| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqtrrid | Structured version Visualization version GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
| Ref | Expression |
|---|---|
| breqtrrid.1 | ⊢ 𝐴𝑅𝐵 |
| breqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| breqtrrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrrid.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
| 2 | breqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | breqtrid 5129 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 |
| This theorem is referenced by: r1sdom 9670 alephordilem1 9967 mulge0 11638 xsubge0 13163 xmulgt0 13185 xmulge0 13186 xlemul1a 13190 sqlecan 14116 bernneq 14136 hashge1 14296 hashge2el2dif 14387 cnpart 15147 sqrt0 15148 bitsfzo 16346 bitsmod 16347 bitsinv1lem 16352 pcge0 16774 prmreclem4 16831 prmreclem5 16832 isnzr2hash 20404 isabvd 20697 abvtrivd 20717 nmolb2d 24604 nmoi 24614 nmoleub 24617 nmo0 24621 ovolge0 25380 itg1ge0a 25610 fta1g 26073 plyrem 26211 taylfval 26264 abelthlem2 26340 sinq12ge0 26415 relogrn 26468 logneg 26495 cxpge0 26590 amgmlem 26898 bposlem5 27197 lgsdir2lem2 27235 2lgsoddprmlem3 27323 rpvmasumlem 27396 mulsge0d 28056 expsgt0 28331 eupth2lem3lem3 30178 eupth2lemb 30185 blocnilem 30752 pjssge0ii 31630 unierri 32052 xlt2addrd 32711 2sqr3minply 33763 locfinref 33824 esumcst 34046 ballotlem5 34484 poimirlem23 37643 poimirlem25 37645 poimirlem26 37646 poimirlem27 37647 poimirlem28 37648 itgaddnclem2 37679 sn-recgt0d 42470 pell14qrgt0 42852 monotoddzzfi 42935 rmxypos 42940 rmygeid 42957 stoweidlem18 46019 stoweidlem55 46056 wallispi2lem1 46072 fourierdlem62 46169 fourierdlem103 46210 fourierdlem104 46211 fourierswlem 46231 2ltceilhalf 47332 ceilhalfnn 47340 pgrpgt2nabl 48370 pw2m1lepw2m1 48525 amgmwlem 49807 |
| Copyright terms: Public domain | W3C validator |