Step | Hyp | Ref
| Expression |
1 | | nfv 1915 |
. . 3
⊢
Ⅎ𝑘𝜑 |
2 | | nfcv 2919 |
. . 3
⊢
Ⅎ𝑘seq1(
+ , 𝐹) |
3 | | nfcv 2919 |
. . . 4
⊢
Ⅎ𝑘1 |
4 | | nfcv 2919 |
. . . 4
⊢
Ⅎ𝑘
+ |
5 | | nfmpt1 5130 |
. . . 4
⊢
Ⅎ𝑘(𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1))) |
6 | 3, 4, 5 | nfseq 13428 |
. . 3
⊢
Ⅎ𝑘seq1(
+ , (𝑘 ∈ ℕ
↦ (𝐹‘((2
· 𝑘) −
1)))) |
7 | | nfmpt1 5130 |
. . 3
⊢
Ⅎ𝑘(𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1)) |
8 | | nnuz 12321 |
. . 3
⊢ ℕ =
(ℤ≥‘1) |
9 | | 1zzd 12052 |
. . 3
⊢ (𝜑 → 1 ∈
ℤ) |
10 | | seqex 13420 |
. . . 4
⊢ seq1( + ,
𝐹) ∈
V |
11 | 10 | a1i 11 |
. . 3
⊢ (𝜑 → seq1( + , 𝐹) ∈ V) |
12 | | sumnnodd.1 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℕ⟶ℂ) |
13 | 12 | ffvelrnda 6842 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
14 | 8, 9, 13 | serf 13448 |
. . . 4
⊢ (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ) |
15 | 14 | ffvelrnda 6842 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) ∈ ℂ) |
16 | | sumnnodd.sc |
. . 3
⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝐵) |
17 | | 1nn 11685 |
. . . . . . 7
⊢ 1 ∈
ℕ |
18 | | oveq2 7158 |
. . . . . . . . 9
⊢ (𝑘 = 1 → (2 · 𝑘) = (2 ·
1)) |
19 | 18 | oveq1d 7165 |
. . . . . . . 8
⊢ (𝑘 = 1 → ((2 · 𝑘) − 1) = ((2 · 1)
− 1)) |
20 | | eqid 2758 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ ↦ ((2
· 𝑘) − 1)) =
(𝑘 ∈ ℕ ↦
((2 · 𝑘) −
1)) |
21 | | ovex 7183 |
. . . . . . . 8
⊢ ((2
· 1) − 1) ∈ V |
22 | 19, 20, 21 | fvmpt 6759 |
. . . . . . 7
⊢ (1 ∈
ℕ → ((𝑘 ∈
ℕ ↦ ((2 · 𝑘) − 1))‘1) = ((2 · 1)
− 1)) |
23 | 17, 22 | ax-mp 5 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘1) = ((2 · 1) − 1) |
24 | | 2t1e2 11837 |
. . . . . . 7
⊢ (2
· 1) = 2 |
25 | 24 | oveq1i 7160 |
. . . . . 6
⊢ ((2
· 1) − 1) = (2 − 1) |
26 | | 2m1e1 11800 |
. . . . . 6
⊢ (2
− 1) = 1 |
27 | 23, 25, 26 | 3eqtri 2785 |
. . . . 5
⊢ ((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘1) = 1 |
28 | 27, 17 | eqeltri 2848 |
. . . 4
⊢ ((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘1) ∈ ℕ |
29 | 28 | a1i 11 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘1) ∈
ℕ) |
30 | | 2z 12053 |
. . . . . . . 8
⊢ 2 ∈
ℤ |
31 | 30 | a1i 11 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 2 ∈
ℤ) |
32 | | nnz 12043 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℤ) |
33 | 31, 32 | zmulcld 12132 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → (2
· 𝑘) ∈
ℤ) |
34 | 32 | peano2zd 12129 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℤ) |
35 | 31, 34 | zmulcld 12132 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → (2
· (𝑘 + 1)) ∈
ℤ) |
36 | | 1zzd 12052 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 1 ∈
ℤ) |
37 | 35, 36 | zsubcld 12131 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → ((2
· (𝑘 + 1)) −
1) ∈ ℤ) |
38 | | 2re 11748 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
39 | 38 | a1i 11 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 2 ∈
ℝ) |
40 | | nnre 11681 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ) |
41 | 39, 40 | remulcld 10709 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (2
· 𝑘) ∈
ℝ) |
42 | 41 | lep1d 11609 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → (2
· 𝑘) ≤ ((2
· 𝑘) +
1)) |
43 | | 2cnd 11752 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 2 ∈
ℂ) |
44 | | nncn 11682 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℂ) |
45 | | 1cnd 10674 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 1 ∈
ℂ) |
46 | 43, 44, 45 | adddid 10703 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → (2
· (𝑘 + 1)) = ((2
· 𝑘) + (2 ·
1))) |
47 | 24 | oveq2i 7161 |
. . . . . . . . . 10
⊢ ((2
· 𝑘) + (2 ·
1)) = ((2 · 𝑘) +
2) |
48 | 46, 47 | eqtrdi 2809 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (2
· (𝑘 + 1)) = ((2
· 𝑘) +
2)) |
49 | 48 | oveq1d 7165 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → ((2
· (𝑘 + 1)) −
1) = (((2 · 𝑘) + 2)
− 1)) |
50 | 43, 44 | mulcld 10699 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (2
· 𝑘) ∈
ℂ) |
51 | 50, 43, 45 | addsubassd 11055 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (((2
· 𝑘) + 2) − 1)
= ((2 · 𝑘) + (2
− 1))) |
52 | 26 | oveq2i 7161 |
. . . . . . . . 9
⊢ ((2
· 𝑘) + (2 −
1)) = ((2 · 𝑘) +
1) |
53 | 52 | a1i 11 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → ((2
· 𝑘) + (2 −
1)) = ((2 · 𝑘) +
1)) |
54 | 49, 51, 53 | 3eqtrrd 2798 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → ((2
· 𝑘) + 1) = ((2
· (𝑘 + 1)) −
1)) |
55 | 42, 54 | breqtrd 5058 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → (2
· 𝑘) ≤ ((2
· (𝑘 + 1)) −
1)) |
56 | | eluz2 12288 |
. . . . . 6
⊢ (((2
· (𝑘 + 1)) −
1) ∈ (ℤ≥‘(2 · 𝑘)) ↔ ((2 · 𝑘) ∈ ℤ ∧ ((2 · (𝑘 + 1)) − 1) ∈ ℤ
∧ (2 · 𝑘) ≤
((2 · (𝑘 + 1))
− 1))) |
57 | 33, 37, 55, 56 | syl3anbrc 1340 |
. . . . 5
⊢ (𝑘 ∈ ℕ → ((2
· (𝑘 + 1)) −
1) ∈ (ℤ≥‘(2 · 𝑘))) |
58 | | oveq2 7158 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → (2 · 𝑘) = (2 · 𝑗)) |
59 | 58 | oveq1d 7165 |
. . . . . . 7
⊢ (𝑘 = 𝑗 → ((2 · 𝑘) − 1) = ((2 · 𝑗) − 1)) |
60 | 59 | cbvmptv 5135 |
. . . . . 6
⊢ (𝑘 ∈ ℕ ↦ ((2
· 𝑘) − 1)) =
(𝑗 ∈ ℕ ↦
((2 · 𝑗) −
1)) |
61 | | oveq2 7158 |
. . . . . . 7
⊢ (𝑗 = (𝑘 + 1) → (2 · 𝑗) = (2 · (𝑘 + 1))) |
62 | 61 | oveq1d 7165 |
. . . . . 6
⊢ (𝑗 = (𝑘 + 1) → ((2 · 𝑗) − 1) = ((2 · (𝑘 + 1)) −
1)) |
63 | | peano2nn 11686 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) |
64 | 60, 62, 63, 37 | fvmptd3 6782 |
. . . . 5
⊢ (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘(𝑘 + 1)) = ((2
· (𝑘 + 1)) −
1)) |
65 | 33, 36 | zsubcld 12131 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → ((2
· 𝑘) − 1)
∈ ℤ) |
66 | 20 | fvmpt2 6770 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ ∧ ((2
· 𝑘) − 1)
∈ ℤ) → ((𝑘
∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘) = ((2 · 𝑘) − 1)) |
67 | 65, 66 | mpdan 686 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘𝑘) = ((2 ·
𝑘) −
1)) |
68 | 67 | oveq1d 7165 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → (((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘𝑘) + 1) = (((2
· 𝑘) − 1) +
1)) |
69 | 50, 45 | npcand 11039 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → (((2
· 𝑘) − 1) + 1)
= (2 · 𝑘)) |
70 | 68, 69 | eqtrd 2793 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → (((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘𝑘) + 1) = (2
· 𝑘)) |
71 | 70 | fveq2d 6662 |
. . . . 5
⊢ (𝑘 ∈ ℕ →
(ℤ≥‘(((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘) + 1)) =
(ℤ≥‘(2 · 𝑘))) |
72 | 57, 64, 71 | 3eltr4d 2867 |
. . . 4
⊢ (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘(𝑘 + 1)) ∈
(ℤ≥‘(((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘) + 1))) |
73 | 72 | adantl 485 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘(𝑘 + 1)) ∈
(ℤ≥‘(((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘) + 1))) |
74 | | seqex 13420 |
. . . 4
⊢ seq1( + ,
(𝑘 ∈ ℕ ↦
(𝐹‘((2 · 𝑘) − 1)))) ∈
V |
75 | 74 | a1i 11 |
. . 3
⊢ (𝜑 → seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ∈
V) |
76 | | incom 4106 |
. . . . . . . . . 10
⊢
(((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∩ ((1...((2
