Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breqtrrid | Structured version Visualization version GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
Ref | Expression |
---|---|
breqtrrid.1 | ⊢ 𝐴𝑅𝐵 |
breqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
breqtrrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrrid.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
2 | breqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2764 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | breqtrid 5069 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 class class class wbr 5032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3863 df-sn 4523 df-pr 4525 df-op 4529 df-br 5033 |
This theorem is referenced by: r1sdom 9236 alephordilem1 9533 mulge0 11196 xsubge0 12695 xmulgt0 12717 xmulge0 12718 xlemul1a 12722 sqlecan 13621 bernneq 13640 hashge1 13800 hashge2el2dif 13890 cnpart 14647 sqr0lem 14648 bitsfzo 15834 bitsmod 15835 bitsinv1lem 15840 pcge0 16253 prmreclem4 16310 prmreclem5 16311 isabvd 19659 abvtrivd 19679 isnzr2hash 20105 nmolb2d 23420 nmoi 23430 nmoleub 23433 nmo0 23437 ovolge0 24181 itg1ge0a 24411 fta1g 24867 plyrem 25000 taylfval 25053 abelthlem2 25126 sinq12ge0 25200 relogrn 25252 logneg 25278 cxpge0 25373 amgmlem 25674 bposlem5 25971 lgsdir2lem2 26009 2lgsoddprmlem3 26097 rpvmasumlem 26170 eupth2lem3lem3 28114 eupth2lemb 28121 blocnilem 28686 pjssge0ii 29564 unierri 29986 xlt2addrd 30605 locfinref 31312 esumcst 31550 ballotlem5 31985 poimirlem23 35360 poimirlem25 35362 poimirlem26 35363 poimirlem27 35364 poimirlem28 35365 itgaddnclem2 35396 pell14qrgt0 40173 monotoddzzfi 40256 rmxypos 40261 rmygeid 40278 stoweidlem18 43026 stoweidlem55 43063 wallispi2lem1 43079 fourierdlem62 43176 fourierdlem103 43217 fourierdlem104 43218 fourierswlem 43238 pgrpgt2nabl 45135 pw2m1lepw2m1 45294 amgmwlem 45721 |
Copyright terms: Public domain | W3C validator |