  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-vs 30543  df-nmcv 30544  df-ims 30545  df-dip 30645  df-ph 30757
This theorem is referenced by:  siilem2  30796
  Copyright terms: Public domain W3C validator