| Step | Hyp | Ref
| Expression |
| 1 | | phival 16804 |
. 2
⊢ (𝑁 ∈ ℕ →
(ϕ‘𝑁) =
(♯‘{𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
| 2 | | fzfi 14013 |
. . . . . . 7
⊢
(1...𝑁) ∈
Fin |
| 3 | | ssrab2 4080 |
. . . . . . 7
⊢ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...𝑁) |
| 4 | | ssfi 9213 |
. . . . . . 7
⊢
(((1...𝑁) ∈ Fin
∧ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...𝑁)) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin) |
| 5 | 2, 3, 4 | mp2an 692 |
. . . . . 6
⊢ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin |
| 6 | | hashcl 14395 |
. . . . . 6
⊢ ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin →
(♯‘{𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈
ℕ0) |
| 7 | 5, 6 | ax-mp 5 |
. . . . 5
⊢
(♯‘{𝑥
∈ (1...𝑁) ∣
(𝑥 gcd 𝑁) = 1}) ∈
ℕ0 |
| 8 | 7 | nn0zi 12642 |
. . . 4
⊢
(♯‘{𝑥
∈ (1...𝑁) ∣
(𝑥 gcd 𝑁) = 1}) ∈ ℤ |
| 9 | 8 | a1i 11 |
. . 3
⊢ (𝑁 ∈ ℕ →
(♯‘{𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ ℤ) |
| 10 | | 1z 12647 |
. . . . 5
⊢ 1 ∈
ℤ |
| 11 | | hashsng 14408 |
. . . . 5
⊢ (1 ∈
ℤ → (♯‘{1}) = 1) |
| 12 | 10, 11 | ax-mp 5 |
. . . 4
⊢
(♯‘{1}) = 1 |
| 13 | | ovex 7464 |
. . . . . . 7
⊢
(1...𝑁) ∈
V |
| 14 | 13 | rabex 5339 |
. . . . . 6
⊢ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ V |
| 15 | | oveq1 7438 |
. . . . . . . . 9
⊢ (𝑥 = 1 → (𝑥 gcd 𝑁) = (1 gcd 𝑁)) |
| 16 | 15 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑥 = 1 → ((𝑥 gcd 𝑁) = 1 ↔ (1 gcd 𝑁) = 1)) |
| 17 | | eluzfz1 13571 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘1) → 1 ∈ (1...𝑁)) |
| 18 | | nnuz 12921 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
| 19 | 17, 18 | eleq2s 2859 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 1 ∈
(1...𝑁)) |
| 20 | | nnz 12634 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
| 21 | | 1gcd 16570 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → (1 gcd
𝑁) = 1) |
| 22 | 20, 21 | syl 17 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → (1 gcd
𝑁) = 1) |
| 23 | 16, 19, 22 | elrabd 3694 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 1 ∈
{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) |
| 24 | 23 | snssd 4809 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → {1}
⊆ {𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) |
| 25 | | ssdomg 9040 |
. . . . . 6
⊢ ({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ V → ({1} ⊆ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} → {1} ≼ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
| 26 | 14, 24, 25 | mpsyl 68 |
. . . . 5
⊢ (𝑁 ∈ ℕ → {1}
≼ {𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) |
| 27 | | snfi 9083 |
. . . . . 6
⊢ {1}
∈ Fin |
| 28 | | hashdom 14418 |
. . . . . 6
⊢ (({1}
∈ Fin ∧ {𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin) →
((♯‘{1}) ≤ (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ↔ {1} ≼ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
| 29 | 27, 5, 28 | mp2an 692 |
. . . . 5
⊢
((♯‘{1}) ≤ (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ↔ {1} ≼ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) |
| 30 | 26, 29 | sylibr 234 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(♯‘{1}) ≤ (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
| 31 | 12, 30 | eqbrtrrid 5179 |
. . 3
⊢ (𝑁 ∈ ℕ → 1 ≤
(♯‘{𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
| 32 | | ssdomg 9040 |
. . . . . 6
⊢
((1...𝑁) ∈ V
→ ({𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...𝑁) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...𝑁))) |
| 33 | 13, 3, 32 | mp2 9 |
. . . . 5
⊢ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...𝑁) |
| 34 | | hashdom 14418 |
. . . . . 6
⊢ (({𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin ∧ (1...𝑁) ∈ Fin) →
((♯‘{𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ (♯‘(1...𝑁)) ↔ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...𝑁))) |
| 35 | 5, 2, 34 | mp2an 692 |
. . . . 5
⊢
((♯‘{𝑥
∈ (1...𝑁) ∣
(𝑥 gcd 𝑁) = 1}) ≤ (♯‘(1...𝑁)) ↔ {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ≼ (1...𝑁)) |
| 36 | 33, 35 | mpbir 231 |
. . . 4
⊢
(♯‘{𝑥
∈ (1...𝑁) ∣
(𝑥 gcd 𝑁) = 1}) ≤ (♯‘(1...𝑁)) |
| 37 | | nnnn0 12533 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
| 38 | | hashfz1 14385 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (♯‘(1...𝑁)) = 𝑁) |
| 39 | 37, 38 | syl 17 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(♯‘(1...𝑁)) =
𝑁) |
| 40 | 36, 39 | breqtrid 5180 |
. . 3
⊢ (𝑁 ∈ ℕ →
(♯‘{𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ 𝑁) |
| 41 | | elfz1 13552 |
. . . 4
⊢ ((1
∈ ℤ ∧ 𝑁
∈ ℤ) → ((♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ (1...𝑁) ↔ ((♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ ℤ ∧ 1 ≤
(♯‘{𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∧ (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ 𝑁))) |
| 42 | 10, 20, 41 | sylancr 587 |
. . 3
⊢ (𝑁 ∈ ℕ →
((♯‘{𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ (1...𝑁) ↔ ((♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ ℤ ∧ 1 ≤
(♯‘{𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∧ (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ≤ 𝑁))) |
| 43 | 9, 31, 40, 42 | mpbir3and 1343 |
. 2
⊢ (𝑁 ∈ ℕ →
(♯‘{𝑥 ∈
(1...𝑁) ∣ (𝑥 gcd 𝑁) = 1}) ∈ (1...𝑁)) |
| 44 | 1, 43 | eqeltrd 2841 |
1
⊢ (𝑁 ∈ ℕ →
(ϕ‘𝑁) ∈
(1...𝑁)) |