MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phicl2 Structured version   Visualization version   GIF version

Theorem phicl2 16153
Description: Bounds and closure for the value of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
phicl2 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ (1...𝑁))

Proof of Theorem phicl2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 phival 16152 . 2 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
2 fzfi 13382 . . . . . . 7 (1...𝑁) ∈ Fin
3 ssrab2 3985 . . . . . . 7 {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...𝑁)
4 ssfi 8760 . . . . . . 7 (((1...𝑁) ∈ Fin ∧ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...𝑁)) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin)
52, 3, 4mp2an 692 . . . . . 6 {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin
6 hashcl 13760 . . . . . 6 ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin → (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ ℕ0)
75, 6ax-mp 5 . . . . 5 (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ ℕ0
87nn0zi 12039 . . . 4 (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ ℤ
98a1i 11 . . 3 (𝑁 ∈ ℕ → (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ ℤ)
10 1z 12044 . . . . 5 1 ∈ ℤ
11 hashsng 13773 . . . . 5 (1 ∈ ℤ → (♯‘{1}) = 1)
1210, 11ax-mp 5 . . . 4 (♯‘{1}) = 1
13 ovex 7184 . . . . . . 7 (1...𝑁) ∈ V
1413rabex 5203 . . . . . 6 {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ V
15 oveq1 7158 . . . . . . . . 9 (𝑥 = 1 → (𝑥 gcd 𝑁) = (1 gcd 𝑁))
1615eqeq1d 2761 . . . . . . . 8 (𝑥 = 1 → ((𝑥 gcd 𝑁) = 1 ↔ (1 gcd 𝑁) = 1))
17 eluzfz1 12956 . . . . . . . . 9 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
18 nnuz 12314 . . . . . . . . 9 ℕ = (ℤ‘1)
1917, 18eleq2s 2871 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ (1...𝑁))
20 nnz 12036 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
21 1gcd 15925 . . . . . . . . 9 (𝑁 ∈ ℤ → (1 gcd 𝑁) = 1)
2220, 21syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (1 gcd 𝑁) = 1)
2316, 19, 22elrabd 3605 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∈ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})
2423snssd 4700 . . . . . 6 (𝑁 ∈ ℕ → {1} ⊆ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})
25 ssdomg 8574 . . . . . 6 ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ V → ({1} ⊆ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} → {1} ≼ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
2614, 24, 25mpsyl 68 . . . . 5 (𝑁 ∈ ℕ → {1} ≼ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})
27 snfi 8615 . . . . . 6 {1} ∈ Fin
28 hashdom 13783 . . . . . 6 (({1} ∈ Fin ∧ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin) → ((♯‘{1}) ≤ (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ↔ {1} ≼ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
2927, 5, 28mp2an 692 . . . . 5 ((♯‘{1}) ≤ (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ↔ {1} ≼ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})
3026, 29sylibr 237 . . . 4 (𝑁 ∈ ℕ → (♯‘{1}) ≤ (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
3112, 30eqbrtrrid 5069 . . 3 (𝑁 ∈ ℕ → 1 ≤ (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
32 ssdomg 8574 . . . . . 6 ((1...𝑁) ∈ V → ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...𝑁) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...𝑁)))
3313, 3, 32mp2 9 . . . . 5 {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...𝑁)
34 hashdom 13783 . . . . . 6 (({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ (♯‘(1...𝑁)) ↔ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...𝑁)))
355, 2, 34mp2an 692 . . . . 5 ((♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ (♯‘(1...𝑁)) ↔ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...𝑁))
3633, 35mpbir 234 . . . 4 (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ (♯‘(1...𝑁))
37 nnnn0 11934 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
38 hashfz1 13749 . . . . 5 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
3937, 38syl 17 . . . 4 (𝑁 ∈ ℕ → (♯‘(1...𝑁)) = 𝑁)
4036, 39breqtrid 5070 . . 3 (𝑁 ∈ ℕ → (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ 𝑁)
41 elfz1 12937 . . . 4 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ (1...𝑁) ↔ ((♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ ℤ ∧ 1 ≤ (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∧ (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ 𝑁)))
4210, 20, 41sylancr 591 . . 3 (𝑁 ∈ ℕ → ((♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ (1...𝑁) ↔ ((♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ ℤ ∧ 1 ≤ (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∧ (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ 𝑁)))
439, 31, 40, 42mpbir3and 1340 . 2 (𝑁 ∈ ℕ → (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ (1...𝑁))
441, 43eqeltrd 2853 1 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ (1...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1085   = wceq 1539  wcel 2112  {crab 3075  Vcvv 3410  wss 3859  {csn 4523   class class class wbr 5033  cfv 6336  (class class class)co 7151  cdom 8526  Fincfn 8528  1c1 10569  cle 10707  cn 11667  0cn0 11927  cz 12013  cuz 12275  ...cfz 12932  chash 13733   gcd cgcd 15886  ϕcphi 16149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645  ax-pre-sup 10646
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-oadd 8117  df-er 8300  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-sup 8932  df-inf 8933  df-card 9394  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-div 11329  df-nn 11668  df-2 11730  df-3 11731  df-n0 11928  df-xnn0 12000  df-z 12014  df-uz 12276  df-rp 12424  df-fz 12933  df-seq 13412  df-exp 13473  df-hash 13734  df-cj 14499  df-re 14500  df-im 14501  df-sqrt 14635  df-abs 14636  df-dvds 15649  df-gcd 15887  df-phi 16151
This theorem is referenced by:  phicl  16154  phi1  16158
  Copyright terms: Public domain W3C validator