Proof of Theorem unierri
Step | Hyp | Ref
| Expression |
1 | | unierr.1 |
. . . . . . . 8
⊢ 𝐹 ∈ UniOp |
2 | | unopbd 30278 |
. . . . . . . 8
⊢ (𝐹 ∈ UniOp → 𝐹 ∈
BndLinOp) |
3 | 1, 2 | ax-mp 5 |
. . . . . . 7
⊢ 𝐹 ∈
BndLinOp |
4 | | bdopf 30125 |
. . . . . . 7
⊢ (𝐹 ∈ BndLinOp → 𝐹: ℋ⟶
ℋ) |
5 | 3, 4 | ax-mp 5 |
. . . . . 6
⊢ 𝐹: ℋ⟶
ℋ |
6 | | unierr.2 |
. . . . . . . 8
⊢ 𝐺 ∈ UniOp |
7 | | unopbd 30278 |
. . . . . . . 8
⊢ (𝐺 ∈ UniOp → 𝐺 ∈
BndLinOp) |
8 | 6, 7 | ax-mp 5 |
. . . . . . 7
⊢ 𝐺 ∈
BndLinOp |
9 | | bdopf 30125 |
. . . . . . 7
⊢ (𝐺 ∈ BndLinOp → 𝐺: ℋ⟶
ℋ) |
10 | 8, 9 | ax-mp 5 |
. . . . . 6
⊢ 𝐺: ℋ⟶
ℋ |
11 | 5, 10 | hocofi 30029 |
. . . . 5
⊢ (𝐹 ∘ 𝐺): ℋ⟶ ℋ |
12 | | unierr.3 |
. . . . . . . 8
⊢ 𝑆 ∈ UniOp |
13 | | unopbd 30278 |
. . . . . . . 8
⊢ (𝑆 ∈ UniOp → 𝑆 ∈
BndLinOp) |
14 | 12, 13 | ax-mp 5 |
. . . . . . 7
⊢ 𝑆 ∈
BndLinOp |
15 | | bdopf 30125 |
. . . . . . 7
⊢ (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶
ℋ) |
16 | 14, 15 | ax-mp 5 |
. . . . . 6
⊢ 𝑆: ℋ⟶
ℋ |
17 | | unierr.4 |
. . . . . . . 8
⊢ 𝑇 ∈ UniOp |
18 | | unopbd 30278 |
. . . . . . . 8
⊢ (𝑇 ∈ UniOp → 𝑇 ∈
BndLinOp) |
19 | 17, 18 | ax-mp 5 |
. . . . . . 7
⊢ 𝑇 ∈
BndLinOp |
20 | | bdopf 30125 |
. . . . . . 7
⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶
ℋ) |
21 | 19, 20 | ax-mp 5 |
. . . . . 6
⊢ 𝑇: ℋ⟶
ℋ |
22 | 16, 21 | hocofi 30029 |
. . . . 5
⊢ (𝑆 ∘ 𝑇): ℋ⟶ ℋ |
23 | 11, 22 | hosubcli 30032 |
. . . 4
⊢ ((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝑇)): ℋ⟶ ℋ |
24 | | nmop0h 30254 |
. . . 4
⊢ ((
ℋ = 0ℋ ∧ ((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝑇)): ℋ⟶ ℋ) →
(normop‘((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝑇))) = 0) |
25 | 23, 24 | mpan2 687 |
. . 3
⊢ ( ℋ
= 0ℋ → (normop‘((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝑇))) = 0) |
26 | | 0le0 12004 |
. . . . 5
⊢ 0 ≤
0 |
27 | | 00id 11080 |
. . . . 5
⊢ (0 + 0) =
0 |
28 | 26, 27 | breqtrri 5097 |
. . . 4
⊢ 0 ≤ (0
+ 0) |
29 | 5, 16 | hosubcli 30032 |
. . . . . 6
⊢ (𝐹 −op 𝑆): ℋ⟶
ℋ |
30 | | nmop0h 30254 |
. . . . . 6
⊢ ((
ℋ = 0ℋ ∧ (𝐹 −op 𝑆): ℋ⟶ ℋ) →
(normop‘(𝐹
−op 𝑆)) =
0) |
31 | 29, 30 | mpan2 687 |
. . . . 5
⊢ ( ℋ
= 0ℋ → (normop‘(𝐹 −op 𝑆)) = 0) |
32 | 10, 21 | hosubcli 30032 |
. . . . . 6
⊢ (𝐺 −op 𝑇): ℋ⟶
ℋ |
33 | | nmop0h 30254 |
. . . . . 6
⊢ ((
ℋ = 0ℋ ∧ (𝐺 −op 𝑇): ℋ⟶ ℋ) →
(normop‘(𝐺
−op 𝑇)) =
0) |
34 | 32, 33 | mpan2 687 |
. . . . 5
⊢ ( ℋ
= 0ℋ → (normop‘(𝐺 −op 𝑇)) = 0) |
35 | 31, 34 | oveq12d 7273 |
. . . 4
⊢ ( ℋ
= 0ℋ → ((normop‘(𝐹 −op 𝑆)) + (normop‘(𝐺 −op 𝑇))) = (0 + 0)) |
36 | 28, 35 | breqtrrid 5108 |
. . 3
⊢ ( ℋ
= 0ℋ → 0 ≤ ((normop‘(𝐹 −op 𝑆)) +
(normop‘(𝐺
−op 𝑇)))) |
37 | 25, 36 | eqbrtrd 5092 |
. 2
⊢ ( ℋ
= 0ℋ → (normop‘((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝑇))) ≤ ((normop‘(𝐹 −op 𝑆)) +
(normop‘(𝐺
−op 𝑇)))) |
38 | 16, 10 | hocofi 30029 |