· 𝑘) − 1))
∩ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})) = (((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∩ ((1...((2
· 𝑘) − 1))
∖ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})) |
77 | | inss2 4134 |
. . . . . . . . . . 11
⊢ ((1...((2
· 𝑘) − 1))
∩ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ}) ⊆ {𝑛 ∈
ℕ ∣ (𝑛 / 2)
∈ ℕ} |
78 | | ssrin 4138 |
. . . . . . . . . . 11
⊢
(((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ⊆ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ} →
(((1...((2 · 𝑘)
− 1)) ∩ {𝑛 ∈
ℕ ∣ (𝑛 / 2)
∈ ℕ}) ∩ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) ⊆ ({𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ} ∩
((1...((2 · 𝑘)
− 1)) ∖ {𝑛
∈ ℕ ∣ (𝑛 /
2) ∈ ℕ}))) |
79 | 77, 78 | ax-mp 5 |
. . . . . . . . . 10
⊢
(((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∩ ((1...((2
· 𝑘) − 1))
∖ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})) ⊆ ({𝑛
∈ ℕ ∣ (𝑛 /
2) ∈ ℕ} ∩ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) |
80 | 76, 79 | eqsstri 3926 |
. . . . . . . . 9
⊢
(((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∩ ((1...((2
· 𝑘) − 1))
∩ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})) ⊆ ({𝑛
∈ ℕ ∣ (𝑛 /
2) ∈ ℕ} ∩ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) |
81 | | disjdif 4368 |
. . . . . . . . 9
⊢ ({𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ} ∩
((1...((2 · 𝑘)
− 1)) ∖ {𝑛
∈ ℕ ∣ (𝑛 /
2) ∈ ℕ})) = ∅ |
82 | 80, 81 | sseqtri 3928 |
. . . . . . . 8
⊢
(((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∩ ((1...((2
· 𝑘) − 1))
∩ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})) ⊆ ∅ |
83 | | ss0 4294 |
. . . . . . . 8
⊢
((((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∩ ((1...((2
· 𝑘) − 1))
∩ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})) ⊆ ∅ → (((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∩ ((1...((2
· 𝑘) − 1))
∩ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})) = ∅) |
84 | 82, 83 | mp1i 13 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((1...((2 ·
𝑘) − 1)) ∖
{𝑛 ∈ ℕ ∣
(𝑛 / 2) ∈ ℕ})
∩ ((1...((2 · 𝑘)
− 1)) ∩ {𝑛 ∈
ℕ ∣ (𝑛 / 2)
∈ ℕ})) = ∅) |
85 | | uncom 4058 |
. . . . . . . . 9
⊢
(((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∪ ((1...((2
· 𝑘) − 1))
∩ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})) = (((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∪ ((1...((2
· 𝑘) − 1))
∖ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})) |
86 | | inundif 4375 |
. . . . . . . . 9
⊢
(((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∪ ((1...((2
· 𝑘) − 1))
∖ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})) = (1...((2 · 𝑘) − 1)) |
87 | 85, 86 | eqtr2i 2782 |
. . . . . . . 8
⊢ (1...((2
· 𝑘) − 1)) =
(((1...((2 · 𝑘)
− 1)) ∖ {𝑛
∈ ℕ ∣ (𝑛 /
2) ∈ ℕ}) ∪ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) |
88 | 87 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1...((2 ·
𝑘) − 1)) = (((1...((2
· 𝑘) − 1))
∖ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ}) ∪ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}))) |
89 | | fzfid 13390 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1...((2 ·
𝑘) − 1)) ∈
Fin) |
90 | 12 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → 𝐹:ℕ⟶ℂ) |
91 | | elfznn 12985 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → 𝑗 ∈
ℕ) |
92 | 91 | adantl 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → 𝑗 ∈ ℕ) |
93 | 90, 92 | ffvelrnd 6843 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → (𝐹‘𝑗) ∈ ℂ) |
94 | 93 | adantlr 714 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → (𝐹‘𝑗) ∈ ℂ) |
95 | 84, 88, 89, 94 | fsumsplit 15145 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...((2 · 𝑘) − 1))(𝐹‘𝑗) = (Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗) + Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗))) |
96 | | simpl 486 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) → 𝜑) |
97 | | ssrab2 3984 |
. . . . . . . . . . . . . 14
⊢ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ} ⊆
ℕ |
98 | 77 | sseli 3888 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) →
𝑗 ∈ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈
ℕ}) |
99 | 97, 98 | sseldi 3890 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) →
𝑗 ∈
ℕ) |
100 | 99 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) → 𝑗 ∈
ℕ) |
101 | | oveq1 7157 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑗 → (𝑘 / 2) = (𝑗 / 2)) |
102 | 101 | eleq1d 2836 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → ((𝑘 / 2) ∈ ℕ ↔ (𝑗 / 2) ∈
ℕ)) |
103 | | oveq1 7157 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑘 → (𝑛 / 2) = (𝑘 / 2)) |
104 | 103 | eleq1d 2836 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑘 → ((𝑛 / 2) ∈ ℕ ↔ (𝑘 / 2) ∈
ℕ)) |
105 | 104 | elrab 3602 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ} ↔ (𝑘 ∈ ℕ ∧ (𝑘 / 2) ∈
ℕ)) |
106 | 105 | simprbi 500 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ} → (𝑘 / 2) ∈
ℕ) |
107 | 102, 106 | vtoclga 3492 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ} → (𝑗 / 2) ∈
ℕ) |
108 | 98, 107 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) →
(𝑗 / 2) ∈
ℕ) |
109 | 108 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) → (𝑗 / 2) ∈
ℕ) |
110 | | eleq1w 2834 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → (𝑘 ∈ ℕ ↔ 𝑗 ∈ ℕ)) |
111 | 110, 102 | 3anbi23d 1436 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ ℕ ∧ (𝑘 / 2) ∈ ℕ) ↔ (𝜑 ∧ 𝑗 ∈ ℕ ∧ (𝑗 / 2) ∈ ℕ))) |
112 | | fveqeq2 6667 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) = 0 ↔ (𝐹‘𝑗) = 0)) |
113 | 111, 112 | imbi12d 348 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ ℕ ∧ (𝑘 / 2) ∈ ℕ) → (𝐹‘𝑘) = 0) ↔ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ (𝑗 / 2) ∈ ℕ) → (𝐹‘𝑗) = 0))) |
114 | | sumnnodd.even0 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ (𝑘 / 2) ∈ ℕ) → (𝐹‘𝑘) = 0) |
115 | 113, 114 | chvarvv 2005 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ (𝑗 / 2) ∈ ℕ) → (𝐹‘𝑗) = 0) |
116 | 96, 100, 109, 115 | syl3anc 1368 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) → (𝐹‘𝑗) = 0) |
117 | 116 | sumeq2dv 15108 |
. . . . . . . . . 10
⊢ (𝜑 → Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗) = Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})0) |
118 | | fzfid 13390 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1...((2 · 𝑘) − 1)) ∈
Fin) |
119 | | inss1 4133 |
. . . . . . . . . . . . . 14
⊢ ((1...((2
· 𝑘) − 1))
∩ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ}) ⊆ (1...((2 · 𝑘) − 1)) |
120 | 119 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ⊆
(1...((2 · 𝑘)
− 1))) |
121 | | ssfi 8742 |
. . . . . . . . . . . . 13
⊢
(((1...((2 · 𝑘) − 1)) ∈ Fin ∧ ((1...((2
· 𝑘) − 1))
∩ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ}) ⊆ (1...((2 · 𝑘) − 1))) → ((1...((2 ·
𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∈
Fin) |
122 | 118, 120,
121 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∈
Fin) |
123 | 122 | olcd 871 |
. . . . . . . . . . 11
