Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . 3
⊢
Ⅎ𝑘𝜑 |
2 | | nfcv 2906 |
. . 3
⊢
Ⅎ𝑘seq1(
+ , 𝐹) |
3 | | nfcv 2906 |
. . . 4
⊢
Ⅎ𝑘1 |
4 | | nfcv 2906 |
. . . 4
⊢
Ⅎ𝑘
+ |
5 | | nfmpt1 5178 |
. . . 4
⊢
Ⅎ𝑘(𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1))) |
6 | 3, 4, 5 | nfseq 13659 |
. . 3
⊢
Ⅎ𝑘seq1(
+ , (𝑘 ∈ ℕ
↦ (𝐹‘((2
· 𝑘) −
1)))) |
7 | | nfmpt1 5178 |
. . 3
⊢
Ⅎ𝑘(𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1)) |
8 | | nnuz 12550 |
. . 3
⊢ ℕ =
(ℤ≥‘1) |
9 | | 1zzd 12281 |
. . 3
⊢ (𝜑 → 1 ∈
ℤ) |
10 | | seqex 13651 |
. . . 4
⊢ seq1( + ,
𝐹) ∈
V |
11 | 10 | a1i 11 |
. . 3
⊢ (𝜑 → seq1( + , 𝐹) ∈ V) |
12 | | sumnnodd.1 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℕ⟶ℂ) |
13 | 12 | ffvelrnda 6943 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
14 | 8, 9, 13 | serf 13679 |
. . . 4
⊢ (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ) |
15 | 14 | ffvelrnda 6943 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) ∈ ℂ) |
16 | | sumnnodd.sc |
. . 3
⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝐵) |
17 | | 1nn 11914 |
. . . . . . 7
⊢ 1 ∈
ℕ |
18 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑘 = 1 → (2 · 𝑘) = (2 ·
1)) |
19 | 18 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑘 = 1 → ((2 · 𝑘) − 1) = ((2 · 1)
− 1)) |
20 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ ↦ ((2
· 𝑘) − 1)) =
(𝑘 ∈ ℕ ↦
((2 · 𝑘) −
1)) |
21 | | ovex 7288 |
. . . . . . . 8
⊢ ((2
· 1) − 1) ∈ V |
22 | 19, 20, 21 | fvmpt 6857 |
. . . . . . 7
⊢ (1 ∈
ℕ → ((𝑘 ∈
ℕ ↦ ((2 · 𝑘) − 1))‘1) = ((2 · 1)
− 1)) |
23 | 17, 22 | ax-mp 5 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘1) = ((2 · 1) − 1) |
24 | | 2t1e2 12066 |
. . . . . . 7
⊢ (2
· 1) = 2 |
25 | 24 | oveq1i 7265 |
. . . . . 6
⊢ ((2
· 1) − 1) = (2 − 1) |
26 | | 2m1e1 12029 |
. . . . . 6
⊢ (2
− 1) = 1 |
27 | 23, 25, 26 | 3eqtri 2770 |
. . . . 5
⊢ ((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘1) = 1 |
28 | 27, 17 | eqeltri 2835 |
. . . 4
⊢ ((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘1) ∈ ℕ |
29 | 28 | a1i 11 |
. . 3
⊢ (𝜑 → ((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘1) ∈
ℕ) |
30 | | 2z 12282 |
. . . . . . . 8
⊢ 2 ∈
ℤ |
31 | 30 | a1i 11 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 2 ∈
ℤ) |
32 | | nnz 12272 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℤ) |
33 | 31, 32 | zmulcld 12361 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → (2
· 𝑘) ∈
ℤ) |
34 | 32 | peano2zd 12358 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℤ) |
35 | 31, 34 | zmulcld 12361 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → (2
· (𝑘 + 1)) ∈
ℤ) |
36 | | 1zzd 12281 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 1 ∈
ℤ) |
37 | 35, 36 | zsubcld 12360 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → ((2
· (𝑘 + 1)) −
1) ∈ ℤ) |
38 | | 2re 11977 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
39 | 38 | a1i 11 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 2 ∈
ℝ) |
40 | | nnre 11910 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ) |
41 | 39, 40 | remulcld 10936 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (2
· 𝑘) ∈
ℝ) |
42 | 41 | lep1d 11836 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → (2
· 𝑘) ≤ ((2
· 𝑘) +
1)) |
43 | | 2cnd 11981 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 2 ∈
ℂ) |
44 | | nncn 11911 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℂ) |
45 | | 1cnd 10901 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 1 ∈
ℂ) |
46 | 43, 44, 45 | adddid 10930 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → (2
· (𝑘 + 1)) = ((2
· 𝑘) + (2 ·
1))) |
47 | 24 | oveq2i 7266 |
. . . . . . . . . 10
⊢ ((2
· 𝑘) + (2 ·
1)) = ((2 · 𝑘) +
2) |
48 | 46, 47 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (2
· (𝑘 + 1)) = ((2
· 𝑘) +
2)) |
49 | 48 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → ((2
· (𝑘 + 1)) −
1) = (((2 · 𝑘) + 2)
− 1)) |
50 | 43, 44 | mulcld 10926 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (2
· 𝑘) ∈
ℂ) |
51 | 50, 43, 45 | addsubassd 11282 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (((2
· 𝑘) + 2) − 1)
= ((2 · 𝑘) + (2
− 1))) |
52 | 26 | oveq2i 7266 |
. . . . . . . . 9
⊢ ((2
· 𝑘) + (2 −
1)) = ((2 · 𝑘) +
1) |
53 | 52 | a1i 11 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → ((2
· 𝑘) + (2 −
1)) = ((2 · 𝑘) +
1)) |
54 | 49, 51, 53 | 3eqtrrd 2783 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → ((2
· 𝑘) + 1) = ((2
· (𝑘 + 1)) −
1)) |
55 | 42, 54 | breqtrd 5096 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → (2
· 𝑘) ≤ ((2
· (𝑘 + 1)) −
1)) |
56 | | eluz2 12517 |
. . . . . 6
⊢ (((2
· (𝑘 + 1)) −
1) ∈ (ℤ≥‘(2 · 𝑘)) ↔ ((2 · 𝑘) ∈ ℤ ∧ ((2 · (𝑘 + 1)) − 1) ∈ ℤ
∧ (2 · 𝑘) ≤
((2 · (𝑘 + 1))
− 1))) |
57 | 33, 37, 55, 56 | syl3anbrc 1341 |
. . . . 5
⊢ (𝑘 ∈ ℕ → ((2
· (𝑘 + 1)) −
1) ∈ (ℤ≥‘(2 · 𝑘))) |
58 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → (2 · 𝑘) = (2 · 𝑗)) |
59 | 58 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑘 = 𝑗 → ((2 · 𝑘) − 1) = ((2 · 𝑗) − 1)) |
60 | 59 | cbvmptv 5183 |
. . . . . 6
⊢ (𝑘 ∈ ℕ ↦ ((2
· 𝑘) − 1)) =
(𝑗 ∈ ℕ ↦
((2 · 𝑗) −
1)) |
61 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑗 = (𝑘 + 1) → (2 · 𝑗) = (2 · (𝑘 + 1))) |
62 | 61 | oveq1d 7270 |
. . . . . 6
⊢ (𝑗 = (𝑘 + 1) → ((2 · 𝑗) − 1) = ((2 · (𝑘 + 1)) −
1)) |
63 | | peano2nn 11915 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) |
64 | 60, 62, 63, 37 | fvmptd3 6880 |
. . . . 5
⊢ (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘(𝑘 + 1)) = ((2
· (𝑘 + 1)) −
1)) |
65 | 33, 36 | zsubcld 12360 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → ((2
· 𝑘) − 1)
∈ ℤ) |
66 | 20 | fvmpt2 6868 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ ∧ ((2
· 𝑘) − 1)
∈ ℤ) → ((𝑘
∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘) = ((2 · 𝑘) − 1)) |
67 | 65, 66 | mpdan 683 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘𝑘) = ((2 ·
𝑘) −
1)) |
68 | 67 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → (((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘𝑘) + 1) = (((2
· 𝑘) − 1) +
1)) |
69 | 50, 45 | npcand 11266 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → (((2
· 𝑘) − 1) + 1)
= (2 · 𝑘)) |
70 | 68, 69 | eqtrd 2778 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → (((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘𝑘) + 1) = (2
· 𝑘)) |
71 | 70 | fveq2d 6760 |
. . . . 5
⊢ (𝑘 ∈ ℕ →
(ℤ≥‘(((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘) + 1)) =
(ℤ≥‘(2 · 𝑘))) |
72 | 57, 64, 71 | 3eltr4d 2854 |
. . . 4
⊢ (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘(𝑘 + 1)) ∈
(ℤ≥‘(((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘) + 1))) |
73 | 72 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘(𝑘 + 1)) ∈
(ℤ≥‘(((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘) + 1))) |
74 | | seqex 13651 |
. . . 4
⊢ seq1( + ,
(𝑘 ∈ ℕ ↦
