| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqtrrid | Structured version Visualization version GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
| Ref | Expression |
|---|---|
| breqtrrid.1 | ⊢ 𝐴𝑅𝐵 |
| breqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| breqtrrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrrid.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
| 2 | breqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2741 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | breqtrid 5156 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 |
| This theorem is referenced by: r1sdom 9786 alephordilem1 10085 mulge0 11753 xsubge0 13275 xmulgt0 13297 xmulge0 13298 xlemul1a 13302 sqlecan 14225 bernneq 14245 hashge1 14405 hashge2el2dif 14496 cnpart 15257 sqrt0 15258 bitsfzo 16452 bitsmod 16453 bitsinv1lem 16458 pcge0 16880 prmreclem4 16937 prmreclem5 16938 isnzr2hash 20477 isabvd 20770 abvtrivd 20790 nmolb2d 24655 nmoi 24665 nmoleub 24668 nmo0 24672 ovolge0 25432 itg1ge0a 25662 fta1g 26125 plyrem 26263 taylfval 26316 abelthlem2 26392 sinq12ge0 26467 relogrn 26520 logneg 26547 cxpge0 26642 amgmlem 26950 bposlem5 27249 lgsdir2lem2 27287 2lgsoddprmlem3 27375 rpvmasumlem 27448 mulsge0d 28089 expsgt0 28332 eupth2lem3lem3 30157 eupth2lemb 30164 blocnilem 30731 pjssge0ii 31609 unierri 32031 xlt2addrd 32682 2sqr3minply 33760 locfinref 33818 esumcst 34040 ballotlem5 34478 poimirlem23 37613 poimirlem25 37615 poimirlem26 37616 poimirlem27 37617 poimirlem28 37618 itgaddnclem2 37649 pell14qrgt0 42829 monotoddzzfi 42913 rmxypos 42918 rmygeid 42935 stoweidlem18 45995 stoweidlem55 46032 wallispi2lem1 46048 fourierdlem62 46145 fourierdlem103 46186 fourierdlem104 46187 fourierswlem 46207 2ltceilhalf 47305 ceilhalfnn 47313 pgrpgt2nabl 48289 pw2m1lepw2m1 48444 amgmwlem 49614 |
| Copyright terms: Public domain | W3C validator |