⊢ (𝜑 → (((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ⊆
(ℤ≥‘𝐶) ∨ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∈
Fin)) |
124 | | sumz 15127 |
. . . . . . . . . . 11
⊢
((((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ⊆
(ℤ≥‘𝐶) ∨ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∈ Fin) →
Σ𝑗 ∈ ((1...((2
· 𝑘) − 1))
∩ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})0 = 0) |
125 | 123, 124 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})0 = 0) |
126 | 117, 125 | eqtrd 2793 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗) = 0) |
127 | 126 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗) = 0) |
128 | 127 | oveq2d 7166 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗) + Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗)) = (Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗) + 0)) |
129 | | fzfi 13389 |
. . . . . . . . . . . 12
⊢ (1...((2
· 𝑘) − 1))
∈ Fin |
130 | | difss 4037 |
. . . . . . . . . . . 12
⊢ ((1...((2
· 𝑘) − 1))
∖ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ}) ⊆ (1...((2 · 𝑘) − 1)) |
131 | | ssfi 8742 |
. . . . . . . . . . . 12
⊢
(((1...((2 · 𝑘) − 1)) ∈ Fin ∧ ((1...((2
· 𝑘) − 1))
∖ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ}) ⊆ (1...((2 · 𝑘) − 1))) → ((1...((2 ·
𝑘) − 1)) ∖
{𝑛 ∈ ℕ ∣
(𝑛 / 2) ∈ ℕ})
∈ Fin) |
132 | 129, 130,
131 | mp2an 691 |
. . . . . . . . . . 11
⊢ ((1...((2
· 𝑘) − 1))
∖ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ}) ∈ Fin |
133 | 132 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1...((2 ·
𝑘) − 1)) ∖
{𝑛 ∈ ℕ ∣
(𝑛 / 2) ∈ ℕ})
∈ Fin) |
134 | 130 | sseli 3888 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) →
𝑗 ∈ (1...((2 ·
𝑘) −
1))) |
135 | 134, 93 | sylan2 595 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) → (𝐹‘𝑗) ∈ ℂ) |
136 | 135 | adantlr 714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) → (𝐹‘𝑗) ∈ ℂ) |
137 | 133, 136 | fsumcl 15138 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗) ∈ ℂ) |
138 | 137 | addid1d 10878 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗) + 0) = Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗)) |
139 | | fveq2 6658 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → (𝐹‘𝑗) = (𝐹‘𝑖)) |
140 | 139 | cbvsumv 15101 |
. . . . . . . 8
⊢
Σ𝑗 ∈
((1...((2 · 𝑘)
− 1)) ∖ {𝑛
∈ ℕ ∣ (𝑛 /
2) ∈ ℕ})(𝐹‘𝑗) = Σ𝑖 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑖) |
141 | 138, 140 | eqtrdi 2809 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗) + 0) = Σ𝑖 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑖)) |
142 | 128, 141 | eqtrd 2793 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗) + Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗)) = Σ𝑖 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑖)) |
143 | | fveq2 6658 |
. . . . . . 7
⊢ (𝑖 = ((2 · 𝑗) − 1) → (𝐹‘𝑖) = (𝐹‘((2 · 𝑗) − 1))) |
144 | | fzfid 13390 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1...𝑘) ∈ Fin) |
145 | | 1zzd 12052 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → 1 ∈ ℤ) |
146 | 65 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → ((2 · 𝑘) − 1) ∈ ℤ) |
147 | 30 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑘) → 2 ∈ ℤ) |
148 | | elfzelz 12956 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑘) → 𝑖 ∈ ℤ) |
149 | 147, 148 | zmulcld 12132 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (1...𝑘) → (2 · 𝑖) ∈ ℤ) |
150 | | 1zzd 12052 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (1...𝑘) → 1 ∈ ℤ) |
151 | 149, 150 | zsubcld 12131 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...𝑘) → ((2 · 𝑖) − 1) ∈ ℤ) |
152 | 151 | adantl 485 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → ((2 · 𝑖) − 1) ∈ ℤ) |
153 | 145, 146,
152 | 3jca 1125 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → (1 ∈ ℤ ∧ ((2
· 𝑘) − 1)
∈ ℤ ∧ ((2 · 𝑖) − 1) ∈
ℤ)) |
154 | 25, 26 | eqtr2i 2782 |
. . . . . . . . . . . . . . . 16
⊢ 1 = ((2
· 1) − 1) |
155 | | 1re 10679 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℝ |
156 | 38, 155 | remulcli 10695 |
. . . . . . . . . . . . . . . . . 18
⊢ (2
· 1) ∈ ℝ |
157 | 156 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑘) → (2 · 1) ∈
ℝ) |
158 | 149 | zred 12126 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑘) → (2 · 𝑖) ∈ ℝ) |
159 | | 1red 10680 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑘) → 1 ∈ ℝ) |
160 | 148 | zred 12126 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1...𝑘) → 𝑖 ∈ ℝ) |
161 | 38 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1...𝑘) → 2 ∈ ℝ) |
162 | | 0le2 11776 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ≤
2 |
163 | 162 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1...𝑘) → 0 ≤ 2) |
164 | | elfzle1 12959 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1...𝑘) → 1 ≤ 𝑖) |
165 | 159, 160,
161, 163, 164 | lemul2ad 11618 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑘) → (2 · 1) ≤ (2 ·
𝑖)) |
166 | 157, 158,
159, 165 | lesub1dd 11294 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (1...𝑘) → ((2 · 1) − 1) ≤ ((2
· 𝑖) −
1)) |
167 | 154, 166 | eqbrtrid 5067 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...𝑘) → 1 ≤ ((2 · 𝑖) − 1)) |
168 | 167 | adantl 485 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → 1 ≤ ((2 · 𝑖) − 1)) |
169 | 158 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → (2 · 𝑖) ∈ ℝ) |
170 | 41 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → (2 · 𝑘) ∈ ℝ) |
171 | | 1red 10680 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → 1 ∈ ℝ) |
172 | 160 | adantl 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → 𝑖 ∈ ℝ) |
173 | 40 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → 𝑘 ∈ ℝ) |
174 | 38 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → 2 ∈ ℝ) |
175 | 162 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → 0 ≤ 2) |
176 | | elfzle2 12960 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑘) → 𝑖 ≤ 𝑘) |
177 | 176 | adantl 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → 𝑖 ≤ 𝑘) |
178 | 172, 173,
174, 175, 177 | lemul2ad 11618 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → (2 · 𝑖) ≤ (2 · 𝑘)) |
179 | 169, 170,
171, 178 | lesub1dd 11294 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → ((2 · 𝑖) − 1) ≤ ((2 · 𝑘) − 1)) |
180 | 168, 179 | jca 515 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → (1 ≤ ((2 · 𝑖) − 1) ∧ ((2 ·
𝑖) − 1) ≤ ((2
· 𝑘) −
1))) |
181 | | elfz2 12946 |
. . . . . . . . . . . . 13
⊢ (((2
· 𝑖) − 1)
∈ (1...((2 · 𝑘)
− 1)) ↔ ((1 ∈ ℤ ∧ ((2 · 𝑘) − 1) ∈ ℤ ∧ ((2
· 𝑖) − 1)
∈ ℤ) ∧ (1 ≤ ((2 · 𝑖) − 1) ∧ ((2 · 𝑖) − 1) ≤ ((2 ·
𝑘) −
1)))) |
182 | 153, 180,
181 | sylanbrc 586 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → ((2 · 𝑖) − 1) ∈ (1...((2 · 𝑘) − 1))) |
183 | 149 | zcnd 12127 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1...𝑘) → (2 · 𝑖) ∈ ℂ) |
184 | | 1cnd 10674 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1...𝑘) → 1 ∈ ℂ) |
185 | | 2cnd 11752 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1...𝑘) → 2 ∈ ℂ) |
186 | | 2ne0 11778 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ≠
0 |