(𝐹‘((2 · 𝑘) − 1)))) ∈
V |
75 | 74 | a1i 11 |
. . 3
⊢ (𝜑 → seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ∈
V) |
76 | | incom 4131 |
. . . . . . . . . 10
⊢
(((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∩ ((1...((2
· 𝑘) − 1))
∩ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})) = (((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∩ ((1...((2
· 𝑘) − 1))
∖ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})) |
77 | | inss2 4160 |
. . . . . . . . . . 11
⊢ ((1...((2
· 𝑘) − 1))
∩ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ}) ⊆ {𝑛 ∈
ℕ ∣ (𝑛 / 2)
∈ ℕ} |
78 | | ssrin 4164 |
. . . . . . . . . . 11
⊢
(((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ⊆ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ} →
(((1...((2 · 𝑘)
− 1)) ∩ {𝑛 ∈
ℕ ∣ (𝑛 / 2)
∈ ℕ}) ∩ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) ⊆ ({𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ} ∩
((1...((2 · 𝑘)
− 1)) ∖ {𝑛
∈ ℕ ∣ (𝑛 /
2) ∈ ℕ}))) |
79 | 77, 78 | ax-mp 5 |
. . . . . . . . . 10
⊢
(((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∩ ((1...((2
· 𝑘) − 1))
∖ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})) ⊆ ({𝑛
∈ ℕ ∣ (𝑛 /
2) ∈ ℕ} ∩ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) |
80 | 76, 79 | eqsstri 3951 |
. . . . . . . . 9
⊢
(((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∩ ((1...((2
· 𝑘) − 1))
∩ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})) ⊆ ({𝑛
∈ ℕ ∣ (𝑛 /
2) ∈ ℕ} ∩ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) |
81 | | disjdif 4402 |
. . . . . . . . 9
⊢ ({𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ} ∩
((1...((2 · 𝑘)
− 1)) ∖ {𝑛
∈ ℕ ∣ (𝑛 /
2) ∈ ℕ})) = ∅ |
82 | 80, 81 | sseqtri 3953 |
. . . . . . . 8
⊢
(((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∩ ((1...((2
· 𝑘) − 1))
∩ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})) ⊆ ∅ |
83 | | ss0 4329 |
. . . . . . . 8
⊢
((((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∩ ((1...((2
· 𝑘) − 1))
∩ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})) ⊆ ∅ → (((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∩ ((1...((2
· 𝑘) − 1))
∩ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})) = ∅) |
84 | 82, 83 | mp1i 13 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((1...((2 ·
𝑘) − 1)) ∖
{𝑛 ∈ ℕ ∣
(𝑛 / 2) ∈ ℕ})
∩ ((1...((2 · 𝑘)
− 1)) ∩ {𝑛 ∈
ℕ ∣ (𝑛 / 2)
∈ ℕ})) = ∅) |
85 | | uncom 4083 |
. . . . . . . . 9
⊢
(((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∪ ((1...((2
· 𝑘) − 1))
∩ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})) = (((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∪ ((1...((2
· 𝑘) − 1))
∖ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})) |
86 | | inundif 4409 |
. . . . . . . . 9
⊢
(((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∪ ((1...((2
· 𝑘) − 1))
∖ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})) = (1...((2 · 𝑘) − 1)) |
87 | 85, 86 | eqtr2i 2767 |
. . . . . . . 8
⊢ (1...((2
· 𝑘) − 1)) =
(((1...((2 · 𝑘)
− 1)) ∖ {𝑛
∈ ℕ ∣ (𝑛 /
2) ∈ ℕ}) ∪ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) |
88 | 87 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1...((2 ·
𝑘) − 1)) = (((1...((2
· 𝑘) − 1))
∖ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ}) ∪ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}))) |
89 | | fzfid 13621 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1...((2 ·
𝑘) − 1)) ∈
Fin) |
90 | 12 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → 𝐹:ℕ⟶ℂ) |
91 | | elfznn 13214 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → 𝑗 ∈
ℕ) |
92 | 91 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → 𝑗 ∈ ℕ) |
93 | 90, 92 | ffvelrnd 6944 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → (𝐹‘𝑗) ∈ ℂ) |
94 | 93 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → (𝐹‘𝑗) ∈ ℂ) |
95 | 84, 88, 89, 94 | fsumsplit 15381 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...((2 · 𝑘) − 1))(𝐹‘𝑗) = (Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗) + Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗))) |
96 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) → 𝜑) |
97 | | ssrab2 4009 |
. . . . . . . . . . . . . 14
⊢ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ} ⊆
ℕ |
98 | 77 | sseli 3913 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) →
𝑗 ∈ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈
ℕ}) |
99 | 97, 98 | sselid 3915 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) →
𝑗 ∈
ℕ) |
100 | 99 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) → 𝑗 ∈
ℕ) |
101 | | oveq1 7262 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑗 → (𝑘 / 2) = (𝑗 / 2)) |
102 | 101 | eleq1d 2823 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → ((𝑘 / 2) ∈ ℕ ↔ (𝑗 / 2) ∈
ℕ)) |
103 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑘 → (𝑛 / 2) = (𝑘 / 2)) |
104 | 103 | eleq1d 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑘 → ((𝑛 / 2) ∈ ℕ ↔ (𝑘 / 2) ∈
ℕ)) |
105 | 104 | elrab 3617 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ} ↔ (𝑘 ∈ ℕ ∧ (𝑘 / 2) ∈
ℕ)) |
106 | 105 | simprbi 496 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ} → (𝑘 / 2) ∈
ℕ) |
107 | 102, 106 | vtoclga 3503 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ} → (𝑗 / 2) ∈
ℕ) |
108 | 98, 107 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) →
(𝑗 / 2) ∈
ℕ) |
109 | 108 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) → (𝑗 / 2) ∈
ℕ) |
110 | | eleq1w 2821 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → (𝑘 ∈ ℕ ↔ 𝑗 ∈ ℕ)) |
111 | 110, 102 | 3anbi23d 1437 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ ℕ ∧ (𝑘 / 2) ∈ ℕ) ↔ (𝜑 ∧ 𝑗 ∈ ℕ ∧ (𝑗 / 2) ∈ ℕ))) |
112 | | fveqeq2 6765 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) = 0 ↔ (𝐹‘𝑗) = 0)) |
113 | 111, 112 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ ℕ ∧ (𝑘 / 2) ∈ ℕ) → (𝐹‘𝑘) = 0) ↔ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ (𝑗 / 2) ∈ ℕ) → (𝐹‘𝑗) = 0))) |
114 | | sumnnodd.even0 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ ∧ (𝑘 / 2) ∈ ℕ) → (𝐹‘𝑘) = 0) |
115 | 113, 114 | chvarvv 2003 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ ∧ (𝑗 / 2) ∈ ℕ) → (𝐹‘𝑗) = 0) |
116 | 96, 100, 109, 115 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) → (𝐹‘𝑗) = 0) |
117 | 116 | sumeq2dv 15343 |
. . . . . . . . . 10
⊢ (𝜑 → Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗) = Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})0) |
118 | | fzfid 13621 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1...((2 · 𝑘) − 1)) ∈
Fin) |
119 | | inss1 4159 |
. . . . . . . . . . . . . 14
⊢ ((1...((2
· 𝑘) − 1))
∩ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ}) ⊆ (1...((2 · 𝑘) − 1)) |
120 | 119 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ⊆
(1...((2 · 𝑘)
− 1))) |
121 | | ssfi 8918 |
. . . . . . . . . . . . 13
⊢
(((1...((2 · 𝑘) − 1)) ∈ Fin ∧ ((1...((2
· 𝑘) − 1))
