Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breqtrrid | Structured version Visualization version GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
Ref | Expression |
---|---|
breqtrrid.1 | ⊢ 𝐴𝑅𝐵 |
breqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
breqtrrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrrid.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
2 | breqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2744 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | breqtrid 5107 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 |
This theorem is referenced by: r1sdom 9463 alephordilem1 9760 mulge0 11423 xsubge0 12924 xmulgt0 12946 xmulge0 12947 xlemul1a 12951 sqlecan 13853 bernneq 13872 hashge1 14032 hashge2el2dif 14122 cnpart 14879 sqr0lem 14880 bitsfzo 16070 bitsmod 16071 bitsinv1lem 16076 pcge0 16491 prmreclem4 16548 prmreclem5 16549 isabvd 19995 abvtrivd 20015 isnzr2hash 20448 nmolb2d 23788 nmoi 23798 nmoleub 23801 nmo0 23805 ovolge0 24550 itg1ge0a 24781 fta1g 25237 plyrem 25370 taylfval 25423 abelthlem2 25496 sinq12ge0 25570 relogrn 25622 logneg 25648 cxpge0 25743 amgmlem 26044 bposlem5 26341 lgsdir2lem2 26379 2lgsoddprmlem3 26467 rpvmasumlem 26540 eupth2lem3lem3 28495 eupth2lemb 28502 blocnilem 29067 pjssge0ii 29945 unierri 30367 xlt2addrd 30983 locfinref 31693 esumcst 31931 ballotlem5 32366 poimirlem23 35727 poimirlem25 35729 poimirlem26 35730 poimirlem27 35731 poimirlem28 35732 itgaddnclem2 35763 pell14qrgt0 40597 monotoddzzfi 40680 rmxypos 40685 rmygeid 40702 stoweidlem18 43449 stoweidlem55 43486 wallispi2lem1 43502 fourierdlem62 43599 fourierdlem103 43640 fourierdlem104 43641 fourierswlem 43661 pgrpgt2nabl 45590 pw2m1lepw2m1 45749 amgmwlem 46392 |
Copyright terms: Public domain | W3C validator |