MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  breqtrrid Structured version   Visualization version   GIF version

Theorem breqtrrid 5127
Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.)
Hypotheses
Ref Expression
breqtrrid.1 𝐴𝑅𝐵
breqtrrid.2 (𝜑𝐶 = 𝐵)
Assertion
Ref Expression
breqtrrid (𝜑𝐴𝑅𝐶)

Proof of Theorem breqtrrid
StepHypRef Expression
1 breqtrrid.1 . 2 𝐴𝑅𝐵
2 breqtrrid.2 . . 3 (𝜑𝐶 = 𝐵)
32eqcomd 2737 . 2 (𝜑𝐵 = 𝐶)
41, 3breqtrid 5126 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   class class class wbr 5089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090
This theorem is referenced by:  r1sdom  9667  alephordilem1  9964  mulge0  11635  xsubge0  13160  xmulgt0  13182  xmulge0  13183  xlemul1a  13187  sqlecan  14116  bernneq  14136  hashge1  14296  hashge2el2dif  14387  cnpart  15147  sqrt0  15148  bitsfzo  16346  bitsmod  16347  bitsinv1lem  16352  pcge0  16774  prmreclem4  16831  prmreclem5  16832  isnzr2hash  20434  isabvd  20727  abvtrivd  20747  nmolb2d  24633  nmoi  24643  nmoleub  24646  nmo0  24650  ovolge0  25409  itg1ge0a  25639  fta1g  26102  plyrem  26240  taylfval  26293  abelthlem2  26369  sinq12ge0  26444  relogrn  26497  logneg  26524  cxpge0  26619  amgmlem  26927  bposlem5  27226  lgsdir2lem2  27264  2lgsoddprmlem3  27352  rpvmasumlem  27425  mulsge0d  28085  expsgt0  28360  eupth2lem3lem3  30210  eupth2lemb  30217  blocnilem  30784  pjssge0ii  31662  unierri  32084  xlt2addrd  32742  2sqr3minply  33793  locfinref  33854  esumcst  34076  ballotlem5  34513  poimirlem23  37682  poimirlem25  37684  poimirlem26  37685  poimirlem27  37686  poimirlem28  37687  itgaddnclem2  37718  sn-recgt0d  42569  pell14qrgt0  42951  monotoddzzfi  43034  rmxypos  43039  rmygeid  43056  stoweidlem18  46115  stoweidlem55  46152  wallispi2lem1  46168  fourierdlem62  46265  fourierdlem103  46306  fourierdlem104  46307  fourierswlem  46327  2ltceilhalf  47427  ceilhalfnn  47435  pgrpgt2nabl  48465  pw2m1lepw2m1  48620  amgmwlem  49902
  Copyright terms: Public domain W3C validator