∩ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ}) ⊆ (1...((2 · 𝑘) − 1))) → ((1...((2 ·
𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∈
Fin) |
122 | 118, 120,
121 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∈
Fin) |
123 | 122 | olcd 870 |
. . . . . . . . . . 11
⊢ (𝜑 → (((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ⊆
(ℤ≥‘𝐶) ∨ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∈
Fin)) |
124 | | sumz 15362 |
. . . . . . . . . . 11
⊢
((((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ⊆
(ℤ≥‘𝐶) ∨ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∈ Fin) →
Σ𝑗 ∈ ((1...((2
· 𝑘) − 1))
∩ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})0 = 0) |
125 | 123, 124 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})0 = 0) |
126 | 117, 125 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗) = 0) |
127 | 126 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗) = 0) |
128 | 127 | oveq2d 7271 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗) + Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗)) = (Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗) + 0)) |
129 | | fzfi 13620 |
. . . . . . . . . . . 12
⊢ (1...((2
· 𝑘) − 1))
∈ Fin |
130 | | difss 4062 |
. . . . . . . . . . . 12
⊢ ((1...((2
· 𝑘) − 1))
∖ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ}) ⊆ (1...((2 · 𝑘) − 1)) |
131 | | ssfi 8918 |
. . . . . . . . . . . 12
⊢
(((1...((2 · 𝑘) − 1)) ∈ Fin ∧ ((1...((2
· 𝑘) − 1))
∖ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ}) ⊆ (1...((2 · 𝑘) − 1))) → ((1...((2 ·
𝑘) − 1)) ∖
{𝑛 ∈ ℕ ∣
(𝑛 / 2) ∈ ℕ})
∈ Fin) |
132 | 129, 130,
131 | mp2an 688 |
. . . . . . . . . . 11
⊢ ((1...((2
· 𝑘) − 1))
∖ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ}) ∈ Fin |
133 | 132 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1...((2 ·
𝑘) − 1)) ∖
{𝑛 ∈ ℕ ∣
(𝑛 / 2) ∈ ℕ})
∈ Fin) |
134 | 130 | sseli 3913 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) →
𝑗 ∈ (1...((2 ·
𝑘) −
1))) |
135 | 134, 93 | sylan2 592 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) → (𝐹‘𝑗) ∈ ℂ) |
136 | 135 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) → (𝐹‘𝑗) ∈ ℂ) |
137 | 133, 136 | fsumcl 15373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗) ∈ ℂ) |
138 | 137 | addid1d 11105 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗) + 0) = Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗)) |
139 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → (𝐹‘𝑗) = (𝐹‘𝑖)) |
140 | 139 | cbvsumv 15336 |
. . . . . . . 8
⊢
Σ𝑗 ∈
((1...((2 · 𝑘)
− 1)) ∖ {𝑛
∈ ℕ ∣ (𝑛 /
2) ∈ ℕ})(𝐹‘𝑗) = Σ𝑖 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑖) |
141 | 138, 140 | eqtrdi 2795 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗) + 0) = Σ𝑖 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑖)) |
142 | 128, 141 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗) + Σ𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∩ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑗)) = Σ𝑖 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑖)) |
143 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑖 = ((2 · 𝑗) − 1) → (𝐹‘𝑖) = (𝐹‘((2 · 𝑗) − 1))) |
144 | | fzfid 13621 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1...𝑘) ∈ Fin) |
145 | | 1zzd 12281 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → 1 ∈ ℤ) |
146 | 65 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → ((2 · 𝑘) − 1) ∈ ℤ) |
147 | 30 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (1...𝑘) → 2 ∈ ℤ) |
148 | | elfzelz 13185 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (1...𝑘) → 𝑖 ∈ ℤ) |
149 | 147, 148 | zmulcld 12361 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...𝑘) → (2 · 𝑖) ∈ ℤ) |
150 | | 1zzd 12281 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...𝑘) → 1 ∈ ℤ) |
151 | 149, 150 | zsubcld 12360 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1...𝑘) → ((2 · 𝑖) − 1) ∈ ℤ) |
152 | 151 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → ((2 · 𝑖) − 1) ∈ ℤ) |
153 | 25, 26 | eqtr2i 2767 |
. . . . . . . . . . . . . . 15
⊢ 1 = ((2
· 1) − 1) |
154 | | 1re 10906 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℝ |
155 | 38, 154 | remulcli 10922 |
. . . . . . . . . . . . . . . . 17
⊢ (2
· 1) ∈ ℝ |
156 | 155 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (1...𝑘) → (2 · 1) ∈
ℝ) |
157 | 149 | zred 12355 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (1...𝑘) → (2 · 𝑖) ∈ ℝ) |
158 | | 1red 10907 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (1...𝑘) → 1 ∈ ℝ) |
159 | 148 | zred 12355 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑘) → 𝑖 ∈ ℝ) |
160 | 38 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑘) → 2 ∈ ℝ) |
161 | | 0le2 12005 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ≤
2 |
162 | 161 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑘) → 0 ≤ 2) |
163 | | elfzle1 13188 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑘) → 1 ≤ 𝑖) |
164 | 158, 159,
160, 162, 163 | lemul2ad 11845 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (1...𝑘) → (2 · 1) ≤ (2 ·
𝑖)) |
165 | 156, 157,
158, 164 | lesub1dd 11521 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...𝑘) → ((2 · 1) − 1) ≤ ((2
· 𝑖) −
1)) |
166 | 153, 165 | eqbrtrid 5105 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1...𝑘) → 1 ≤ ((2 · 𝑖) − 1)) |
167 | 166 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → 1 ≤ ((2 · 𝑖) − 1)) |
168 | 157 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → (2 · 𝑖) ∈ ℝ) |
169 | 41 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → (2 · 𝑘) ∈ ℝ) |
170 | | 1red 10907 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → 1 ∈ ℝ) |
171 | 159 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → 𝑖 ∈ ℝ) |
172 | 40 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → 𝑘 ∈ ℝ) |
173 | 38 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → 2 ∈ ℝ) |
174 | 161 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → 0 ≤ 2) |
175 | | elfzle2 13189 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (1...𝑘) → 𝑖 ≤ 𝑘) |
176 | 175 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → 𝑖 ≤ 𝑘) |
177 | 171, 172,
173, 174, 176 | lemul2ad 11845 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → (2 · 𝑖) ≤ (2 · 𝑘)) |
178 | 168, 169,
170, 177 | lesub1dd 11521 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → ((2 · 𝑖) − 1) ≤ ((2 · 𝑘) − 1)) |
179 | 145, 146,
152, 167, 178 | elfzd 13176 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → ((2 · 𝑖) − 1) ∈ (1...((2 · 𝑘) − 1))) |
180 | 149 | zcnd 12356 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1...𝑘) → (2 · 𝑖) ∈ ℂ) |
181 | | 1cnd 10901 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1...𝑘) → 1 ∈ ℂ) |
182 | | 2cnd 11981 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1...𝑘) → 2 ∈ ℂ) |
183 | | 2ne0 12007 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ≠
