MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  siilem1 Structured version   Visualization version   GIF version

Theorem siilem1 28223
Description: Lemma for sii 28226. (Contributed by NM, 23-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
siii.1 𝑋 = (BaseSet‘𝑈)
siii.6 𝑁 = (normCV𝑈)
siii.7 𝑃 = (·𝑖OLD𝑈)
siii.9 𝑈 ∈ CPreHilOLD
siii.a 𝐴𝑋
siii.b 𝐵𝑋
sii1.3 𝑀 = ( −𝑣𝑈)
sii1.4 𝑆 = ( ·𝑠OLD𝑈)
sii1.c 𝐶 ∈ ℂ
sii1.r (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ
sii1.z 0 ≤ (𝐶 · (𝐴𝑃𝐵))
Assertion
Ref Expression
siilem1 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)))

Proof of Theorem siilem1
StepHypRef Expression
1 siii.1 . . . . . . . . . 10 𝑋 = (BaseSet‘𝑈)
2 siii.6 . . . . . . . . . 10 𝑁 = (normCV𝑈)
3 siii.9 . . . . . . . . . . 11 𝑈 ∈ CPreHilOLD
43phnvi 28188 . . . . . . . . . 10 𝑈 ∈ NrmCVec
5 siii.a . . . . . . . . . . 11 𝐴𝑋
6 sii1.c . . . . . . . . . . . . 13 𝐶 ∈ ℂ
76cjcli 14247 . . . . . . . . . . . 12 (∗‘𝐶) ∈ ℂ
8 siii.b . . . . . . . . . . . 12 𝐵𝑋
9 sii1.4 . . . . . . . . . . . . 13 𝑆 = ( ·𝑠OLD𝑈)
101, 9nvscl 27998 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋) → ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)
114, 7, 8, 10mp3an 1586 . . . . . . . . . . 11 ((∗‘𝐶)𝑆𝐵) ∈ 𝑋
12 sii1.3 . . . . . . . . . . . 12 𝑀 = ( −𝑣𝑈)
131, 12nvmcl 28018 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋) → (𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋)
144, 5, 11, 13mp3an 1586 . . . . . . . . . 10 (𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋
151, 2, 4, 14nvcli 28034 . . . . . . . . 9 (𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵))) ∈ ℝ
1615sqge0i 13201 . . . . . . . 8 0 ≤ ((𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵)))↑2)
1714, 5, 113pm3.2i 1439 . . . . . . . . . 10 ((𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)
18 siii.7 . . . . . . . . . . 11 𝑃 = (·𝑖OLD𝑈)
191, 12, 18dipsubdi 28221 . . . . . . . . . 10 ((𝑈 ∈ CPreHilOLD ∧ ((𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)) → ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃(𝐴𝑀((∗‘𝐶)𝑆𝐵))) = (((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) − ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵))))
203, 17, 19mp2an 684 . . . . . . . . 9 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃(𝐴𝑀((∗‘𝐶)𝑆𝐵))) = (((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) − ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵)))
211, 2, 18ipidsq 28082 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀((∗‘𝐶)𝑆𝐵)) ∈ 𝑋) → ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃(𝐴𝑀((∗‘𝐶)𝑆𝐵))) = ((𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵)))↑2))
224, 14, 21mp2an 684 . . . . . . . . 9 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃(𝐴𝑀((∗‘𝐶)𝑆𝐵))) = ((𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵)))↑2)
237, 8, 113pm3.2i 1439 . . . . . . . . . . . . . . 15 ((∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)
241, 9, 18dipass 28217 . . . . . . . . . . . . . . 15 ((𝑈 ∈ CPreHilOLD ∧ ((∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)) → (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)) = ((∗‘𝐶) · (𝐵𝑃((∗‘𝐶)𝑆𝐵))))
253, 23, 24mp2an 684 . . . . . . . . . . . . . 14 (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)) = ((∗‘𝐶) · (𝐵𝑃((∗‘𝐶)𝑆𝐵)))
268, 6, 83pm3.2i 1439 . . . . . . . . . . . . . . . . 17 (𝐵𝑋𝐶 ∈ ℂ ∧ 𝐵𝑋)