187 | 186 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1...𝑘) → 2 ≠ 0) |
188 | 183, 184,
185, 187 | divsubdird 11493 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑘) → (((2 · 𝑖) − 1) / 2) = (((2 · 𝑖) / 2) − (1 /
2))) |
189 | 148 | zcnd 12127 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (1...𝑘) → 𝑖 ∈ ℂ) |
190 | 189, 185,
187 | divcan3d 11459 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1...𝑘) → ((2 · 𝑖) / 2) = 𝑖) |
191 | 190 | oveq1d 7165 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑘) → (((2 · 𝑖) / 2) − (1 / 2)) = (𝑖 − (1 / 2))) |
192 | 188, 191 | eqtrd 2793 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (1...𝑘) → (((2 · 𝑖) − 1) / 2) = (𝑖 − (1 / 2))) |
193 | 148, 150 | zsubcld 12131 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1...𝑘) → (𝑖 − 1) ∈ ℤ) |
194 | 161, 187 | rereccld 11505 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (1...𝑘) → (1 / 2) ∈
ℝ) |
195 | | halflt1 11892 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1 / 2)
< 1 |
196 | 195 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (1...𝑘) → (1 / 2) < 1) |
197 | 194, 159,
160, 196 | ltsub2dd 11291 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1...𝑘) → (𝑖 − 1) < (𝑖 − (1 / 2))) |
198 | | 2rp 12435 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 2 ∈
ℝ+ |
199 | | rpreccl 12456 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (2 ∈
ℝ+ → (1 / 2) ∈ ℝ+) |
200 | 198, 199 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (1...𝑘) → (1 / 2) ∈
ℝ+) |
201 | 160, 200 | ltsubrpd 12504 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (1...𝑘) → (𝑖 − (1 / 2)) < 𝑖) |
202 | 189, 184 | npcand 11039 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (1...𝑘) → ((𝑖 − 1) + 1) = 𝑖) |
203 | 201, 202 | breqtrrd 5060 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1...𝑘) → (𝑖 − (1 / 2)) < ((𝑖 − 1) + 1)) |
204 | | btwnnz 12097 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑖 − 1) ∈ ℤ ∧
(𝑖 − 1) < (𝑖 − (1 / 2)) ∧ (𝑖 − (1 / 2)) < ((𝑖 − 1) + 1)) → ¬
(𝑖 − (1 / 2)) ∈
ℤ) |
205 | 193, 197,
203, 204 | syl3anc 1368 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑘) → ¬ (𝑖 − (1 / 2)) ∈
ℤ) |
206 | | nnz 12043 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 − (1 / 2)) ∈ ℕ
→ (𝑖 − (1 / 2))
∈ ℤ) |
207 | 205, 206 | nsyl 142 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (1...𝑘) → ¬ (𝑖 − (1 / 2)) ∈
ℕ) |
208 | 192, 207 | eqneltrd 2871 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...𝑘) → ¬ (((2 · 𝑖) − 1) / 2) ∈
ℕ) |
209 | 208 | intnand 492 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1...𝑘) → ¬ (((2 · 𝑖) − 1) ∈ ℕ
∧ (((2 · 𝑖)
− 1) / 2) ∈ ℕ)) |
210 | | oveq1 7157 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = ((2 · 𝑖) − 1) → (𝑛 / 2) = (((2 · 𝑖) − 1) /
2)) |
211 | 210 | eleq1d 2836 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = ((2 · 𝑖) − 1) → ((𝑛 / 2) ∈ ℕ ↔ (((2
· 𝑖) − 1) / 2)
∈ ℕ)) |
212 | 211 | elrab 3602 |
. . . . . . . . . . . . . 14
⊢ (((2
· 𝑖) − 1)
∈ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ} ↔ (((2 · 𝑖) − 1) ∈ ℕ ∧ (((2
· 𝑖) − 1) / 2)
∈ ℕ)) |
213 | 209, 212 | sylnibr 332 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (1...𝑘) → ¬ ((2 · 𝑖) − 1) ∈ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈
ℕ}) |
214 | 213 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → ¬ ((2 · 𝑖) − 1) ∈ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈
ℕ}) |
215 | 182, 214 | eldifd 3869 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → ((2 · 𝑖) − 1) ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈
ℕ})) |
216 | 215 | fmpttd 6870 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)⟶((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈
ℕ})) |
217 | | eqidd 2759 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (1...𝑘) → (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)) = (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))) |
218 | | oveq2 7158 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 𝑥 → (2 · 𝑖) = (2 · 𝑥)) |
219 | 218 | oveq1d 7165 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑥 → ((2 · 𝑖) − 1) = ((2 · 𝑥) − 1)) |
220 | 219 | adantl 485 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ (1...𝑘) ∧ 𝑖 = 𝑥) → ((2 · 𝑖) − 1) = ((2 · 𝑥) − 1)) |
221 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (1...𝑘) → 𝑥 ∈ (1...𝑘)) |
222 | | ovexd 7185 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (1...𝑘) → ((2 · 𝑥) − 1) ∈ V) |
223 | 217, 220,
221, 222 | fvmptd 6766 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (1...𝑘) → ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥) = ((2 · 𝑥) − 1)) |
224 | 223 | eqcomd 2764 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (1...𝑘) → ((2 · 𝑥) − 1) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥)) |
225 | 224 | ad2antrr 725 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦)) → ((2 · 𝑥) − 1) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥)) |
226 | | simpr 488 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦)) → ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦)) |
227 | | eqidd 2759 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (1...𝑘) → (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)) = (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))) |
228 | | oveq2 7158 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑦 → (2 · 𝑖) = (2 · 𝑦)) |
229 | 228 | oveq1d 7165 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑦 → ((2 · 𝑖) − 1) = ((2 · 𝑦) − 1)) |
230 | 229 | adantl 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ (1...𝑘) ∧ 𝑖 = 𝑦) → ((2 · 𝑖) − 1) = ((2 · 𝑦) − 1)) |
231 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (1...𝑘) → 𝑦 ∈ (1...𝑘)) |
232 | | ovexd 7185 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (1...𝑘) → ((2 · 𝑦) − 1) ∈ V) |
233 | 227, 230,
231, 232 | fvmptd 6766 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (1...𝑘) → ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦) = ((2 · 𝑦) − 1)) |
234 | 233 | ad2antlr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦)) → ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦) = ((2 · 𝑦) − 1)) |
235 | 225, 226,
234 | 3eqtrd 2797 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦)) → ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1)) |
236 | | 2cnd 11752 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (1...𝑘) → 2 ∈ ℂ) |
237 | | elfzelz 12956 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (1...𝑘) → 𝑥 ∈ ℤ) |
238 | 237 | zcnd 12127 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (1...𝑘) → 𝑥 ∈ ℂ) |
239 | 236, 238 | mulcld 10699 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (1...𝑘) → (2 · 𝑥) ∈ ℂ) |
240 | 239 | ad2antrr 725 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1)) → (2 ·
𝑥) ∈
ℂ) |
241 | | 2cnd 11752 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (1...𝑘) → 2 ∈ ℂ) |
242 | | elfzelz 12956 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (1...𝑘) → 𝑦 ∈ ℤ) |
243 | 242 | zcnd 12127 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (1...𝑘) → 𝑦 ∈ ℂ) |
