![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breqtrrid | Structured version Visualization version GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
Ref | Expression |
---|---|
breqtrrid.1 | ⊢ 𝐴𝑅𝐵 |
breqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
breqtrrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrrid.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
2 | breqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2746 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | breqtrid 5203 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 |
This theorem is referenced by: r1sdom 9843 alephordilem1 10142 mulge0 11808 xsubge0 13323 xmulgt0 13345 xmulge0 13346 xlemul1a 13350 sqlecan 14258 bernneq 14278 hashge1 14438 hashge2el2dif 14529 cnpart 15289 sqrt0 15290 bitsfzo 16481 bitsmod 16482 bitsinv1lem 16487 pcge0 16909 prmreclem4 16966 prmreclem5 16967 isnzr2hash 20545 isabvd 20835 abvtrivd 20855 nmolb2d 24760 nmoi 24770 nmoleub 24773 nmo0 24777 ovolge0 25535 itg1ge0a 25766 fta1g 26229 plyrem 26365 taylfval 26418 abelthlem2 26494 sinq12ge0 26568 relogrn 26621 logneg 26648 cxpge0 26743 amgmlem 27051 bposlem5 27350 lgsdir2lem2 27388 2lgsoddprmlem3 27476 rpvmasumlem 27549 mulsge0d 28190 expsgt0 28433 eupth2lem3lem3 30262 eupth2lemb 30269 blocnilem 30836 pjssge0ii 31714 unierri 32136 xlt2addrd 32765 2sqr3minply 33738 locfinref 33787 esumcst 34027 ballotlem5 34464 poimirlem23 37603 poimirlem25 37605 poimirlem26 37606 poimirlem27 37607 poimirlem28 37608 itgaddnclem2 37639 pell14qrgt0 42815 monotoddzzfi 42899 rmxypos 42904 rmygeid 42921 stoweidlem18 45939 stoweidlem55 45976 wallispi2lem1 45992 fourierdlem62 46089 fourierdlem103 46130 fourierdlem104 46131 fourierswlem 46151 pgrpgt2nabl 48091 pw2m1lepw2m1 48249 amgmwlem 48896 |
Copyright terms: Public domain | W3C validator |