271, 9, 18dipassr2 28219 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ CPreHilOLD ∧ (𝐵𝑋𝐶 ∈ ℂ ∧ 𝐵𝑋)) → (𝐵𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · (𝐵𝑃𝐵)))
283, 26, 27mp2an 684 . . . . . . . . . . . . . . . 16 (𝐵𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · (𝐵𝑃𝐵))
291, 2, 18ipidsq 28082 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐵𝑃𝐵) = ((𝑁𝐵)↑2))
304, 8, 29mp2an 684 . . . . . . . . . . . . . . . . 17 (𝐵𝑃𝐵) = ((𝑁𝐵)↑2)
3130oveq2i 6887 . . . . . . . . . . . . . . . 16 (𝐶 · (𝐵𝑃𝐵)) = (𝐶 · ((𝑁𝐵)↑2))
3228, 31eqtri 2819 . . . . . . . . . . . . . . 15 (𝐵𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · ((𝑁𝐵)↑2))
3332oveq2i 6887 . . . . . . . . . . . . . 14 ((∗‘𝐶) · (𝐵𝑃((∗‘𝐶)𝑆𝐵))) = ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))
3425, 33eqtri 2819 . . . . . . . . . . . . 13 (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)) = ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))
3534oveq2i 6887 . . . . . . . . . . . 12 ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵))) = ((𝐶 · (𝐴𝑃𝐵)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))
3635oveq2i 6887 . . . . . . . . . . 11 ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))) = ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))))
371, 2, 4, 5nvcli 28034 . . . . . . . . . . . . . 14 (𝑁𝐴) ∈ ℝ
3837recni 10341 . . . . . . . . . . . . 13 (𝑁𝐴) ∈ ℂ
3938sqcli 13194 . . . . . . . . . . . 12 ((𝑁𝐴)↑2) ∈ ℂ
401, 18dipcl 28084 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝑃𝐴) ∈ ℂ)
414, 8, 5, 40mp3an 1586 . . . . . . . . . . . . 13 (𝐵𝑃𝐴) ∈ ℂ
427, 41mulcli 10334 . . . . . . . . . . . 12 ((∗‘𝐶) · (𝐵𝑃𝐴)) ∈ ℂ
43 sii1.r . . . . . . . . . . . . 13 (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ
4443recni 10341 . . . . . . . . . . . 12 (𝐶 · (𝐴𝑃𝐵)) ∈ ℂ
451, 2, 4, 8nvcli 28034 . . . . . . . . . . . . . . . 16 (𝑁𝐵) ∈ ℝ
4645recni 10341 . . . . . . . . . . . . . . 15 (𝑁𝐵) ∈ ℂ
4746sqcli 13194 . . . . . . . . . . . . . 14 ((𝑁𝐵)↑2) ∈ ℂ
486, 47mulcli 10334 . . . . . . . . . . . . 13 (𝐶 · ((𝑁𝐵)↑2)) ∈ ℂ
497, 48mulcli 10334 . . . . . . . . . . . 12 ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))) ∈ ℂ
50 sub4 10616 . . . . . . . . . . . 12 (((((𝑁𝐴)↑2) ∈ ℂ ∧ ((∗‘𝐶) · (𝐵𝑃𝐴)) ∈ ℂ) ∧ ((𝐶 · (𝐴𝑃𝐵)) ∈ ℂ ∧ ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))) ∈ ℂ)) → ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))))
5139, 42, 44, 49, 50mp4an 685 . . . . . . . . . . 11 ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))))
5236, 51eqtri 2819 . . . . . . . . . 10 ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))))
535, 11, 53pm3.2i 1439 . . . . . . . . . . . . 13 (𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋𝐴𝑋)
541, 12, 18dipsubdir 28220 . . . . . . . . . . . . 13 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋𝐴𝑋)) → ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) = ((𝐴𝑃𝐴) − (((∗‘𝐶)𝑆𝐵)𝑃𝐴)))
553, 53, 54mp2an 684 . . . . . . . . . . . 12 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) = ((𝐴𝑃𝐴) − (((∗‘𝐶)𝑆𝐵)𝑃𝐴))
561, 2, 18ipidsq 28082 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝐴) = ((𝑁𝐴)↑2))
574, 5, 56mp2an 684 . . . . . . . . . . . . 13 (𝐴𝑃𝐴) = ((𝑁𝐴)↑2)
587, 8, 53pm3.2i 1439 . . . . . . . . . . . . . 14 ((∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋𝐴𝑋)
591, 9, 18dipass 28217 . . . . . . . . . . . . . 14 ((𝑈 ∈ CPreHilOLD ∧ ((∗‘𝐶) ∈ ℂ ∧ 𝐵𝑋𝐴𝑋)) → (((∗‘𝐶)𝑆𝐵)𝑃𝐴) = ((∗‘𝐶) · (𝐵𝑃𝐴)))
603, 58, 59mp2an 684 . . . . . . . . . . . . 13 (((∗‘𝐶)𝑆𝐵)𝑃𝐴) = ((∗‘𝐶) · (𝐵𝑃𝐴))