244 | 241, 243 | mulcld 10699 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (1...𝑘) → (2 · 𝑦) ∈ ℂ) |
245 | 244 | ad2antlr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1)) → (2 ·
𝑦) ∈
ℂ) |
246 | | 1cnd 10674 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1)) → 1 ∈
ℂ) |
247 | | simpr 488 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1)) → ((2
· 𝑥) − 1) =
((2 · 𝑦) −
1)) |
248 | 240, 245,
246, 247 | subcan2d 11077 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1)) → (2 ·
𝑥) = (2 · 𝑦)) |
249 | 238 | ad2antrr 725 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ (2 · 𝑥) = (2 · 𝑦)) → 𝑥 ∈ ℂ) |
250 | 243 | ad2antlr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ (2 · 𝑥) = (2 · 𝑦)) → 𝑦 ∈ ℂ) |
251 | | 2cnd 11752 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ (2 · 𝑥) = (2 · 𝑦)) → 2 ∈ ℂ) |
252 | 186 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ (2 · 𝑥) = (2 · 𝑦)) → 2 ≠ 0) |
253 | | simpr 488 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ (2 · 𝑥) = (2 · 𝑦)) → (2 · 𝑥) = (2 · 𝑦)) |
254 | 249, 250,
251, 252, 253 | mulcanad 11313 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ (2 · 𝑥) = (2 · 𝑦)) → 𝑥 = 𝑦) |
255 | 248, 254 | syldan 594 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1)) → 𝑥 = 𝑦) |
256 | 235, 255 | syldan 594 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦)) → 𝑥 = 𝑦) |
257 | 256 | adantll 713 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ℕ ∧ (𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘))) ∧ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦)) → 𝑥 = 𝑦) |
258 | 257 | ex 416 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧ (𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘))) → (((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦) → 𝑥 = 𝑦)) |
259 | 258 | ralrimivva 3120 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ →
∀𝑥 ∈ (1...𝑘)∀𝑦 ∈ (1...𝑘)(((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦) → 𝑥 = 𝑦)) |
260 | | dff13 7005 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)–1-1→((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ↔ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)⟶((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧
∀𝑥 ∈ (1...𝑘)∀𝑦 ∈ (1...𝑘)(((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦) → 𝑥 = 𝑦))) |
261 | 216, 259,
260 | sylanbrc 586 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)–1-1→((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) |
262 | | 1zzd 12052 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) → 1
∈ ℤ) |
263 | 32 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) →
𝑘 ∈
ℤ) |
264 | | fzssz 12958 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1...((2
· 𝑘) − 1))
⊆ ℤ |
265 | 264, 134 | sseldi 3890 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) →
𝑗 ∈
ℤ) |
266 | | zeo 12107 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ℤ → ((𝑗 / 2) ∈ ℤ ∨
((𝑗 + 1) / 2) ∈
ℤ)) |
267 | 265, 266 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) →
((𝑗 / 2) ∈ ℤ
∨ ((𝑗 + 1) / 2) ∈
ℤ)) |
268 | 267 | adantl 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) →
((𝑗 / 2) ∈ ℤ
∨ ((𝑗 + 1) / 2) ∈
ℤ)) |
269 | | eldifn 4033 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) →
¬ 𝑗 ∈ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈
ℕ}) |
270 | 134, 91 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) →
𝑗 ∈
ℕ) |
271 | 270 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧
(𝑗 / 2) ∈ ℤ)
→ 𝑗 ∈
ℕ) |
272 | | simpr 488 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧
(𝑗 / 2) ∈ ℤ)
→ (𝑗 / 2) ∈
ℤ) |
273 | 271 | nnred 11689 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧
(𝑗 / 2) ∈ ℤ)
→ 𝑗 ∈
ℝ) |
274 | 38 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧
(𝑗 / 2) ∈ ℤ)
→ 2 ∈ ℝ) |
275 | 271 | nngt0d 11723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧
(𝑗 / 2) ∈ ℤ)
→ 0 < 𝑗) |
276 | | 2pos 11777 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 0 <
2 |
277 | 276 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧
(𝑗 / 2) ∈ ℤ)
→ 0 < 2) |
278 | 273, 274,
275, 277 | divgt0d 11613 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧
(𝑗 / 2) ∈ ℤ)
→ 0 < (𝑗 /
2)) |
279 | | elnnz 12030 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑗 / 2) ∈ ℕ ↔
((𝑗 / 2) ∈ ℤ
∧ 0 < (𝑗 /
2))) |
280 | 272, 278,
279 | sylanbrc 586 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧
(𝑗 / 2) ∈ ℤ)
→ (𝑗 / 2) ∈
ℕ) |
281 | | oveq1 7157 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑗 → (𝑛 / 2) = (𝑗 / 2)) |
282 | 281 | eleq1d 2836 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑗 → ((𝑛 / 2) ∈ ℕ ↔ (𝑗 / 2) ∈
ℕ)) |
283 | 282 | elrab 3602 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ} ↔ (𝑗 ∈ ℕ ∧ (𝑗 / 2) ∈
ℕ)) |
284 | 271, 280,
283 | sylanbrc 586 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧
(𝑗 / 2) ∈ ℤ)
→ 𝑗 ∈ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈
ℕ}) |
285 | 269, 284 | mtand 815 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) →
¬ (𝑗 / 2) ∈
ℤ) |
286 | 285 | adantl 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) →
¬ (𝑗 / 2) ∈
ℤ) |
287 | | pm2.53 848 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑗 / 2) ∈ ℤ ∨
((𝑗 + 1) / 2) ∈
ℤ) → (¬ (𝑗 /
2) ∈ ℤ → ((𝑗 + 1) / 2) ∈ ℤ)) |
288 | 268, 286,
287 | sylc 65 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) →
((𝑗 + 1) / 2) ∈
ℤ) |
289 | 262, 263,
288 | 3jca 1125 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) →
(1 ∈ ℤ ∧ 𝑘
∈ ℤ ∧ ((𝑗 +
1) / 2) ∈ ℤ)) |
290 | | 1p1e2 11799 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1 + 1) =
2 |
291 | 290 | oveq1i 7160 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((1 + 1)
/ 2) = (2 / 2) |
292 | | 2div2e1 11815 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2 / 2) =
1 |
293 | 291, 292 | eqtr2i 2782 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 = ((1 +
1) / 2) |
294 | | 1red 10680 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → 1 ∈
ℝ) |
295 | 294, 294 | readdcld 10708 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → (1 + 1)
∈ ℝ) |
296 | 91 | nnred 11689 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → 𝑗 ∈
ℝ) |
297 | 296, 294 | readdcld 10708 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → (𝑗 + 1) ∈
ℝ) |
298 | 198 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → 2 ∈
ℝ+) |
299 | | elfzle1 12959 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → 1 ≤
𝑗) |
300 | 294, 296,
294, 299 | leadd1dd 11292 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → (1 + 1)
≤ (𝑗 +
1)) |
301 | 295, 297,
298, 300 | lediv1dd 12530 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → ((1 + 1) /
2) ≤ ((𝑗 + 1) /
2)) |
302 | 293, 301 | eqbrtrid 5067 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → 1 ≤
((𝑗 + 1) /
2)) |
303 | 134, 302 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) → 1
≤ ((𝑗 + 1) /
2)) |
304 | 303 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) → 1
≤ ((𝑗 + 1) /
2)) |
305 | | elfzel2 12954 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → ((2