0 |
184 | 183 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1...𝑘) → 2 ≠ 0) |
185 | 180, 181,
182, 184 | divsubdird 11720 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑘) → (((2 · 𝑖) − 1) / 2) = (((2 · 𝑖) / 2) − (1 /
2))) |
186 | 148 | zcnd 12356 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (1...𝑘) → 𝑖 ∈ ℂ) |
187 | 186, 182,
184 | divcan3d 11686 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1...𝑘) → ((2 · 𝑖) / 2) = 𝑖) |
188 | 187 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑘) → (((2 · 𝑖) / 2) − (1 / 2)) = (𝑖 − (1 / 2))) |
189 | 185, 188 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (1...𝑘) → (((2 · 𝑖) − 1) / 2) = (𝑖 − (1 / 2))) |
190 | 148, 150 | zsubcld 12360 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1...𝑘) → (𝑖 − 1) ∈ ℤ) |
191 | 160, 184 | rereccld 11732 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (1...𝑘) → (1 / 2) ∈
ℝ) |
192 | | halflt1 12121 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1 / 2)
< 1 |
193 | 192 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (1...𝑘) → (1 / 2) < 1) |
194 | 191, 158,
159, 193 | ltsub2dd 11518 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1...𝑘) → (𝑖 − 1) < (𝑖 − (1 / 2))) |
195 | | 2rp 12664 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 2 ∈
ℝ+ |
196 | | rpreccl 12685 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (2 ∈
ℝ+ → (1 / 2) ∈ ℝ+) |
197 | 195, 196 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (1...𝑘) → (1 / 2) ∈
ℝ+) |
198 | 159, 197 | ltsubrpd 12733 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (1...𝑘) → (𝑖 − (1 / 2)) < 𝑖) |
199 | 186, 181 | npcand 11266 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (1...𝑘) → ((𝑖 − 1) + 1) = 𝑖) |
200 | 198, 199 | breqtrrd 5098 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1...𝑘) → (𝑖 − (1 / 2)) < ((𝑖 − 1) + 1)) |
201 | | btwnnz 12326 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑖 − 1) ∈ ℤ ∧
(𝑖 − 1) < (𝑖 − (1 / 2)) ∧ (𝑖 − (1 / 2)) < ((𝑖 − 1) + 1)) → ¬
(𝑖 − (1 / 2)) ∈
ℤ) |
202 | 190, 194,
200, 201 | syl3anc 1369 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...𝑘) → ¬ (𝑖 − (1 / 2)) ∈
ℤ) |
203 | | nnz 12272 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 − (1 / 2)) ∈ ℕ
→ (𝑖 − (1 / 2))
∈ ℤ) |
204 | 202, 203 | nsyl 140 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (1...𝑘) → ¬ (𝑖 − (1 / 2)) ∈
ℕ) |
205 | 189, 204 | eqneltrd 2858 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (1...𝑘) → ¬ (((2 · 𝑖) − 1) / 2) ∈
ℕ) |
206 | 205 | intnand 488 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1...𝑘) → ¬ (((2 · 𝑖) − 1) ∈ ℕ
∧ (((2 · 𝑖)
− 1) / 2) ∈ ℕ)) |
207 | | oveq1 7262 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = ((2 · 𝑖) − 1) → (𝑛 / 2) = (((2 · 𝑖) − 1) /
2)) |
208 | 207 | eleq1d 2823 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = ((2 · 𝑖) − 1) → ((𝑛 / 2) ∈ ℕ ↔ (((2
· 𝑖) − 1) / 2)
∈ ℕ)) |
209 | 208 | elrab 3617 |
. . . . . . . . . . . . . 14
⊢ (((2
· 𝑖) − 1)
∈ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ} ↔ (((2 · 𝑖) − 1) ∈ ℕ ∧ (((2
· 𝑖) − 1) / 2)
∈ ℕ)) |
210 | 206, 209 | sylnibr 328 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (1...𝑘) → ¬ ((2 · 𝑖) − 1) ∈ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈
ℕ}) |
211 | 210 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → ¬ ((2 · 𝑖) − 1) ∈ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈
ℕ}) |
212 | 179, 211 | eldifd 3894 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (1...𝑘)) → ((2 · 𝑖) − 1) ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈
ℕ})) |
213 | 212 | fmpttd 6971 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)⟶((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈
ℕ})) |
214 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (1...𝑘) → (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)) = (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))) |
215 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 𝑥 → (2 · 𝑖) = (2 · 𝑥)) |
216 | 215 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑥 → ((2 · 𝑖) − 1) = ((2 · 𝑥) − 1)) |
217 | 216 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ (1...𝑘) ∧ 𝑖 = 𝑥) → ((2 · 𝑖) − 1) = ((2 · 𝑥) − 1)) |
218 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (1...𝑘) → 𝑥 ∈ (1...𝑘)) |
219 | | ovexd 7290 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (1...𝑘) → ((2 · 𝑥) − 1) ∈ V) |
220 | 214, 217,
218, 219 | fvmptd 6864 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (1...𝑘) → ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥) = ((2 · 𝑥) − 1)) |
221 | 220 | eqcomd 2744 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (1...𝑘) → ((2 · 𝑥) − 1) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥)) |
222 | 221 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦)) → ((2 · 𝑥) − 1) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥)) |
223 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦)) → ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦)) |
224 | | eqidd 2739 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (1...𝑘) → (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)) = (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))) |
225 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑦 → (2 · 𝑖) = (2 · 𝑦)) |
226 | 225 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑦 → ((2 · 𝑖) − 1) = ((2 · 𝑦) − 1)) |
227 | 226 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ (1...𝑘) ∧ 𝑖 = 𝑦) → ((2 · 𝑖) − 1) = ((2 · 𝑦) − 1)) |
228 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (1...𝑘) → 𝑦 ∈ (1...𝑘)) |
229 | | ovexd 7290 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (1...𝑘) → ((2 · 𝑦) − 1) ∈ V) |
230 | 224, 227,
228, 229 | fvmptd 6864 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (1...𝑘) → ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦) = ((2 · 𝑦) − 1)) |
231 | 230 | ad2antlr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦)) → ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦) = ((2 · 𝑦) − 1)) |
232 | 222, 223,
231 | 3eqtrd 2782 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦)) → ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1)) |
233 | | 2cnd 11981 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (1...𝑘) → 2 ∈ ℂ) |
234 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (1...𝑘) → 𝑥 ∈ ℤ) |
235 | 234 | zcnd 12356 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (1...𝑘) → 𝑥 ∈ ℂ) |
236 | 233, 235 | mulcld 10926 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (1...𝑘) → (2 · 𝑥) ∈ ℂ) |
237 | 236 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1)) → (2 ·
𝑥) ∈
ℂ) |
238 | | 2cnd 11981 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (1...𝑘) → 2 ∈ ℂ) |
239 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (1...𝑘) → 𝑦 ∈ ℤ) |