6157, 60oveq12i 6888 . . . . . . . . . . . 12 ((𝐴𝑃𝐴) − (((∗‘𝐶)𝑆𝐵)𝑃𝐴)) = (((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴)))
6255, 61eqtri 2819 . . . . . . . . . . 11 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) = (((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴)))
635, 11, 113pm3.2i 1439 . . . . . . . . . . . . 13 (𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)
641, 12, 18dipsubdir 28220 . . . . . . . . . . . . 13 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋 ∧ ((∗‘𝐶)𝑆𝐵) ∈ 𝑋)) → ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵)) = ((𝐴𝑃((∗‘𝐶)𝑆𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵))))
653, 63, 64mp2an 684 . . . . . . . . . . . 12 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵)) = ((𝐴𝑃((∗‘𝐶)𝑆𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))
665, 6, 83pm3.2i 1439 . . . . . . . . . . . . . 14 (𝐴𝑋𝐶 ∈ ℂ ∧ 𝐵𝑋)
671, 9, 18dipassr2 28219 . . . . . . . . . . . . . 14 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐶 ∈ ℂ ∧ 𝐵𝑋)) → (𝐴𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · (𝐴𝑃𝐵)))
683, 66, 67mp2an 684 . . . . . . . . . . . . 13 (𝐴𝑃((∗‘𝐶)𝑆𝐵)) = (𝐶 · (𝐴𝑃𝐵))
6968oveq1i 6886 . . . . . . . . . . . 12 ((𝐴𝑃((∗‘𝐶)𝑆𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵))) = ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))
7065, 69eqtri 2819 . . . . . . . . . . 11 ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵)) = ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵)))
7162, 70oveq12i 6888 . . . . . . . . . 10 (((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) − ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵))) = ((((𝑁𝐴)↑2) − ((∗‘𝐶) · (𝐵𝑃𝐴))) − ((𝐶 · (𝐴𝑃𝐵)) − (((∗‘𝐶)𝑆𝐵)𝑃((∗‘𝐶)𝑆𝐵))))
727, 41, 48subdii 10769 . . . . . . . . . . 11 ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))) = (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2))))
7372oveq2i 6887 . . . . . . . . . 10 ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − (((∗‘𝐶) · (𝐵𝑃𝐴)) − ((∗‘𝐶) · (𝐶 · ((𝑁𝐵)↑2)))))
7452, 71, 733eqtr4i 2829 . . . . . . . . 9 (((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃𝐴) − ((𝐴𝑀((∗‘𝐶)𝑆𝐵))𝑃((∗‘𝐶)𝑆𝐵))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))))
7520, 22, 743eqtr3i 2827 . . . . . . . 8 ((𝑁‘(𝐴𝑀((∗‘𝐶)𝑆𝐵)))↑2) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))))
7616, 75breqtri 4866 . . . . . . 7 0 ≤ ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))))
7741, 48subeq0i 10651 . . . . . . . . . 10 (((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))) = 0 ↔ (𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)))
78 oveq2 6884 . . . . . . . . . . 11 (((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))) = 0 → ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))) = ((∗‘𝐶) · 0))
797mul01i 10514 . . . . . . . . . . 11 ((∗‘𝐶) · 0) = 0
8078, 79syl6eq 2847 . . . . . . . . . 10 (((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))) = 0 → ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))) = 0)
8177, 80sylbir 227 . . . . . . . . 9 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2)))) = 0)
8281oveq2d 6892 . . . . . . . 8 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))))) = ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − 0))
8337resqcli 13199 . . . . . . . . . . 11 ((𝑁𝐴)↑2) ∈ ℝ
8483recni 10341 . . . . . . . . . 10 ((𝑁𝐴)↑2) ∈ ℂ
8584, 44subcli 10647 . . . . . . . . 9 (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) ∈ ℂ
