![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breqtrrid | Structured version Visualization version GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
Ref | Expression |
---|---|
breqtrrid.1 | ⊢ 𝐴𝑅𝐵 |
breqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
breqtrrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrrid.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
2 | breqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2737 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | breqtrid 5185 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 class class class wbr 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 |
This theorem is referenced by: r1sdom 9775 alephordilem1 10074 mulge0 11739 xsubge0 13247 xmulgt0 13269 xmulge0 13270 xlemul1a 13274 sqlecan 14180 bernneq 14199 hashge1 14356 hashge2el2dif 14448 cnpart 15194 sqrt0 15195 bitsfzo 16383 bitsmod 16384 bitsinv1lem 16389 pcge0 16802 prmreclem4 16859 prmreclem5 16860 isnzr2hash 20414 isabvd 20575 abvtrivd 20595 nmolb2d 24468 nmoi 24478 nmoleub 24481 nmo0 24485 ovolge0 25243 itg1ge0a 25474 fta1g 25934 plyrem 26068 taylfval 26121 abelthlem2 26195 sinq12ge0 26269 relogrn 26321 logneg 26347 cxpge0 26442 amgmlem 26745 bposlem5 27042 lgsdir2lem2 27080 2lgsoddprmlem3 27168 rpvmasumlem 27241 eupth2lem3lem3 29765 eupth2lemb 29772 blocnilem 30339 pjssge0ii 31217 unierri 31639 xlt2addrd 32253 locfinref 33134 esumcst 33374 ballotlem5 33811 poimirlem23 36827 poimirlem25 36829 poimirlem26 36830 poimirlem27 36831 poimirlem28 36832 itgaddnclem2 36863 pell14qrgt0 41912 monotoddzzfi 41996 rmxypos 42001 rmygeid 42018 stoweidlem18 45045 stoweidlem55 45082 wallispi2lem1 45098 fourierdlem62 45195 fourierdlem103 45236 fourierdlem104 45237 fourierswlem 45257 pgrpgt2nabl 47143 pw2m1lepw2m1 47301 amgmwlem 47949 |
Copyright terms: Public domain | W3C validator |