240 | 239 | zcnd 12356 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (1...𝑘) → 𝑦 ∈ ℂ) |
241 | 238, 240 | mulcld 10926 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (1...𝑘) → (2 · 𝑦) ∈ ℂ) |
242 | 241 | ad2antlr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1)) → (2 ·
𝑦) ∈
ℂ) |
243 | | 1cnd 10901 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1)) → 1 ∈
ℂ) |
244 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1)) → ((2
· 𝑥) − 1) =
((2 · 𝑦) −
1)) |
245 | 237, 242,
243, 244 | subcan2d 11304 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1)) → (2 ·
𝑥) = (2 · 𝑦)) |
246 | 235 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ (2 · 𝑥) = (2 · 𝑦)) → 𝑥 ∈ ℂ) |
247 | 240 | ad2antlr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ (2 · 𝑥) = (2 · 𝑦)) → 𝑦 ∈ ℂ) |
248 | | 2cnd 11981 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ (2 · 𝑥) = (2 · 𝑦)) → 2 ∈ ℂ) |
249 | 183 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ (2 · 𝑥) = (2 · 𝑦)) → 2 ≠ 0) |
250 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ (2 · 𝑥) = (2 · 𝑦)) → (2 · 𝑥) = (2 · 𝑦)) |
251 | 246, 247,
248, 249, 250 | mulcanad 11540 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ (2 · 𝑥) = (2 · 𝑦)) → 𝑥 = 𝑦) |
252 | 245, 251 | syldan 590 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ ((2 · 𝑥) − 1) = ((2 · 𝑦) − 1)) → 𝑥 = 𝑦) |
253 | 232, 252 | syldan 590 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘)) ∧ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦)) → 𝑥 = 𝑦) |
254 | 253 | adantll 710 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ ℕ ∧ (𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘))) ∧ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦)) → 𝑥 = 𝑦) |
255 | 254 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧ (𝑥 ∈ (1...𝑘) ∧ 𝑦 ∈ (1...𝑘))) → (((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦) → 𝑥 = 𝑦)) |
256 | 255 | ralrimivva 3114 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ →
∀𝑥 ∈ (1...𝑘)∀𝑦 ∈ (1...𝑘)(((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦) → 𝑥 = 𝑦)) |
257 | | dff13 7109 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)–1-1→((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ↔ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)⟶((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧
∀𝑥 ∈ (1...𝑘)∀𝑦 ∈ (1...𝑘)(((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑥) = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑦) → 𝑥 = 𝑦))) |
258 | 213, 256,
257 | sylanbrc 582 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)–1-1→((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) |
259 | | 1zzd 12281 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) → 1
∈ ℤ) |
260 | 32 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) →
𝑘 ∈
ℤ) |
261 | 134 | elfzelzd 13186 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) →
𝑗 ∈
ℤ) |
262 | | zeo 12336 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ℤ → ((𝑗 / 2) ∈ ℤ ∨
((𝑗 + 1) / 2) ∈
ℤ)) |
263 | 261, 262 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) →
((𝑗 / 2) ∈ ℤ
∨ ((𝑗 + 1) / 2) ∈
ℤ)) |
264 | 263 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) →
((𝑗 / 2) ∈ ℤ
∨ ((𝑗 + 1) / 2) ∈
ℤ)) |
265 | | eldifn 4058 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) →
¬ 𝑗 ∈ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈
ℕ}) |
266 | 134, 91 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) →
𝑗 ∈
ℕ) |
267 | 266 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧
(𝑗 / 2) ∈ ℤ)
→ 𝑗 ∈
ℕ) |
268 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧
(𝑗 / 2) ∈ ℤ)
→ (𝑗 / 2) ∈
ℤ) |
269 | 267 | nnred 11918 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧
(𝑗 / 2) ∈ ℤ)
→ 𝑗 ∈
ℝ) |
270 | 38 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧
(𝑗 / 2) ∈ ℤ)
→ 2 ∈ ℝ) |
271 | 267 | nngt0d 11952 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧
(𝑗 / 2) ∈ ℤ)
→ 0 < 𝑗) |
272 | | 2pos 12006 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 <
2 |
273 | 272 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧
(𝑗 / 2) ∈ ℤ)
→ 0 < 2) |
274 | 269, 270,
271, 273 | divgt0d 11840 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧
(𝑗 / 2) ∈ ℤ)
→ 0 < (𝑗 /
2)) |
275 | | elnnz 12259 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 / 2) ∈ ℕ ↔
((𝑗 / 2) ∈ ℤ
∧ 0 < (𝑗 /
2))) |
276 | 268, 274,
275 | sylanbrc 582 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧
(𝑗 / 2) ∈ ℤ)
→ (𝑗 / 2) ∈
ℕ) |
277 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑗 → (𝑛 / 2) = (𝑗 / 2)) |
278 | 277 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑗 → ((𝑛 / 2) ∈ ℕ ↔ (𝑗 / 2) ∈
ℕ)) |
279 | 278 | elrab 3617 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ} ↔ (𝑗 ∈ ℕ ∧ (𝑗 / 2) ∈
ℕ)) |
280 | 267, 276,
279 | sylanbrc 582 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧
(𝑗 / 2) ∈ ℤ)
→ 𝑗 ∈ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈
ℕ}) |
281 | 265, 280 | mtand 812 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) →
¬ (𝑗 / 2) ∈
ℤ) |
282 | 281 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) →
¬ (𝑗 / 2) ∈
ℤ) |
283 | | pm2.53 847 |
. . . . . . . . . . . . . . 15
⊢ (((𝑗 / 2) ∈ ℤ ∨
((𝑗 + 1) / 2) ∈
ℤ) → (¬ (𝑗 /
2) ∈ ℤ → ((𝑗 + 1) / 2) ∈ ℤ)) |
284 | 264, 282,
283 | sylc 65 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) →
((𝑗 + 1) / 2) ∈
ℤ) |
285 | | 1p1e2 12028 |
. . . . . . . . . . . . . . . . . . 19
⊢ (1 + 1) =
2 |
286 | 285 | oveq1i 7265 |
. . . . . . . . . . . . . . . . . 18
⊢ ((1 + 1)
/ 2) = (2 / 2) |
287 | | 2div2e1 12044 |
. . . . . . . . . . . . . . . . . 18
⊢ (2 / 2) =
1 |
288 | 286, 287 | eqtr2i 2767 |
. . . . . . . . . . . . . . . . 17
⊢ 1 = ((1 +
1) / 2) |
289 | | 1red 10907 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → 1 ∈
ℝ) |
290 | 289, 289 | readdcld 10935 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → (1 + 1)
∈ ℝ) |
291 | 91 | nnred 11918 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → 𝑗 ∈
ℝ) |
292 | 291, 289 | readdcld 10935 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → (𝑗 + 1) ∈
ℝ) |
293 | 195 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → 2 ∈
ℝ+) |
294 | | elfzle1 13188 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → 1 ≤
𝑗) |
295 | 289, 291,
289, 294 | leadd1dd 11519 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → (1 + 1)
≤ (𝑗 +
1)) |
296 | 290, 292,
293, 295 | lediv1dd 12759 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → ((1 + 1) /
2) ≤ ((𝑗 + 1) /
2)) |
297 | 288, 296 | eqbrtrid 5105 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → 1 ≤
((𝑗 + 1) /
2)) |
298 | 134, 297 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) → 1
≤ ((𝑗 + 1) /
2)) |
299 | 298 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) → 1
≤ ((𝑗 + 1) /
2)) |
300 | | elfzel2 13183 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → ((2
· 𝑘) − 1)
∈ ℤ) |
