Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breqtrrid | Structured version Visualization version GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
Ref | Expression |
---|---|
breqtrrid.1 | ⊢ 𝐴𝑅𝐵 |
breqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
breqtrrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrrid.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
2 | breqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2744 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | breqtrid 5111 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 class class class wbr 5074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 |
This theorem is referenced by: r1sdom 9532 alephordilem1 9829 mulge0 11493 xsubge0 12995 xmulgt0 13017 xmulge0 13018 xlemul1a 13022 sqlecan 13925 bernneq 13944 hashge1 14104 hashge2el2dif 14194 cnpart 14951 sqr0lem 14952 bitsfzo 16142 bitsmod 16143 bitsinv1lem 16148 pcge0 16563 prmreclem4 16620 prmreclem5 16621 isabvd 20080 abvtrivd 20100 isnzr2hash 20535 nmolb2d 23882 nmoi 23892 nmoleub 23895 nmo0 23899 ovolge0 24645 itg1ge0a 24876 fta1g 25332 plyrem 25465 taylfval 25518 abelthlem2 25591 sinq12ge0 25665 relogrn 25717 logneg 25743 cxpge0 25838 amgmlem 26139 bposlem5 26436 lgsdir2lem2 26474 2lgsoddprmlem3 26562 rpvmasumlem 26635 eupth2lem3lem3 28594 eupth2lemb 28601 blocnilem 29166 pjssge0ii 30044 unierri 30466 xlt2addrd 31081 locfinref 31791 esumcst 32031 ballotlem5 32466 poimirlem23 35800 poimirlem25 35802 poimirlem26 35803 poimirlem27 35804 poimirlem28 35805 itgaddnclem2 35836 pell14qrgt0 40681 monotoddzzfi 40764 rmxypos 40769 rmygeid 40786 stoweidlem18 43559 stoweidlem55 43596 wallispi2lem1 43612 fourierdlem62 43709 fourierdlem103 43750 fourierdlem104 43751 fourierswlem 43771 pgrpgt2nabl 45702 pw2m1lepw2m1 45861 amgmwlem 46506 |
Copyright terms: Public domain | W3C validator |