| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breqtrrid | Structured version Visualization version GIF version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
| Ref | Expression |
|---|---|
| breqtrrid.1 | ⊢ 𝐴𝑅𝐵 |
| breqtrrid.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
| Ref | Expression |
|---|---|
| breqtrrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrrid.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
| 2 | breqtrrid.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2742 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
| 4 | 1, 3 | breqtrid 5161 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 class class class wbr 5124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 |
| This theorem is referenced by: r1sdom 9793 alephordilem1 10092 mulge0 11760 xsubge0 13282 xmulgt0 13304 xmulge0 13305 xlemul1a 13309 sqlecan 14232 bernneq 14252 hashge1 14412 hashge2el2dif 14503 cnpart 15264 sqrt0 15265 bitsfzo 16459 bitsmod 16460 bitsinv1lem 16465 pcge0 16887 prmreclem4 16944 prmreclem5 16945 isnzr2hash 20484 isabvd 20777 abvtrivd 20797 nmolb2d 24662 nmoi 24672 nmoleub 24675 nmo0 24679 ovolge0 25439 itg1ge0a 25669 fta1g 26132 plyrem 26270 taylfval 26323 abelthlem2 26399 sinq12ge0 26474 relogrn 26527 logneg 26554 cxpge0 26649 amgmlem 26957 bposlem5 27256 lgsdir2lem2 27294 2lgsoddprmlem3 27382 rpvmasumlem 27455 mulsge0d 28106 expsgt0 28379 eupth2lem3lem3 30216 eupth2lemb 30223 blocnilem 30790 pjssge0ii 31668 unierri 32090 xlt2addrd 32741 2sqr3minply 33819 locfinref 33877 esumcst 34099 ballotlem5 34537 poimirlem23 37672 poimirlem25 37674 poimirlem26 37675 poimirlem27 37676 poimirlem28 37677 itgaddnclem2 37708 pell14qrgt0 42849 monotoddzzfi 42933 rmxypos 42938 rmygeid 42955 stoweidlem18 46014 stoweidlem55 46051 wallispi2lem1 46067 fourierdlem62 46164 fourierdlem103 46205 fourierdlem104 46206 fourierswlem 46226 2ltceilhalf 47324 ceilhalfnn 47332 pgrpgt2nabl 48308 pw2m1lepw2m1 48463 amgmwlem 49633 |
| Copyright terms: Public domain | W3C validator |