| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqtrrid | Structured version Visualization version GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
| Ref | Expression |
|---|---|
| breqtrrid.1 | ⊢ 𝐴𝑅𝐵 |
| breqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| breqtrrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrrid.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
| 2 | breqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2737 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | breqtrid 5126 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 |
| This theorem is referenced by: r1sdom 9667 alephordilem1 9964 mulge0 11635 xsubge0 13160 xmulgt0 13182 xmulge0 13183 xlemul1a 13187 sqlecan 14116 bernneq 14136 hashge1 14296 hashge2el2dif 14387 cnpart 15147 sqrt0 15148 bitsfzo 16346 bitsmod 16347 bitsinv1lem 16352 pcge0 16774 prmreclem4 16831 prmreclem5 16832 isnzr2hash 20434 isabvd 20727 abvtrivd 20747 nmolb2d 24633 nmoi 24643 nmoleub 24646 nmo0 24650 ovolge0 25409 itg1ge0a 25639 fta1g 26102 plyrem 26240 taylfval 26293 abelthlem2 26369 sinq12ge0 26444 relogrn 26497 logneg 26524 cxpge0 26619 amgmlem 26927 bposlem5 27226 lgsdir2lem2 27264 2lgsoddprmlem3 27352 rpvmasumlem 27425 mulsge0d 28085 expsgt0 28360 eupth2lem3lem3 30210 eupth2lemb 30217 blocnilem 30784 pjssge0ii 31662 unierri 32084 xlt2addrd 32742 2sqr3minply 33793 locfinref 33854 esumcst 34076 ballotlem5 34513 poimirlem23 37682 poimirlem25 37684 poimirlem26 37685 poimirlem27 37686 poimirlem28 37687 itgaddnclem2 37718 sn-recgt0d 42569 pell14qrgt0 42951 monotoddzzfi 43034 rmxypos 43039 rmygeid 43056 stoweidlem18 46115 stoweidlem55 46152 wallispi2lem1 46168 fourierdlem62 46265 fourierdlem103 46306 fourierdlem104 46307 fourierswlem 46327 2ltceilhalf 47427 ceilhalfnn 47435 pgrpgt2nabl 48465 pw2m1lepw2m1 48620 amgmwlem 49902 |
| Copyright terms: Public domain | W3C validator |