301 | 300 | zred 12355 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → ((2
· 𝑘) − 1)
∈ ℝ) |
302 | 301, 289 | readdcld 10935 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → (((2
· 𝑘) − 1) + 1)
∈ ℝ) |
303 | | elfzle2 13189 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → 𝑗 ≤ ((2 · 𝑘) − 1)) |
304 | 291, 301,
289, 303 | leadd1dd 11519 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → (𝑗 + 1) ≤ (((2 · 𝑘) − 1) +
1)) |
305 | 292, 302,
293, 304 | lediv1dd 12759 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (1...((2 · 𝑘) − 1)) → ((𝑗 + 1) / 2) ≤ ((((2 ·
𝑘) − 1) + 1) /
2)) |
306 | 305 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → ((𝑗 + 1) / 2) ≤ ((((2 ·
𝑘) − 1) + 1) /
2)) |
307 | 50 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → (2
· 𝑘) ∈
ℂ) |
308 | | 1cnd 10901 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → 1 ∈
ℂ) |
309 | 307, 308 | npcand 11266 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → (((2
· 𝑘) − 1) + 1)
= (2 · 𝑘)) |
310 | 309 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → ((((2
· 𝑘) − 1) + 1)
/ 2) = ((2 · 𝑘) /
2)) |
311 | 183 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℕ → 2 ≠
0) |
312 | 44, 43, 311 | divcan3d 11686 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℕ → ((2
· 𝑘) / 2) = 𝑘) |
313 | 312 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → ((2
· 𝑘) / 2) = 𝑘) |
314 | 310, 313 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → ((((2
· 𝑘) − 1) + 1)
/ 2) = 𝑘) |
315 | 306, 314 | breqtrd 5096 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (1...((2 · 𝑘) − 1))) → ((𝑗 + 1) / 2) ≤ 𝑘) |
316 | 134, 315 | sylan2 592 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) →
((𝑗 + 1) / 2) ≤ 𝑘) |
317 | 259, 260,
284, 299, 316 | elfzd 13176 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) →
((𝑗 + 1) / 2) ∈
(1...𝑘)) |
318 | 266 | nncnd 11919 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) →
𝑗 ∈
ℂ) |
319 | | peano2cn 11077 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℂ → (𝑗 + 1) ∈
ℂ) |
320 | | 2cnd 11981 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℂ → 2 ∈
ℂ) |
321 | 183 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℂ → 2 ≠
0) |
322 | 319, 320,
321 | divcan2d 11683 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ℂ → (2
· ((𝑗 + 1) / 2)) =
(𝑗 + 1)) |
323 | 322 | oveq1d 7270 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℂ → ((2
· ((𝑗 + 1) / 2))
− 1) = ((𝑗 + 1)
− 1)) |
324 | | pncan1 11329 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℂ → ((𝑗 + 1) − 1) = 𝑗) |
325 | 323, 324 | eqtr2d 2779 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℂ → 𝑗 = ((2 · ((𝑗 + 1) / 2)) −
1)) |
326 | 318, 325 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) →
𝑗 = ((2 · ((𝑗 + 1) / 2)) −
1)) |
327 | 326 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) →
𝑗 = ((2 · ((𝑗 + 1) / 2)) −
1)) |
328 | | oveq2 7263 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = ((𝑗 + 1) / 2) → (2 · 𝑚) = (2 · ((𝑗 + 1) / 2))) |
329 | 328 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = ((𝑗 + 1) / 2) → ((2 · 𝑚) − 1) = ((2 ·
((𝑗 + 1) / 2)) −
1)) |
330 | 329 | rspceeqv 3567 |
. . . . . . . . . . . . 13
⊢ ((((𝑗 + 1) / 2) ∈ (1...𝑘) ∧ 𝑗 = ((2 · ((𝑗 + 1) / 2)) − 1)) → ∃𝑚 ∈ (1...𝑘)𝑗 = ((2 · 𝑚) − 1)) |
331 | 317, 327,
330 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) →
∃𝑚 ∈ (1...𝑘)𝑗 = ((2 · 𝑚) − 1)) |
332 | | eqidd 2739 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ (1...𝑘) ∧ 𝑗 = ((2 · 𝑚) − 1)) → (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)) = (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))) |
333 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑚 → (2 · 𝑖) = (2 · 𝑚)) |
334 | 333 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑚 → ((2 · 𝑖) − 1) = ((2 · 𝑚) − 1)) |
335 | 334 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑚 ∈ (1...𝑘) ∧ 𝑗 = ((2 · 𝑚) − 1)) ∧ 𝑖 = 𝑚) → ((2 · 𝑖) − 1) = ((2 · 𝑚) − 1)) |
336 | | simpl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ (1...𝑘) ∧ 𝑗 = ((2 · 𝑚) − 1)) → 𝑚 ∈ (1...𝑘)) |
337 | | ovexd 7290 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ (1...𝑘) ∧ 𝑗 = ((2 · 𝑚) − 1)) → ((2 · 𝑚) − 1) ∈
V) |
338 | 332, 335,
336, 337 | fvmptd 6864 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ (1...𝑘) ∧ 𝑗 = ((2 · 𝑚) − 1)) → ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑚) = ((2 · 𝑚) − 1)) |
339 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = ((2 · 𝑚) − 1) → 𝑗 = ((2 · 𝑚) − 1)) |
340 | 339 | eqcomd 2744 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = ((2 · 𝑚) − 1) → ((2 ·
𝑚) − 1) = 𝑗) |
341 | 340 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ (1...𝑘) ∧ 𝑗 = ((2 · 𝑚) − 1)) → ((2 · 𝑚) − 1) = 𝑗) |
342 | 338, 341 | eqtr2d 2779 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ (1...𝑘) ∧ 𝑗 = ((2 · 𝑚) − 1)) → 𝑗 = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑚)) |
343 | 342 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (1...𝑘) → (𝑗 = ((2 · 𝑚) − 1) → 𝑗 = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑚))) |
344 | 343 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) ∧
𝑚 ∈ (1...𝑘)) → (𝑗 = ((2 · 𝑚) − 1) → 𝑗 = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑚))) |
345 | 344 | reximdva 3202 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) →
(∃𝑚 ∈ (1...𝑘)𝑗 = ((2 · 𝑚) − 1) → ∃𝑚 ∈ (1...𝑘)𝑗 = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑚))) |
346 | 331, 345 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) →
∃𝑚 ∈ (1...𝑘)𝑗 = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑚)) |
347 | 346 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ →
∀𝑗 ∈ ((1...((2
· 𝑘) − 1))
∖ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})∃𝑚 ∈
(1...𝑘)𝑗 = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑚)) |
348 | | dffo3 6960 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)–onto→((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ↔ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)⟶((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧
∀𝑗 ∈ ((1...((2
· 𝑘) − 1))
∖ {𝑛 ∈ ℕ
∣ (𝑛 / 2) ∈
ℕ})∃𝑚 ∈
(1...𝑘)𝑗 = ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑚))) |
349 | 213, 347,
348 | sylanbrc 582 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)–onto→((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) |
350 | | df-f1o 6425 |
. . . . . . . . 9
⊢ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)–1-1-onto→((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ↔ ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)–1-1→((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ∧ (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)–onto→((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}))) |
351 | 258, 349,
350 | sylanbrc 582 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)–1-1-onto→((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) |
