| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqtrrid | Structured version Visualization version GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
| Ref | Expression |
|---|---|
| breqtrrid.1 | ⊢ 𝐴𝑅𝐵 |
| breqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| breqtrrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrrid.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
| 2 | breqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | breqtrid 5139 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 |
| This theorem is referenced by: r1sdom 9703 alephordilem1 10002 mulge0 11672 xsubge0 13197 xmulgt0 13219 xmulge0 13220 xlemul1a 13224 sqlecan 14150 bernneq 14170 hashge1 14330 hashge2el2dif 14421 cnpart 15182 sqrt0 15183 bitsfzo 16381 bitsmod 16382 bitsinv1lem 16387 pcge0 16809 prmreclem4 16866 prmreclem5 16867 isnzr2hash 20439 isabvd 20732 abvtrivd 20752 nmolb2d 24639 nmoi 24649 nmoleub 24652 nmo0 24656 ovolge0 25415 itg1ge0a 25645 fta1g 26108 plyrem 26246 taylfval 26299 abelthlem2 26375 sinq12ge0 26450 relogrn 26503 logneg 26530 cxpge0 26625 amgmlem 26933 bposlem5 27232 lgsdir2lem2 27270 2lgsoddprmlem3 27358 rpvmasumlem 27431 mulsge0d 28089 expsgt0 28364 eupth2lem3lem3 30209 eupth2lemb 30216 blocnilem 30783 pjssge0ii 31661 unierri 32083 xlt2addrd 32732 2sqr3minply 33763 locfinref 33824 esumcst 34046 ballotlem5 34484 poimirlem23 37630 poimirlem25 37632 poimirlem26 37633 poimirlem27 37634 poimirlem28 37635 itgaddnclem2 37666 sn-recgt0d 42458 pell14qrgt0 42840 monotoddzzfi 42924 rmxypos 42929 rmygeid 42946 stoweidlem18 46009 stoweidlem55 46046 wallispi2lem1 46062 fourierdlem62 46159 fourierdlem103 46200 fourierdlem104 46201 fourierswlem 46221 2ltceilhalf 47322 ceilhalfnn 47330 pgrpgt2nabl 48347 pw2m1lepw2m1 48502 amgmwlem 49784 |
| Copyright terms: Public domain | W3C validator |