. . . . . 6
⊢ (𝑆 ∘ 𝐺): ℋ⟶ ℋ |
39 | 11, 38, 22 | honpncani 30090 |
. . . . 5
⊢ (((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺)) +op ((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇))) = ((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝑇)) |
40 | 39 | fveq2i 6759 |
. . . 4
⊢
(normop‘(((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺)) +op ((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇)))) = (normop‘((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝑇))) |
41 | 3, 8 | bdopcoi 30361 |
. . . . . . 7
⊢ (𝐹 ∘ 𝐺) ∈ BndLinOp |
42 | 14, 8 | bdopcoi 30361 |
. . . . . . 7
⊢ (𝑆 ∘ 𝐺) ∈ BndLinOp |
43 | 41, 42 | bdophdi 30360 |
. . . . . 6
⊢ ((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺)) ∈ BndLinOp |
44 | 14, 19 | bdopcoi 30361 |
. . . . . . 7
⊢ (𝑆 ∘ 𝑇) ∈ BndLinOp |
45 | 42, 44 | bdophdi 30360 |
. . . . . 6
⊢ ((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇)) ∈ BndLinOp |
46 | 43, 45 | nmoptrii 30357 |
. . . . 5
⊢
(normop‘(((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺)) +op ((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇)))) ≤ ((normop‘((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺))) + (normop‘((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇)))) |
47 | 5, 16, 10 | hocsubdiri 30043 |
. . . . . . . 8
⊢ ((𝐹 −op 𝑆) ∘ 𝐺) = ((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺)) |
48 | 47 | fveq2i 6759 |
. . . . . . 7
⊢
(normop‘((𝐹 −op 𝑆) ∘ 𝐺)) = (normop‘((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺))) |
49 | 3, 14 | bdophdi 30360 |
. . . . . . . 8
⊢ (𝐹 −op 𝑆) ∈
BndLinOp |
50 | 49, 8 | nmopcoi 30358 |
. . . . . . 7
⊢
(normop‘((𝐹 −op 𝑆) ∘ 𝐺)) ≤ ((normop‘(𝐹 −op 𝑆)) ·
(normop‘𝐺)) |
51 | 48, 50 | eqbrtrri 5093 |
. . . . . 6
⊢
(normop‘((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺))) ≤ ((normop‘(𝐹 −op 𝑆)) ·
(normop‘𝐺)) |
52 | | bdopln 30124 |
. . . . . . . . . 10
⊢ (𝑆 ∈ BndLinOp → 𝑆 ∈ LinOp) |
53 | 14, 52 | ax-mp 5 |
. . . . . . . . 9
⊢ 𝑆 ∈ LinOp |
54 | 53, 10, 21 | hoddii 30252 |
. . . . . . . 8
⊢ (𝑆 ∘ (𝐺 −op 𝑇)) = ((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇)) |
55 | 54 | fveq2i 6759 |
. . . . . . 7
⊢
(normop‘(𝑆 ∘ (𝐺 −op 𝑇))) = (normop‘((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇))) |
56 | 8, 19 | bdophdi 30360 |
. . . . . . . 8
⊢ (𝐺 −op 𝑇) ∈
BndLinOp |
57 | 14, 56 | nmopcoi 30358 |
. . . . . . 7
⊢
(normop‘(𝑆 ∘ (𝐺 −op 𝑇))) ≤ ((normop‘𝑆) ·
(normop‘(𝐺
−op 𝑇))) |
58 | 55, 57 | eqbrtrri 5093 |
. . . . . 6
⊢
(normop‘((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇))) ≤ ((normop‘𝑆) ·
(normop‘(𝐺
−op 𝑇))) |
59 | | nmopre 30133 |
. . . . . . . 8
⊢ (((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺)) ∈ BndLinOp →
(normop‘((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺))) ∈ ℝ) |