352 | 351 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)):(1...𝑘)–1-1-onto→((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) |
353 | | eqidd 2739 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...𝑘) → (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1)) = (𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))) |
354 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → (2 · 𝑖) = (2 · 𝑗)) |
355 | 354 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → ((2 · 𝑖) − 1) = ((2 · 𝑗) − 1)) |
356 | 355 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑗 ∈ (1...𝑘) ∧ 𝑖 = 𝑗) → ((2 · 𝑖) − 1) = ((2 · 𝑗) − 1)) |
357 | | id 22 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...𝑘) → 𝑗 ∈ (1...𝑘)) |
358 | | ovexd 7290 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...𝑘) → ((2 · 𝑗) − 1) ∈ V) |
359 | 353, 356,
357, 358 | fvmptd 6864 |
. . . . . . . 8
⊢ (𝑗 ∈ (1...𝑘) → ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑗) = ((2 · 𝑗) − 1)) |
360 | 359 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑖 ∈ (1...𝑘) ↦ ((2 · 𝑖) − 1))‘𝑗) = ((2 · 𝑗) − 1)) |
361 | | eleq1w 2821 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑖 → (𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ}) ↔ 𝑖 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈
ℕ}))) |
362 | 361 | anbi2d 628 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) ↔ ((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑖 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})))) |
363 | 139 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → ((𝐹‘𝑗) ∈ ℂ ↔ (𝐹‘𝑖) ∈ ℂ)) |
364 | 362, 363 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑗 = 𝑖 → ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) → (𝐹‘𝑗) ∈ ℂ) ↔ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑖 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) → (𝐹‘𝑖) ∈ ℂ))) |
365 | 364, 136 | chvarvv 2003 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑖 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})) → (𝐹‘𝑖) ∈ ℂ) |
366 | 143, 144,
352, 360, 365 | fsumf1o 15363 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑖 ∈ ((1...((2 · 𝑘) − 1)) ∖ {𝑛 ∈ ℕ ∣ (𝑛 / 2) ∈ ℕ})(𝐹‘𝑖) = Σ𝑗 ∈ (1...𝑘)(𝐹‘((2 · 𝑗) − 1))) |
367 | 95, 142, 366 | 3eqtrrd 2783 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(𝐹‘((2 · 𝑗) − 1)) = Σ𝑗 ∈ (1...((2 · 𝑘) − 1))(𝐹‘𝑗)) |
368 | | ovex 7288 |
. . . . . . . . . 10
⊢ ((2
· 𝑘) − 1)
∈ V |
369 | 20 | fvmpt2 6868 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ ∧ ((2
· 𝑘) − 1)
∈ V) → ((𝑘 ∈
ℕ ↦ ((2 · 𝑘) − 1))‘𝑘) = ((2 · 𝑘) − 1)) |
370 | 368, 369 | mpan2 687 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘𝑘) = ((2 ·
𝑘) −
1)) |
371 | 370 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ →
(1...((𝑘 ∈ ℕ
↦ ((2 · 𝑘)
− 1))‘𝑘)) =
(1...((2 · 𝑘)
− 1))) |
372 | 371 | eqcomd 2744 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → (1...((2
· 𝑘) − 1)) =
(1...((𝑘 ∈ ℕ
↦ ((2 · 𝑘)
− 1))‘𝑘))) |
373 | 372 | sumeq1d 15341 |
. . . . . 6
⊢ (𝑘 ∈ ℕ →
Σ𝑗 ∈ (1...((2
· 𝑘) −
1))(𝐹‘𝑗) = Σ𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘))(𝐹‘𝑗)) |
374 | 373 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...((2 · 𝑘) − 1))(𝐹‘𝑗) = Σ𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘))(𝐹‘𝑗)) |
375 | 367, 374 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(𝐹‘((2 · 𝑗) − 1)) = Σ𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘))(𝐹‘𝑗)) |
376 | | elfznn 13214 |
. . . . . . 7
⊢ (𝑗 ∈ (1...𝑘) → 𝑗 ∈ ℕ) |
377 | 376 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → 𝑗 ∈ ℕ) |
378 | 12 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑘)) → 𝐹:ℕ⟶ℂ) |
379 | 30 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑘) → 2 ∈ ℤ) |
380 | | elfzelz 13185 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑘) → 𝑗 ∈ ℤ) |
381 | 379, 380 | zmulcld 12361 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (1...𝑘) → (2 · 𝑗) ∈ ℤ) |
382 | | 1zzd 12281 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (1...𝑘) → 1 ∈ ℤ) |
383 | 381, 382 | zsubcld 12360 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (1...𝑘) → ((2 · 𝑗) − 1) ∈ ℤ) |
384 | | 0red 10909 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (1...𝑘) → 0 ∈ ℝ) |
385 | 38 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...𝑘) → 2 ∈ ℝ) |
386 | 24, 385 | eqeltrid 2843 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑘) → (2 · 1) ∈
ℝ) |
387 | | 1red 10907 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑘) → 1 ∈ ℝ) |
388 | 386, 387 | resubcld 11333 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (1...𝑘) → ((2 · 1) − 1) ∈
ℝ) |
389 | 383 | zred 12355 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (1...𝑘) → ((2 · 𝑗) − 1) ∈ ℝ) |
390 | | 0lt1 11427 |
. . . . . . . . . . . 12
⊢ 0 <
1 |
391 | 153 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑘) → 1 = ((2 · 1) −
1)) |
392 | 390, 391 | breqtrid 5107 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (1...𝑘) → 0 < ((2 · 1) −
1)) |
393 | 381 | zred 12355 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑘) → (2 · 𝑗) ∈ ℝ) |
394 | 376 | nnred 11918 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...𝑘) → 𝑗 ∈ ℝ) |
395 | 161 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...𝑘) → 0 ≤ 2) |
396 | | elfzle1 13188 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...𝑘) → 1 ≤ 𝑗) |
397 | 387, 394,
385, 395, 396 | lemul2ad 11845 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑘) → (2 · 1) ≤ (2 ·
𝑗)) |
398 | 386, 393,
387, 397 | lesub1dd 11521 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (1...𝑘) → ((2 · 1) − 1) ≤ ((2
· 𝑗) −
1)) |
399 | 384, 388,
389, 392, 398 | ltletrd 11065 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (1...𝑘) → 0 < ((2 · 𝑗) − 1)) |
400 | | elnnz 12259 |
. . . . . . . . . 10
⊢ (((2
· 𝑗) − 1)
∈ ℕ ↔ (((2 · 𝑗) − 1) ∈ ℤ ∧ 0 < ((2
· 𝑗) −
1))) |
401 | 383, 399,
400 | sylanbrc 582 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...𝑘) → ((2 · 𝑗) − 1) ∈ ℕ) |
402 | 401 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑘)) → ((2 · 𝑗) − 1) ∈ ℕ) |
403 | 378, 402 | ffvelrnd 6944 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑘)) → (𝐹‘((2 · 𝑗) − 1)) ∈
ℂ) |
404 | 403 | adantlr 711 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → (𝐹‘((2 · 𝑗) − 1)) ∈
ℂ) |
405 | 59 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 → (𝐹‘((2 · 𝑘) − 1)) = (𝐹‘((2 · 𝑗) − 1))) |
406 | 405 | cbvmptv 5183 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1))) = (𝑗 ∈ ℕ ↦ (𝐹‘((2 · 𝑗) − 1))) |
407 | 406 | fvmpt2 6868 |
. . . . . 6
⊢ ((𝑗 ∈ ℕ ∧ (𝐹‘((2 · 𝑗) − 1)) ∈ ℂ)
→ ((𝑘 ∈ ℕ
↦ (𝐹‘((2
· 𝑘) −
1)))‘𝑗) = (𝐹‘((2 · 𝑗) − 1))) |
408 | 377, 404,
407 | syl2anc 583 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...𝑘)) → ((𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))‘𝑗) = (𝐹‘((2 · 𝑗) − 1))) |