· 𝑘) − 1)
∈ ℤ) |
306 | 305 | zred 12126 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → ((2
· 𝑘) − 1)
∈ ℝ) |
307 | 306, 294 | readdcld 10708 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → (((2
· 𝑘) − 1) + 1)
∈ ℝ) |
308 | | elfzle2 12960 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → 𝑗 ≤ ((2 · 𝑘) − 1)) |
309 | 296, 306,
294, 308 | leadd1dd 11292 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → (𝑗 + 1) ≤ (((2 · 𝑘) − 1) +
1)) |
310 | 297, 307,
298, 309 | lediv1dd 12530 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → ((𝑗 + 1) / 2) ≤ ((((2 ·
𝑘) − 1) + 1) /
2)) |
311 | 310 | adantl 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → ((𝑗 + 1) / 2) ≤ ((((2 ·
𝑘) − 1) + 1) /
2)) |
312 | 50 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → (2
· 𝑘) ∈
ℂ) |
313 | | 1cnd 10674 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → 1 ∈
ℂ) |
314 | 312, 313 | npcand 11039 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → (((2
· 𝑘) − 1) + 1)
= (2 · 𝑘)) |
315 | 314 | oveq1d 7165 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → ((((2
· 𝑘) − 1) + 1)
/ 2) = ((2 · 𝑘) /
2)) |
316 | 186 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ℕ → 2 ≠
0) |
317 | 44, 43, 316 | divcan3d 11459 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℕ → ((2
· 𝑘) / 2) = 𝑘) |
318 | 317 | adantr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → ((2
· 𝑘) / 2) = 𝑘) |
319 | 315, 318 | eqtrd 2793 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → ((((2
· 𝑘) − 1) + 1)
/ 2) = 𝑘) |
320 | 311, 319 | breqtrd 5058 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → ((𝑗 + 1) / 2) ≤ 𝑘) |
321 | 134, 320 | sylan2 595 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) →
((𝑗 + 1) / 2) ≤ 𝑘) |
322 | 289, 304,
321 | jca32 519 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) →
((1 ∈ ℤ ∧ 𝑘
∈ ℤ ∧ ((𝑗 +
1) / 2) ∈ ℤ) ∧ (1 ≤ ((𝑗 + 1) / 2) ∧ ((𝑗 + 1) / 2) ≤ 𝑘))) |
323 | | elfz2 12946 |
. . . . . . . . . . . . . 14
⊢ (((𝑗 + 1) / 2) ∈ (1...𝑘) ↔ ((1 ∈ ℤ
∧ 𝑘 ∈ ℤ
∧ ((𝑗 + 1) / 2) ∈
ℤ) ∧ (1 ≤ ((𝑗
+ 1) / 2) ∧ ((𝑗 + 1) /
2) ≤ 𝑘))) |
324 | 322, 323 | sylibr 237 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) →
((𝑗 + 1) / 2) ∈
(1...𝑘)) |
325 | 270 | nncnd 11690 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) →
𝑗 ∈
ℂ) |
326 | | peano2cn 10850 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℂ → (𝑗 + 1) ∈
ℂ) |
327 | | 2cnd 11752 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℂ → 2 ∈
ℂ) |
328 | 186 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℂ → 2 ≠
0) |
329 | 326, 327,
328 | divcan2d 11456 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ℂ → (2
· ((𝑗 + 1) / 2)) =
(𝑗 + 1)) |
330 | 329 | oveq1d 7165 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℂ → ((2
· ((𝑗 + 1) / 2))
− 1) = ((𝑗 + 1)
− 1)) |
331 | | pncan1 11102 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℂ → ((𝑗 + 1) − 1) = 𝑗) |
332 | 330, 331 | eqtr2d 2794 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℂ → 𝑗 = ((2 · ((𝑗 + 1) / 2)) −
1)) |
333 | 325, 332 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) →
𝑗 = ((2 · ((𝑗 + 1) / 2)) −
1)) |
334 | 333 | adantl 485 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) →
𝑗 = ((2 · ((𝑗 + 1) / 2)) −
1)) |
335 | | oveq2 7158 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = ((𝑗 + 1) / 2) → (2 · 𝑚) = (2 · ((𝑗 + 1) / 2))) |
336 | 335 | oveq1d 7165 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = ((𝑗 + 1) / 2) → ((2 · 𝑚) − 1) = ((2 ·
((𝑗 + 1) / 2)) −
1)) |
337 | 336 | rspceeqv 3556 |
. . . . . . . . . . . . 13
⊢ ((((𝑗 + 1) / 2) ∈ (1...𝑘) ∧ 𝑗 = ((2 · ((𝑗 + 1) / 2)) − 1)) → ∃𝑚 ∈ (1...𝑘)𝑗 = ((2 · 𝑚) − 1)) |
338 | 324, 334,
337 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) →
∃𝑚 ∈ (1...𝑘)𝑗 = ((2 · 𝑚) − 1)) |
339 | | eqidd 2759 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ (1...𝑘) ∧ 𝑗 = ((2 · 𝑚) − 1)) → (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)) = (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))) |
340 | | oveq2 7158 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑚 → (2 · 𝑖) = (2 · 𝑚)) |
341 | 340 | oveq1d 7165 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑚 → ((2 · 𝑖) − 1) = ((2 · 𝑚) − 1)) |
342 | 341 | adantl 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑚 ∈ (1...𝑘) ∧ 𝑗 = ((2 · 𝑚) − 1)) ∧ 𝑖 = 𝑚) → ((2 · 𝑖) − 1) = ((2 · 𝑚) − 1)) |
343 | | simpl 486 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ (1...𝑘) ∧ 𝑗 = ((2 · 𝑚) − 1)) → 𝑚 ∈ (1...𝑘)) |
344 | | ovexd 7185 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ (1...𝑘) ∧ 𝑗 = ((2 · 𝑚) − 1)) → ((2 · 𝑚) − 1) ∈
V) |
345 | 339, 342,
343, 344 | fvmptd 6766 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ (1...𝑘) ∧ 𝑗 = ((2 · 𝑚) − 1)) → ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑚) = ((2 · 𝑚) − 1)) |
346 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = ((2 · 𝑚) − 1) → 𝑗 = ((2 · 𝑚) − 1)) |
347 | 346 | eqcomd 2764 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = ((2 · 𝑚) − 1) → ((2 ·
𝑚) − 1) = 𝑗) |
348 | 347 | adantl 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ (1...𝑘) ∧ 𝑗 = ((2 · 𝑚) − 1)) → ((2 · 𝑚) − 1) = 𝑗) |
349 | 345, 348 | eqtr2d 2794 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ (1...𝑘) ∧ 𝑗 = ((2 · 𝑚) − 1)) → 𝑗 = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑚)) |
350 | 349 | ex 416 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (1...𝑘) → (𝑗 = ((2 · 𝑚) − 1) → 𝑗 = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑚))) |
351 | 350 | adantl 485 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) ∧
𝑚 ∈ (1...𝑘)) → (𝑗 = ((2 · 𝑚) − 1) → 𝑗 = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑚))) |
352 | 351 | reximdva 3198 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) →
(∃𝑚 ∈ (1...𝑘)𝑗 = ((2 · 𝑚) − 1) → ∃𝑚 ∈ (1...𝑘)𝑗 = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑚))) |
353 | 338, 352 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) →
∃𝑚 ∈ (1...𝑘)𝑗 = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑚)) |
354 | 353 | ralrimiva 3113 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ →
∀𝑗 ∈ ((1...((2
· 𝑘) − 1))
∖ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})∃𝑚 ∈
(1...𝑘)𝑗 = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑚)) |
355 | | dffo3 6859 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)–onto→((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ↔ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)⟶((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧
∀𝑗 ∈ ((1...((2
· 𝑘) − 1))
∖ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})∃𝑚 ∈
(1...𝑘)𝑗 = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑚))) |
356 | 216, 354,
355 | sylanbrc 586 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)–onto→((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) |
357 | | df-f1o 6342 |
. . . . . . . . 9