8685subid1i 10643 . . . . . . . 8 ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − 0) = (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵)))
8782, 86syl6eq 2847 . . . . . . 7 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) − ((∗‘𝐶) · ((𝐵𝑃𝐴) − (𝐶 · ((𝑁𝐵)↑2))))) = (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))))
8876, 87syl5breq 4878 . . . . . 6 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → 0 ≤ (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))))
8983, 43subge0i 10871 . . . . . 6 (0 ≤ (((𝑁𝐴)↑2) − (𝐶 · (𝐴𝑃𝐵))) ↔ (𝐶 · (𝐴𝑃𝐵)) ≤ ((𝑁𝐴)↑2))
9088, 89sylib 210 . . . . 5 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (𝐶 · (𝐴𝑃𝐵)) ≤ ((𝑁𝐴)↑2))
9145resqcli 13199 . . . . . . . 8 ((𝑁𝐵)↑2) ∈ ℝ
9245sqge0i 13201 . . . . . . . 8 0 ≤ ((𝑁𝐵)↑2)
9391, 92pm3.2i 463 . . . . . . 7 (((𝑁𝐵)↑2) ∈ ℝ ∧ 0 ≤ ((𝑁𝐵)↑2))
9443, 83, 933pm3.2i 1439 . . . . . 6 ((𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ ((𝑁𝐴)↑2) ∈ ℝ ∧ (((𝑁𝐵)↑2) ∈ ℝ ∧ 0 ≤ ((𝑁𝐵)↑2)))
95 lemul1a 11167 . . . . . 6 ((((𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ ((𝑁𝐴)↑2) ∈ ℝ ∧ (((𝑁𝐵)↑2) ∈ ℝ ∧ 0 ≤ ((𝑁𝐵)↑2))) ∧ (𝐶 · (𝐴𝑃𝐵)) ≤ ((𝑁𝐴)↑2)) → ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴)↑2) · ((𝑁𝐵)↑2)))
9694, 95mpan 682 . . . . 5 ((𝐶 · (𝐴𝑃𝐵)) ≤ ((𝑁𝐴)↑2) → ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴)↑2) · ((𝑁𝐵)↑2)))
9790, 96syl 17 . . . 4 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴)↑2) · ((𝑁𝐵)↑2)))
9838, 46sqmuli 13197 . . . 4 (((𝑁𝐴) · (𝑁𝐵))↑2) = (((𝑁𝐴)↑2) · ((𝑁𝐵)↑2))
9997, 98syl6breqr 4883 . . 3 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴) · (𝑁𝐵))↑2))
100 sii1.z . . . . 5 0 ≤ (𝐶 · (𝐴𝑃𝐵))
10143, 91mulge0i 10865 . . . . 5 ((0 ≤ (𝐶 · (𝐴𝑃𝐵)) ∧ 0 ≤ ((𝑁𝐵)↑2)) → 0 ≤ ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)))
102100, 92, 101mp2an 684 . . . 4 0 ≤ ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))
10337, 45remulcli 10343 . . . . 5 ((𝑁𝐴) · (𝑁𝐵)) ∈ ℝ
104103sqge0i 13201 . . . 4 0 ≤ (((𝑁𝐴) · (𝑁𝐵))↑2)
10543, 91remulcli 10343 . . . . 5 ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ∈ ℝ
106103resqcli 13199 . . . . 5 (((𝑁𝐴) · (𝑁𝐵))↑2) ∈ ℝ
107105, 106sqrtlei 14466 . . . 4 ((0 ≤ ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ∧ 0 ≤ (((𝑁𝐴) · (𝑁𝐵))↑2)) → (((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴) · (𝑁𝐵))↑2) ↔ (√‘((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))) ≤ (√‘(((𝑁𝐴) · (𝑁𝐵))↑2))))
108102, 104, 107mp2an 684 . . 3 (((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) ≤ (((𝑁𝐴) · (𝑁𝐵))↑2) ↔ (√‘((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))) ≤ (√‘(((𝑁𝐴) · (𝑁𝐵))↑2)))
10999, 108sylib 210 . 2 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))) ≤ (√‘(((𝑁𝐴) · (𝑁𝐵))↑2)))
1101, 18dipcl 28084 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
1114, 5, 8, 110mp3an 1586 . . . . . 6 (𝐴𝑃𝐵) ∈ ℂ
1126, 111mulcomi 10335 . . . . 5 (𝐶 · (𝐴𝑃𝐵)) = ((𝐴𝑃𝐵) · 𝐶)
113112oveq1i 6886 . . . 4 ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) = (((𝐴𝑃𝐵) · 𝐶) · ((𝑁𝐵)↑2))
11491recni 10341 . . . . 5 ((𝑁𝐵)↑2) ∈ ℂ
115111, 6, 114mulassi 10338 . . . 4 (((𝐴𝑃𝐵) · 𝐶) · ((𝑁𝐵)↑2)) = ((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))
116113, 115eqtri 2819 . . 3 ((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2)) = ((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))
117116fveq2i 6412 . 2 (√‘((𝐶 · (𝐴𝑃𝐵)) · ((𝑁𝐵)↑2))) = (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2))))