60 | 43, 59 | ax-mp 5 |
. . . . . . 7
⊢
(normop‘((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺))) ∈ ℝ |
61 | | nmopre 30133 |
. . . . . . . 8
⊢ (((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇)) ∈ BndLinOp →
(normop‘((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇))) ∈ ℝ) |
62 | 45, 61 | ax-mp 5 |
. . . . . . 7
⊢
(normop‘((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇))) ∈ ℝ |
63 | | nmopre 30133 |
. . . . . . . . 9
⊢ ((𝐹 −op 𝑆) ∈ BndLinOp →
(normop‘(𝐹
−op 𝑆))
∈ ℝ) |
64 | 49, 63 | ax-mp 5 |
. . . . . . . 8
⊢
(normop‘(𝐹 −op 𝑆)) ∈ ℝ |
65 | | nmopre 30133 |
. . . . . . . . 9
⊢ (𝐺 ∈ BndLinOp →
(normop‘𝐺)
∈ ℝ) |
66 | 8, 65 | ax-mp 5 |
. . . . . . . 8
⊢
(normop‘𝐺) ∈ ℝ |
67 | 64, 66 | remulcli 10922 |
. . . . . . 7
⊢
((normop‘(𝐹 −op 𝑆)) · (normop‘𝐺)) ∈
ℝ |
68 | | nmopre 30133 |
. . . . . . . . 9
⊢ (𝑆 ∈ BndLinOp →
(normop‘𝑆)
∈ ℝ) |
69 | 14, 68 | ax-mp 5 |
. . . . . . . 8
⊢
(normop‘𝑆) ∈ ℝ |
70 | | nmopre 30133 |
. . . . . . . . 9
⊢ ((𝐺 −op 𝑇) ∈ BndLinOp →
(normop‘(𝐺
−op 𝑇))
∈ ℝ) |
71 | 56, 70 | ax-mp 5 |
. . . . . . . 8
⊢
(normop‘(𝐺 −op 𝑇)) ∈ ℝ |
72 | 69, 71 | remulcli 10922 |
. . . . . . 7
⊢
((normop‘𝑆) · (normop‘(𝐺 −op 𝑇))) ∈
ℝ |
73 | 60, 62, 67, 72 | le2addi 11468 |
. . . . . 6
⊢
(((normop‘((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺))) ≤ ((normop‘(𝐹 −op 𝑆)) ·
(normop‘𝐺)) ∧ (normop‘((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇))) ≤ ((normop‘𝑆) ·
(normop‘(𝐺
−op 𝑇))))
→ ((normop‘((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺))) + (normop‘((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇)))) ≤ (((normop‘(𝐹 −op 𝑆)) ·
(normop‘𝐺)) + ((normop‘𝑆) ·
(normop‘(𝐺
−op 𝑇))))) |
74 | 51, 58, 73 | mp2an 688 |
. . . . 5
⊢
((normop‘((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺))) + (normop‘((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇)))) ≤ (((normop‘(𝐹 −op 𝑆)) ·
(normop‘𝐺)) + ((normop‘𝑆) ·
(normop‘(𝐺
−op 𝑇)))) |
75 | 43, 45 | bdophsi 30359 |
. . . . . . 7
⊢ (((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺)) +op ((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇))) ∈ BndLinOp |
76 | | nmopre 30133 |
. . . . . . 7
⊢ ((((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺)) +op ((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇))) ∈ BndLinOp →
(normop‘(((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺)) +op ((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇)))) ∈ ℝ) |
77 | 75, 76 | ax-mp 5 |
. . . . . 6
⊢
(normop‘(((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺)) +op ((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇)))) ∈ ℝ |
78 | 60, 62 | readdcli 10921 |
. . . . . 6
⊢
((normop‘((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺))) + (normop‘((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇)))) ∈ ℝ |