⊢ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)–1-1-onto→((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ↔ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)–1-1→((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧ (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)–onto→((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}))) |
358 | 261, 356,
357 | sylanbrc 586 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)–1-1-onto→((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) |
359 | 358 | adantl 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)–1-1-onto→((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) |
360 | | eqidd 2759 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...𝑘) → (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)) = (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))) |
361 | | oveq2 7158 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → (2 · 𝑖) = (2 · 𝑗)) |
362 | 361 | oveq1d 7165 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → ((2 · 𝑖) − 1) = ((2 · 𝑗) − 1)) |
363 | 362 | adantl 485 |
. . . . . . . . 9
⊢ ((𝑗 ∈ (1...𝑘) ∧ 𝑖 = 𝑗) → ((2 · 𝑖) − 1) = ((2 · 𝑗) − 1)) |
364 | | id 22 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...𝑘) → 𝑗 ∈ (1...𝑘)) |
365 | | ovexd 7185 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...𝑘) → ((2 · 𝑗) − 1) ∈ V) |
366 | 360, 363,
364, 365 | fvmptd 6766 |
. . . . . . . 8
⊢ (𝑗 ∈ (1...𝑘) → ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑗) = ((2 · 𝑗) − 1)) |
367 | 366 | adantl 485 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑗) = ((2 · 𝑗) − 1)) |
368 | | eleq1w 2834 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑖 → (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ↔ 𝑖 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈
ℕ}))) |
369 | 368 | anbi2d 631 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) ↔ ((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑖 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})))) |
370 | 139 | eleq1d 2836 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → ((𝐹‘𝑗) ∈ ℂ ↔ (𝐹‘𝑖) ∈ ℂ)) |
371 | 369, 370 | imbi12d 348 |
. . . . . . . 8
⊢ (𝑗 = 𝑖 → ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) → (𝐹‘𝑗) ∈ ℂ) ↔ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑖 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) → (𝐹‘𝑖) ∈ ℂ))) |
372 | 371, 136 | chvarvv 2005 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑖 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) → (𝐹‘𝑖) ∈ ℂ) |
373 | 143, 144,
359, 367, 372 | fsumf1o 15128 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑖 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑖) = Σ𝑗 ∈ (1...𝑘)(𝐹‘((2 · 𝑗) − 1))) |
374 | 95, 142, 373 | 3eqtrrd 2798 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(𝐹‘((2 · 𝑗) − 1)) = Σ𝑗 ∈ (1...((2 · 𝑘) − 1))(𝐹‘𝑗)) |
375 | | ovex 7183 |
. . . . . . . . . 10
⊢ ((2
· 𝑘) − 1)
∈ V |
376 | 20 | fvmpt2 6770 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ ∧ ((2
· 𝑘) − 1)
∈ V) → ((𝑘 ∈
ℕ ↦ ((2 · 𝑘) − 1))‘𝑘) = ((2 · 𝑘) − 1)) |
377 | 375, 376 | mpan2 690 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘𝑘) = ((2 ·
𝑘) −
1)) |
378 | 377 | oveq2d 7166 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ →
(1...((𝑘 ∈ ℕ
↦ ((2 · 𝑘)
− 1))‘𝑘)) =
(1...((2 · 𝑘)
− 1))) |
379 | 378 | eqcomd 2764 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → (1...((2
· 𝑘) − 1)) =
(1...((𝑘 ∈ ℕ
↦ ((2 · 𝑘)
− 1))‘𝑘))) |
380 | 379 | sumeq1d 15106 |
. . . . . 6
⊢ (𝑘 ∈ ℕ →
Σ𝑗 ∈ (1...((2
· 𝑘) −
1))(𝐹‘𝑗) = Σ𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘))(𝐹‘𝑗)) |
381 | 380 | adantl 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...((2 · 𝑘) − 1))(𝐹‘𝑗) = Σ𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘))(𝐹‘𝑗)) |
382 | 374, 381 | eqtrd 2793 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(𝐹‘((2 · 𝑗) − 1)) = Σ𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘))(𝐹‘𝑗)) |
383 | | elfznn 12985 |
. . . . . . 7
⊢ (𝑗 ∈ (1...𝑘) → 𝑗 ∈ ℕ) |
384 | 383 | adantl 485 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 𝑗 ∈ ℕ) |
385 | 12 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑘)) → 𝐹:ℕ⟶ℂ) |
386 | 30 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑘) → 2 ∈ ℤ) |
387 | | elfzelz 12956 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑘) → 𝑗 ∈ ℤ) |
388 | 386, 387 | zmulcld 12132 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (1...𝑘) → (2 · 𝑗) ∈ ℤ) |
389 | | 1zzd 12052 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (1...𝑘) → 1 ∈ ℤ) |
390 | 388, 389 | zsubcld 12131 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (1...𝑘) → ((2 · 𝑗) − 1) ∈ ℤ) |
391 | | 0red 10682 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (1...𝑘) → 0 ∈ ℝ) |
392 | 38 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...𝑘) → 2 ∈ ℝ) |
393 | 24, 392 | eqeltrid 2856 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑘) → (2 · 1) ∈
ℝ) |
394 | | 1red 10680 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑘) → 1 ∈ ℝ) |
395 | 393, 394 | resubcld 11106 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (1...𝑘) → ((2 · 1) − 1) ∈
ℝ) |
396 | 390 | zred 12126 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (1...𝑘) → ((2 · 𝑗) − 1) ∈ ℝ) |
397 | | 0lt1 11200 |
. . . . . . . . . . . 12
⊢ 0 <
1 |
398 | 154 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑘) → 1 = ((2 · 1) −
1)) |
399 | 397, 398 | breqtrid 5069 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (1...𝑘) → 0 < ((2 · 1) −
1)) |
400 | 388 | zred 12126 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑘) → (2 · 𝑗) ∈ ℝ) |
401 | 383 | nnred 11689 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...𝑘) → 𝑗 ∈ ℝ) |
402 | 162 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...𝑘) → 0 ≤ 2) |
403 | | elfzle1 12959 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...𝑘) → 1 ≤ 𝑗) |
404 | 394, 401,
392, 402, 403 | lemul2ad 11618 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑘) → (2 · 1) ≤ (2 ·
𝑗)) |
405 | 393, 400,
394, 404 | lesub1dd 11294 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (1...𝑘) → ((2 · 1) − 1) ≤ ((2
· 𝑗) −
1)) |
406 | 391, 395,
396, 399, 405 | ltletrd 10838 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (1...𝑘) → 0 < ((2 · 𝑗) − 1)) |
407 | | elnnz 12030 |
. . . . . . . . . 10
⊢ (((2
· 𝑗) − 1)
∈ ℕ ↔ (((2 · 𝑗) − 1) ∈ ℤ ∧ 0 < ((2
· 𝑗) −
1))) |
408 | 390, 406,
407 | sylanbrc 586 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...𝑘) → ((2 · 𝑗) − 1) ∈ ℕ) |
409 | 408 | adantl 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑘)) → ((2 · 𝑗) − 1) ∈ ℕ) |
410 | 385, 409 | ffvelrnd 6843 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑘)) → (𝐹‘((2 · 𝑗) − 1)) ∈
ℂ) |
411 | 410 | adantlr 714 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝐹‘((2 · 𝑗) − 1)) ∈
ℂ) |
412 | 59 | fveq2d 6662 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → (𝐹‘((2 · 𝑘) − 1)) = (𝐹‘((2 · 𝑗) − 1))) |
413 | 412 | cbvmptv 5135 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1))) = (𝑗 ∈ ℕ ↦ (𝐹‘((2 · 𝑗) − 1))) |
414 | 413 | fvmpt2 6770 |
. . . . . 6
⊢ ((𝑗 ∈ ℕ ∧ (𝐹‘((2 · 𝑗) − 1)) ∈ ℂ)
→ ((𝑘 ∈ ℕ
↦ (𝐹‘((2
· 𝑘) −