409 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
410 | 409, 8 | eleqtrdi 2849 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈
(ℤ≥‘1)) |
411 | 408, 410,
404 | fsumser 15370 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...𝑘)(𝐹‘((2 · 𝑗) − 1)) = (seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1))))‘𝑘)) |
412 | | eqidd 2739 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘))) → (𝐹‘𝑗) = (𝐹‘𝑗)) |
413 | 155 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → (2
· 1) ∈ ℝ) |
414 | | 1red 10907 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 1 ∈
ℝ) |
415 | 161 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 0 ≤
2) |
416 | | nnge1 11931 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 1 ≤
𝑘) |
417 | 414, 40, 39, 415, 416 | lemul2ad 11845 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → (2
· 1) ≤ (2 · 𝑘)) |
418 | 413, 41, 414, 417 | lesub1dd 11521 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → ((2
· 1) − 1) ≤ ((2 · 𝑘) − 1)) |
419 | 153, 418 | eqbrtrid 5105 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → 1 ≤
((2 · 𝑘) −
1)) |
420 | | eluz2 12517 |
. . . . . . . 8
⊢ (((2
· 𝑘) − 1)
∈ (ℤ≥‘1) ↔ (1 ∈ ℤ ∧ ((2
· 𝑘) − 1)
∈ ℤ ∧ 1 ≤ ((2 · 𝑘) − 1))) |
421 | 36, 65, 419, 420 | syl3anbrc 1341 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → ((2
· 𝑘) − 1)
∈ (ℤ≥‘1)) |
422 | 67, 421 | eqeltrd 2839 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘𝑘) ∈
(ℤ≥‘1)) |
423 | 422 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘) ∈
(ℤ≥‘1)) |
424 | | simpll 763 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘))) → 𝜑) |
425 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘𝑘))) → 𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘𝑘))) |
426 | 371 | adantr 480 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘𝑘))) →
(1...((𝑘 ∈ ℕ
↦ ((2 · 𝑘)
− 1))‘𝑘)) =
(1...((2 · 𝑘)
− 1))) |
427 | 425, 426 | eleqtrd 2841 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ ∧ 𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘𝑘))) → 𝑗 ∈ (1...((2 · 𝑘) − 1))) |
428 | 427 | adantll 710 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘))) → 𝑗 ∈ (1...((2 · 𝑘) − 1))) |
429 | 424, 428,
93 | syl2anc 583 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘))) → (𝐹‘𝑗) ∈ ℂ) |
430 | 412, 423,
429 | fsumser 15370 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → Σ𝑗 ∈ (1...((𝑘 ∈ ℕ ↦ ((2
· 𝑘) −
1))‘𝑘))(𝐹‘𝑗) = (seq1( + , 𝐹)‘((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘))) |
431 | 375, 411,
430 | 3eqtr3d 2786 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1))))‘𝑘) = (seq1( + , 𝐹)‘((𝑘 ∈ ℕ ↦ ((2 · 𝑘) − 1))‘𝑘))) |
432 | 1, 2, 6, 7, 8, 9, 11, 15, 16, 29, 73, 75, 431 | climsuse 43039 |
. 2
⊢ (𝜑 → seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ⇝ 𝐵) |
433 | | eqidd 2739 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
434 | 8, 9, 433, 13 | isum 15359 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ ℕ (𝐹‘𝑘) = ( ⇝ ‘seq1( + , 𝐹))) |
435 | | climrel 15129 |
. . . . . . 7
⊢ Rel
⇝ |
436 | 435 | releldmi 5846 |
. . . . . 6
⊢ (seq1( +
, 𝐹) ⇝ 𝐵 → seq1( + , 𝐹) ∈ dom ⇝
) |
437 | 16, 436 | syl 17 |
. . . . 5
⊢ (𝜑 → seq1( + , 𝐹) ∈ dom ⇝
) |
438 | | climdm 15191 |
. . . . 5
⊢ (seq1( +
, 𝐹) ∈ dom ⇝
↔ seq1( + , 𝐹) ⇝
( ⇝ ‘seq1( + , 𝐹))) |
439 | 437, 438 | sylib 217 |
. . . 4
⊢ (𝜑 → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1(
+ , 𝐹))) |
440 | | climuni 15189 |
. . . 4
⊢ ((seq1( +
, 𝐹) ⇝ ( ⇝
‘seq1( + , 𝐹)) ∧
seq1( + , 𝐹) ⇝ 𝐵) → ( ⇝ ‘seq1(
+ , 𝐹)) = 𝐵) |
441 | 439, 16, 440 | syl2anc 583 |
. . 3
⊢ (𝜑 → ( ⇝ ‘seq1( + ,
𝐹)) = 𝐵) |
442 | 435 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → Rel ⇝
) |
443 | | releldm 5842 |
. . . . . . . 8
⊢ ((Rel
⇝ ∧ seq1( + , (𝑘
∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ⇝ 𝐵) → seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ∈ dom ⇝
) |
444 | 442, 432,
443 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ∈ dom
⇝ ) |
445 | | climdm 15191 |
. . . . . . 7
⊢ (seq1( +
, (𝑘 ∈ ℕ ↦
(𝐹‘((2 · 𝑘) − 1)))) ∈ dom
⇝ ↔ seq1( + , (𝑘
∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ⇝ ( ⇝
‘seq1( + , (𝑘 ∈
ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))))) |
446 | 444, 445 | sylib 217 |
. . . . . 6
⊢ (𝜑 → seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ⇝ (
⇝ ‘seq1( + , (𝑘
∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))))) |
447 | 406 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1))) = (𝑗 ∈ ℕ ↦ (𝐹‘((2 · 𝑗) − 1)))) |
448 | 447 | seqeq3d 13657 |
. . . . . . 7
⊢ (𝜑 → seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) = seq1( + ,
(𝑗 ∈ ℕ ↦
(𝐹‘((2 · 𝑗) −
1))))) |
449 | 448 | fveq2d 6760 |
. . . . . 6
⊢ (𝜑 → ( ⇝ ‘seq1( + ,
(𝑘 ∈ ℕ ↦
(𝐹‘((2 · 𝑘) − 1))))) = ( ⇝
‘seq1( + , (𝑗 ∈
ℕ ↦ (𝐹‘((2 · 𝑗) − 1)))))) |
450 | 446, 449 | breqtrd 5096 |
. . . . 5
⊢ (𝜑 → seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ⇝ (
⇝ ‘seq1( + , (𝑗
∈ ℕ ↦ (𝐹‘((2 · 𝑗) − 1)))))) |
451 | | climuni 15189 |
. . . . 5
⊢ ((seq1( +
, (𝑘 ∈ ℕ ↦
(𝐹‘((2 · 𝑘) − 1)))) ⇝ 𝐵 ∧ seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ⇝ (
⇝ ‘seq1( + , (𝑗
∈ ℕ ↦ (𝐹‘((2 · 𝑗) − 1)))))) → 𝐵 = ( ⇝ ‘seq1( + , (𝑗 ∈ ℕ ↦ (𝐹‘((2 · 𝑗) −
1)))))) |
452 | 432, 450,
451 | syl2anc 583 |
. . . 4
⊢ (𝜑 → 𝐵 = ( ⇝ ‘seq1( + , (𝑗 ∈ ℕ ↦ (𝐹‘((2 · 𝑗) −
1)))))) |
453 | | eqidd 2739 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑗 ∈ ℕ ↦ (𝐹‘((2 · 𝑗) − 1))) = (𝑗 ∈ ℕ ↦ (𝐹‘((2 · 𝑗) − 1)))) |
454 | | eqcom 2745 |
. . . . . . . 8
⊢ (𝑘 = 𝑗 ↔ 𝑗 = 𝑘) |
455 | | eqcom 2745 |
. . . . . . . 8
⊢ ((𝐹‘((2 · 𝑘) − 1)) = (𝐹‘((2 · 𝑗) − 1)) ↔ (𝐹‘((2 · 𝑗) − 1)) = (𝐹‘((2 · 𝑘) − 1))) |
456 | 405, 454,
455 | 3imtr3i 290 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (𝐹‘((2 · 𝑗) − 1)) = (𝐹‘((2 · 𝑘) − 1))) |
457 | 456 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑗 = 𝑘) → (𝐹‘((2 · 𝑗) − 1)) = (𝐹‘((2 · 𝑘) − 1))) |
458 | 12 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐹:ℕ⟶ℂ) |
459 | 421, 8 | eleqtrrdi 2850 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → ((2
· 𝑘) − 1)
∈ ℕ) |
460 | 459 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) − 1) ∈
ℕ) |
461 | 458, 460 | ffvelrnd 6944 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘((2 · 𝑘) − 1)) ∈
ℂ) |
462 | 453, 457,
409, 461 | fvmptd 6864 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝐹‘((2 · 𝑗) − 1)))‘𝑘) = (𝐹‘((2 · 𝑘) − 1))) |
463 | 8, 9, 462, 461 | isum 15359 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ ℕ (𝐹‘((2 · 𝑘) − 1)) = ( ⇝ ‘seq1( + ,
(𝑗 ∈ ℕ ↦
(𝐹‘((2 · 𝑗) −
1)))))) |
464 | 452, 463 | eqtr4d 2781 |
. . 3
⊢ (𝜑 → 𝐵 = Σ𝑘 ∈ ℕ (𝐹‘((2 · 𝑘) − 1))) |
465 | 434, 441,
464 | 3eqtrd 2782 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ ℕ (𝐹‘𝑘) = Σ𝑘 ∈ ℕ (𝐹‘((2 · 𝑘) − 1))) |
466 | 432, 465 | jca 511 |
1
⊢ (𝜑 → (seq1( + , (𝑘 ∈ ℕ ↦ (𝐹‘((2 · 𝑘) − 1)))) ⇝ 𝐵 ∧ Σ𝑘 ∈ ℕ (𝐹‘𝑘) = Σ𝑘 ∈ ℕ (𝐹‘((2 · 𝑘) − 1)))) |