79 | 67, 72 | readdcli 10921 |
. . . . . 6
⊢
(((normop‘(𝐹 −op 𝑆)) · (normop‘𝐺)) +
((normop‘𝑆) · (normop‘(𝐺 −op 𝑇)))) ∈
ℝ |
80 | 77, 78, 79 | letri 11034 |
. . . . 5
⊢
(((normop‘(((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺)) +op ((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇)))) ≤ ((normop‘((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺))) + (normop‘((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇)))) ∧ ((normop‘((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺))) + (normop‘((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇)))) ≤ (((normop‘(𝐹 −op 𝑆)) ·
(normop‘𝐺)) + ((normop‘𝑆) ·
(normop‘(𝐺
−op 𝑇)))))
→ (normop‘(((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺)) +op ((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇)))) ≤ (((normop‘(𝐹 −op 𝑆)) ·
(normop‘𝐺)) + ((normop‘𝑆) ·
(normop‘(𝐺
−op 𝑇))))) |
81 | 46, 74, 80 | mp2an 688 |
. . . 4
⊢
(normop‘(((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝐺)) +op ((𝑆 ∘ 𝐺) −op (𝑆 ∘ 𝑇)))) ≤ (((normop‘(𝐹 −op 𝑆)) ·
(normop‘𝐺)) + ((normop‘𝑆) ·
(normop‘(𝐺
−op 𝑇)))) |
82 | 40, 81 | eqbrtrri 5093 |
. . 3
⊢
(normop‘((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝑇))) ≤ (((normop‘(𝐹 −op 𝑆)) ·
(normop‘𝐺)) + ((normop‘𝑆) ·
(normop‘(𝐺
−op 𝑇)))) |
83 | | nmopun 30277 |
. . . . . . 7
⊢ ((
ℋ ≠ 0ℋ ∧ 𝐺 ∈ UniOp) →
(normop‘𝐺)
= 1) |
84 | 6, 83 | mpan2 687 |
. . . . . 6
⊢ ( ℋ
≠ 0ℋ → (normop‘𝐺) = 1) |
85 | 84 | oveq2d 7271 |
. . . . 5
⊢ ( ℋ
≠ 0ℋ → ((normop‘(𝐹 −op 𝑆)) · (normop‘𝐺)) =
((normop‘(𝐹 −op 𝑆)) · 1)) |
86 | 64 | recni 10920 |
. . . . . 6
⊢
(normop‘(𝐹 −op 𝑆)) ∈ ℂ |
87 | 86 | mulid1i 10910 |
. . . . 5
⊢
((normop‘(𝐹 −op 𝑆)) · 1) =
(normop‘(𝐹
−op 𝑆)) |
88 | 85, 87 | eqtrdi 2795 |
. . . 4
⊢ ( ℋ
≠ 0ℋ → ((normop‘(𝐹 −op 𝑆)) · (normop‘𝐺)) =
(normop‘(𝐹
−op 𝑆))) |
89 | | nmopun 30277 |
. . . . . . 7
⊢ ((
ℋ ≠ 0ℋ ∧ 𝑆 ∈ UniOp) →
(normop‘𝑆)
= 1) |
90 | 12, 89 | mpan2 687 |
. . . . . 6
⊢ ( ℋ
≠ 0ℋ → (normop‘𝑆) = 1) |
91 | 90 | oveq1d 7270 |
. . . . 5
⊢ ( ℋ
≠ 0ℋ → ((normop‘𝑆) · (normop‘(𝐺 −op 𝑇))) = (1 ·
(normop‘(𝐺
−op 𝑇)))) |
92 | 71 | recni 10920 |
. . . . . 6
⊢
(normop‘(𝐺 −op 𝑇)) ∈ ℂ |
93 | 92 | mulid2i 10911 |
. . . . 5
⊢ (1
· (normop‘(𝐺 −op 𝑇))) = (normop‘(𝐺 −op 𝑇)) |
94 | 91, 93 | eqtrdi 2795 |
. . . 4
⊢ ( ℋ
≠ 0ℋ → ((normop‘𝑆) · (normop‘(𝐺 −op 𝑇))) =
(normop‘(𝐺
−op 𝑇))) |
95 | 88, 94 | oveq12d 7273 |
. . 3
⊢ ( ℋ
≠ 0ℋ → (((normop‘(𝐹 −op 𝑆)) · (normop‘𝐺)) +
((normop‘𝑆) · (normop‘(𝐺 −op 𝑇)))) =
((normop‘(𝐹 −op 𝑆)) + (normop‘(𝐺 −op 𝑇)))) |
96 | 82, 95 | breqtrid 5107 |
. 2
⊢ ( ℋ
≠ 0ℋ → (normop‘((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝑇))) ≤ ((normop‘(𝐹 −op 𝑆)) +
(normop‘(𝐺
−op 𝑇)))) |
97 | 37, 96 | pm2.61ine 3027 |
1
⊢
(normop‘((𝐹 ∘ 𝐺) −op (𝑆 ∘ 𝑇))) ≤ ((normop‘(𝐹 −op 𝑆)) +
(normop‘(𝐺
−op 𝑇))) |