1)))‘𝑗) = (𝐹‘((2 · 𝑗) − 1))) |
415 | 384, 411,
414 | syl2anc 587 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))‘𝑗) = (𝐹‘((2 · 𝑗) − 1))) |
416 | | simpr 488 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
417 | 416, 8 | eleqtrdi 2862 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈
(ℤ≥‘1)) |
418 | 415, 417,
411 | fsumser 15135 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(𝐹‘((2 · 𝑗) − 1)) = (seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1))))‘𝑘)) |
419 | | eqidd 2759 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘))) → (𝐹‘𝑗) = (𝐹‘𝑗)) |
420 | 156 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → (2
· 1) ∈ ℝ) |
421 | | 1red 10680 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 1 ∈
ℝ) |
422 | 162 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 0 ≤
2) |
423 | | nnge1 11702 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 1 ≤
𝑘) |
424 | 421, 40, 39, 422, 423 | lemul2ad 11618 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → (2
· 1) ≤ (2 · 𝑘)) |
425 | 420, 41, 421, 424 | lesub1dd 11294 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → ((2
· 1) − 1) ≤ ((2 · 𝑘) − 1)) |
426 | 154, 425 | eqbrtrid 5067 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → 1 ≤
((2 · 𝑘) −
1)) |
427 | | eluz2 12288 |
. . . . . . . 8
⊢ (((2
· 𝑘) − 1)
∈ (ℤ≥‘1) ↔ (1 ∈ ℤ ∧ ((2
· 𝑘) − 1)
∈ ℤ ∧ 1 ≤ ((2 · 𝑘) − 1))) |
428 | 36, 65, 426, 427 | syl3anbrc 1340 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → ((2
· 𝑘) − 1)
∈ (ℤ≥‘1)) |
429 | 67, 428 | eqeltrd 2852 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘𝑘) ∈
(ℤ≥‘1)) |
430 | 429 | adantl 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘) ∈
(ℤ≥‘1)) |
431 | | simpll 766 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘))) → 𝜑) |
432 | | simpr 488 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘𝑘))) → 𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘𝑘))) |
433 | 378 | adantr 484 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘𝑘))) →
(1...((𝑘 ∈ ℕ
↦ ((2 · 𝑘)
− 1))‘𝑘)) =
(1...((2 · 𝑘)
− 1))) |
434 | 432, 433 | eleqtrd 2854 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘𝑘))) → 𝑗 ∈ (1...((2 · 𝑘) − 1))) |
435 | 434 | adantll 713 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘))) → 𝑗 ∈ (1...((2 · 𝑘) − 1))) |
436 | 431, 435,
93 | syl2anc 587 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘))) → (𝐹‘𝑗) ∈ ℂ) |
437 | 419, 430,
436 | fsumser 15135 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘𝑘))(𝐹‘𝑗) = (seq1( + , 𝐹)‘((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘))) |
438 | 382, 418,
437 | 3eqtr3d 2801 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1))))‘𝑘) = (seq1( + , 𝐹)‘((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘))) |
439 | 1, 2, 6, 7, 8, 9, 11, 15, 16, 29, 73, 75, 438 | climsuse 42616 |
. 2
⊢ (𝜑 → seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ⇝ 𝐵) |
440 | | eqidd 2759 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
441 | 8, 9, 440, 13 | isum 15124 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ ℕ (𝐹‘𝑘) = ( ⇝ ‘seq1( + , 𝐹))) |
442 | | climrel 14897 |
. . . . . . 7
⊢ Rel
⇝ |
443 | 442 | releldmi 5789 |
. . . . . 6
⊢ (seq1( +
, 𝐹) ⇝ 𝐵 → seq1( + , 𝐹) ∈ dom ⇝
) |
444 | 16, 443 | syl 17 |
. . . . 5
⊢ (𝜑 → seq1( + , 𝐹) ∈ dom ⇝
) |
445 | | climdm 14959 |
. . . . 5
⊢ (seq1( +
, 𝐹) ∈ dom ⇝
↔ seq1( + , 𝐹) ⇝
( ⇝ ‘seq1( + , 𝐹))) |
446 | 444, 445 | sylib 221 |
. . . 4
⊢ (𝜑 → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1(
+ , 𝐹))) |
447 | | climuni 14957 |
. . . 4
⊢ ((seq1( +
, 𝐹) ⇝ ( ⇝
‘seq1( + , 𝐹)) ∧
seq1( + , 𝐹) ⇝ 𝐵) → ( ⇝ ‘seq1(
+ , 𝐹)) = 𝐵) |
448 | 446, 16, 447 | syl2anc 587 |
. . 3
⊢ (𝜑 → ( ⇝ ‘seq1( + ,
𝐹)) = 𝐵) |
449 | 442 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → Rel ⇝
) |
450 | | releldm 5785 |
. . . . . . . 8
⊢ ((Rel
⇝ ∧ seq1( + , (𝑘
∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ⇝ 𝐵) → seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ∈ dom ⇝
) |
451 | 449, 439,
450 | syl2anc 587 |
. . . . . . 7
⊢ (𝜑 → seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ∈ dom
⇝ ) |
452 | | climdm 14959 |
. . . . . . 7
⊢ (seq1( +
, (𝑘 ∈ ℕ ↦
(𝐹‘((2 · 𝑘) − 1)))) ∈ dom
⇝ ↔ seq1( + , (𝑘
∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ⇝ ( ⇝
‘seq1( + , (𝑘 ∈
ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))))) |
453 | 451, 452 | sylib 221 |
. . . . . 6
⊢ (𝜑 → seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ⇝ (
⇝ ‘seq1( + , (𝑘
∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))))) |
454 | 413 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1))) = (𝑗 ∈ ℕ ↦ (𝐹‘((2 · 𝑗) − 1)))) |
455 | 454 | seqeq3d 13426 |
. . . . . . 7
⊢ (𝜑 → seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) = seq1( + ,
(𝑗 ∈ ℕ ↦
(𝐹‘((2 · 𝑗) −
1))))) |
456 | 455 | fveq2d 6662 |
. . . . . 6
⊢ (𝜑 → ( ⇝ ‘seq1( + ,
(𝑘 ∈ ℕ ↦
(𝐹‘((2 · 𝑘) − 1))))) = ( ⇝
‘seq1( + , (𝑗 ∈
ℕ ↦ (𝐹‘((2 · 𝑗) − 1)))))) |
457 | 453, 456 | breqtrd 5058 |
. . . . 5
⊢ (𝜑 → seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ⇝ (
⇝ ‘seq1( + , (𝑗
∈ ℕ ↦ (𝐹‘((2 · 𝑗) − 1)))))) |
458 | | climuni 14957 |
. . . . 5
⊢ ((seq1( +
, (𝑘 ∈ ℕ ↦
(𝐹‘((2 · 𝑘) − 1)))) ⇝ 𝐵 ∧ seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ⇝ (
⇝ ‘seq1( + , (𝑗
∈ ℕ ↦ (𝐹‘((2 · 𝑗) − 1)))))) → 𝐵 = ( ⇝ ‘seq1( + , (𝑗 ∈ ℕ ↦ (𝐹‘((2 · 𝑗) −
1)))))) |
459 | 439, 457,
458 | syl2anc 587 |
. . . 4
⊢ (𝜑 → 𝐵 = ( ⇝ ‘seq1( + , (𝑗 ∈ ℕ ↦ (𝐹‘((2 · 𝑗) −
1)))))) |
460 | | eqidd 2759 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑗 ∈ ℕ ↦ (𝐹‘((2 · 𝑗) − 1))) = (𝑗 ∈ ℕ ↦ (𝐹‘((2 · 𝑗) − 1)))) |
461 | | eqcom 2765 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 ↔ 𝑗 = 𝑘) |
462 | | eqcom 2765 |
. . . . . . . 8
⊢ ((𝐹‘((2 · 𝑘) − 1)) = (𝐹‘((2 · 𝑗) − 1)) ↔ (𝐹‘((2 · 𝑗) − 1)) = (𝐹‘((2 · 𝑘) − 1))) |
463 | 412, 461,
462 | 3imtr3i 294 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (𝐹‘((2 · 𝑗) − 1)) = (𝐹‘((2 · 𝑘) − 1))) |
464 | 463 | adantl 485 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 = 𝑘) → (𝐹‘((2 · 𝑗) − 1)) = (𝐹‘((2 · 𝑘) − 1))) |
465 | 12 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐹:ℕ⟶ℂ) |
466 | 428, 8 | eleqtrrdi 2863 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → ((2
· 𝑘) − 1)
∈ ℕ) |
467 | 466 | adantl 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) − 1) ∈
ℕ) |
468 | 465, 467 | ffvelrnd 6843 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘((2 · 𝑘) − 1)) ∈
ℂ) |
469 | 460, 464,
416, 468 | fvmptd 6766 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝐹‘((2 · 𝑗) − 1)))‘𝑘) = (𝐹‘((2 · 𝑘) − 1))) |
470 | 8, 9, 469, 468 | isum 15124 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ ℕ (𝐹‘((2 · 𝑘) − 1)) = ( ⇝ ‘seq1( + ,
(𝑗 ∈ ℕ ↦
(𝐹‘((2 · 𝑗) −
1)))))) |
471 | 459, 470 | eqtr4d 2796 |
. . 3
⊢ (𝜑 → 𝐵 = Σ𝑘 ∈ ℕ (𝐹‘((2 · 𝑘) − 1))) |
472 | 441, 448,
471 | 3eqtrd 2797 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ ℕ (𝐹‘𝑘) = Σ𝑘 ∈ ℕ (𝐹‘((2 · 𝑘) − 1))) |
473 | 439, 472 | jca 515 |
1
⊢ (𝜑 → (seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ⇝ 𝐵 ∧ Σ𝑘 ∈ ℕ (𝐹‘𝑘) = Σ𝑘 ∈ ℕ (𝐹‘((2 · 𝑘) − 1)))) |