| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqtrrid | Structured version Visualization version GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
| Ref | Expression |
|---|---|
| breqtrrid.1 | ⊢ 𝐴𝑅𝐵 |
| breqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| breqtrrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrrid.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
| 2 | breqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | breqtrid 5144 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 |
| This theorem is referenced by: r1sdom 9727 alephordilem1 10026 mulge0 11696 xsubge0 13221 xmulgt0 13243 xmulge0 13244 xlemul1a 13248 sqlecan 14174 bernneq 14194 hashge1 14354 hashge2el2dif 14445 cnpart 15206 sqrt0 15207 bitsfzo 16405 bitsmod 16406 bitsinv1lem 16411 pcge0 16833 prmreclem4 16890 prmreclem5 16891 isnzr2hash 20428 isabvd 20721 abvtrivd 20741 nmolb2d 24606 nmoi 24616 nmoleub 24619 nmo0 24623 ovolge0 25382 itg1ge0a 25612 fta1g 26075 plyrem 26213 taylfval 26266 abelthlem2 26342 sinq12ge0 26417 relogrn 26470 logneg 26497 cxpge0 26592 amgmlem 26900 bposlem5 27199 lgsdir2lem2 27237 2lgsoddprmlem3 27325 rpvmasumlem 27398 mulsge0d 28049 expsgt0 28322 eupth2lem3lem3 30159 eupth2lemb 30166 blocnilem 30733 pjssge0ii 31611 unierri 32033 xlt2addrd 32682 2sqr3minply 33770 locfinref 33831 esumcst 34053 ballotlem5 34491 poimirlem23 37637 poimirlem25 37639 poimirlem26 37640 poimirlem27 37641 poimirlem28 37642 itgaddnclem2 37673 sn-recgt0d 42465 pell14qrgt0 42847 monotoddzzfi 42931 rmxypos 42936 rmygeid 42953 stoweidlem18 46016 stoweidlem55 46053 wallispi2lem1 46069 fourierdlem62 46166 fourierdlem103 46207 fourierdlem104 46208 fourierswlem 46228 2ltceilhalf 47326 ceilhalfnn 47334 pgrpgt2nabl 48351 pw2m1lepw2m1 48506 amgmwlem 49788 |
| Copyright terms: Public domain | W3C validator |