1181, 2nvge0 28045 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 0 ≤ (𝑁𝐴))
1194, 5, 118mp2an 684 . . . 4 0 ≤ (𝑁𝐴)
1201, 2nvge0 28045 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → 0 ≤ (𝑁𝐵))
1214, 8, 120mp2an 684 . . . 4 0 ≤ (𝑁𝐵)
12237, 45mulge0i 10865 . . . 4 ((0 ≤ (𝑁𝐴) ∧ 0 ≤ (𝑁𝐵)) → 0 ≤ ((𝑁𝐴) · (𝑁𝐵)))
123119, 121, 122mp2an 684 . . 3 0 ≤ ((𝑁𝐴) · (𝑁𝐵))
124103sqrtsqi 14452 . . 3 (0 ≤ ((𝑁𝐴) · (𝑁𝐵)) → (√‘(((𝑁𝐴) · (𝑁𝐵))↑2)) = ((𝑁𝐴) · (𝑁𝐵)))
125123, 124ax-mp 5 . 2 (√‘(((𝑁𝐴) · (𝑁𝐵))↑2)) = ((𝑁𝐴) · (𝑁𝐵))
126109, 117, 1253brtr3g 4874 1 ((𝐵𝑃𝐴) = (𝐶 · ((𝑁𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁𝐵)↑2)))) ≤ ((𝑁𝐴) · (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157   class class class wbr 4841  cfv 6099  (class class class)co 6876  cc 10220  cr 10221  0cc0 10222   · cmul 10227  cle 10362  cmin 10554  2c2 11364  cexp 13110  ccj 14174  csqrt 14311  NrmCVeccnv 27956  BaseSetcba 27958   ·𝑠OLD cns 27959  𝑣 cnsb 27961  normCVcnmcv 27962  ·𝑖OLDcdip 28072  CPreHilOLDccphlo 28184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-inf2 8786  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299  ax-pre-sup 10300  ax-addf 10301  ax-mulf 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-iin 4711  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-se 5270  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-isom 6108  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-of 7129  df-om 7298  df-1st 7399  df-2nd 7400  df-supp 7531  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-2o 7798  df-oadd 7801  df-er 7980  df-map 8095  df-ixp 8147  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-fsupp 8516  df-fi 8557  df-sup 8588  df-inf 8589  df-oi 8655  df-card 9049  df-cda 9276  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-div 10975  df-nn 11311  df-2 11372  df-3 11373  df-4 11374  df-5 11375  df-6 11376  df-7 11377  df-8 11378  df-9 11379  df-n0 11577  df-z 11663  df-dec 11780  df-uz 11927  df-q 12030  df-rp 12071  df-xneg 12189  df-xadd 12190  df-xmul 12191  df-ioo 12424  df-icc 12427  df-fz 12577  df-fzo 12717  df-seq 13052  df-exp 13111  df-hash 13367  df-cj 14177  df-re 14178  df-im 14179  df-sqrt 14313  df-abs 14314  df-clim 14557  df-sum 14755  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-sets 16188  df-ress 16189  df-plusg 16277  df-mulr 16278  df-starv 16279  df-sca 16280  df-vsca 16281  df-ip 16282  df-tset 16283  df-ple 16284  df-ds 16286  df-unif 16287  df-hom 16288  df-cco 16289  df-rest 16395  df-topn 16396  df-0g 16414  df-gsum 16415  df-topgen 16416  df-pt 16417  df-prds 16420  df-xrs 16474  df-qtop 16479  df-imas 16480  df-xps 16482  df-mre 16558  df-mrc 16559  df-acs 16561  df-mgm 17554  df-sgrp 17596  df-mnd 17607  df-submnd 17648  df-mulg 17854  df-cntz 18059  df-cmn 18507  df-psmet 20057  df-xmet 20058  df-met 20059  df-bl 20060  df-mopn 20061  df-cnfld 20066  df-top 21024  df-topon 21041  df-topsp 21063  df-bases 21076  df-cld 21149  df-ntr 21150  df-cls 21151  df-cn 21357  df-cnp 21358  df-t1 21444  df-haus 21445  df-tx 21691  df-hmeo 21884  df-xms 22450  df-ms 22451  df-tms 22452  df-grpo 27865  df-gid 27866  df-ginv 27867  df-gdiv 27868  df-ablo 27917  df-vc 27931  df-nv 27964  df-va 27967  df-ba 27968  df-sm 27969  df-0v 27970  df-vs 27971  df-nmcv 27972  df-ims 27973  df-dip 28073  df-ph 28185
This theorem is referenced by:  siilem2  28224
  Copyright terms: Public domain W3C validator