HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unierri Structured version   Visualization version   GIF version

Theorem unierri 31986
Description: If we approximate a chain of unitary transformations (quantum computer gates) 𝐹, 𝐺 by other unitary transformations 𝑆, 𝑇, the error increases at most additively. Equation 4.73 of [NielsenChuang] p. 195. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
unierr.1 𝐹 ∈ UniOp
unierr.2 𝐺 ∈ UniOp
unierr.3 𝑆 ∈ UniOp
unierr.4 𝑇 ∈ UniOp
Assertion
Ref Expression
unierri (normop‘((𝐹𝐺) −op (𝑆𝑇))) ≤ ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇)))

Proof of Theorem unierri
StepHypRef Expression
1 unierr.1 . . . . . . . 8 𝐹 ∈ UniOp
2 unopbd 31897 . . . . . . . 8 (𝐹 ∈ UniOp → 𝐹 ∈ BndLinOp)
31, 2ax-mp 5 . . . . . . 7 𝐹 ∈ BndLinOp
4 bdopf 31744 . . . . . . 7 (𝐹 ∈ BndLinOp → 𝐹: ℋ⟶ ℋ)
53, 4ax-mp 5 . . . . . 6 𝐹: ℋ⟶ ℋ
6 unierr.2 . . . . . . . 8 𝐺 ∈ UniOp
7 unopbd 31897 . . . . . . . 8 (𝐺 ∈ UniOp → 𝐺 ∈ BndLinOp)
86, 7ax-mp 5 . . . . . . 7 𝐺 ∈ BndLinOp
9 bdopf 31744 . . . . . . 7 (𝐺 ∈ BndLinOp → 𝐺: ℋ⟶ ℋ)
108, 9ax-mp 5 . . . . . 6 𝐺: ℋ⟶ ℋ
115, 10hocofi 31648 . . . . 5 (𝐹𝐺): ℋ⟶ ℋ
12 unierr.3 . . . . . . . 8 𝑆 ∈ UniOp
13 unopbd 31897 . . . . . . . 8 (𝑆 ∈ UniOp → 𝑆 ∈ BndLinOp)
1412, 13ax-mp 5 . . . . . . 7 𝑆 ∈ BndLinOp
15 bdopf 31744 . . . . . . 7 (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ)
1614, 15ax-mp 5 . . . . . 6 𝑆: ℋ⟶ ℋ
17 unierr.4 . . . . . . . 8 𝑇 ∈ UniOp
18 unopbd 31897 . . . . . . . 8 (𝑇 ∈ UniOp → 𝑇 ∈ BndLinOp)
1917, 18ax-mp 5 . . . . . . 7 𝑇 ∈ BndLinOp
20 bdopf 31744 . . . . . . 7 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
2119, 20ax-mp 5 . . . . . 6 𝑇: ℋ⟶ ℋ
2216, 21hocofi 31648 . . . . 5 (𝑆𝑇): ℋ⟶ ℋ
2311, 22hosubcli 31651 . . . 4 ((𝐹𝐺) −op (𝑆𝑇)): ℋ⟶ ℋ
24 nmop0h 31873 . . . 4 (( ℋ = 0 ∧ ((𝐹𝐺) −op (𝑆𝑇)): ℋ⟶ ℋ) → (normop‘((𝐹𝐺) −op (𝑆𝑇))) = 0)
2523, 24mpan2 689 . . 3 ( ℋ = 0 → (normop‘((𝐹𝐺) −op (𝑆𝑇))) = 0)
26 0le0 12346 . . . . 5 0 ≤ 0
27 00id 11421 . . . . 5 (0 + 0) = 0
2826, 27breqtrri 5176 . . . 4 0 ≤ (0 + 0)
295, 16hosubcli 31651 . . . . . 6 (𝐹op 𝑆): ℋ⟶ ℋ
30 nmop0h 31873 . . . . . 6 (( ℋ = 0 ∧ (𝐹op 𝑆): ℋ⟶ ℋ) → (normop‘(𝐹op 𝑆)) = 0)
3129, 30mpan2 689 . . . . 5 ( ℋ = 0 → (normop‘(𝐹op 𝑆)) = 0)
3210, 21hosubcli 31651 . . . . . 6 (𝐺op 𝑇): ℋ⟶ ℋ
33 nmop0h 31873 . . . . . 6 (( ℋ = 0 ∧ (𝐺op 𝑇): ℋ⟶ ℋ) → (normop‘(𝐺op 𝑇)) = 0)
3432, 33mpan2 689 . . . . 5 ( ℋ = 0 → (normop‘(𝐺op 𝑇)) = 0)
3531, 34oveq12d 7437 . . . 4 ( ℋ = 0 → ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇))) = (0 + 0))
3628, 35breqtrrid 5187 . . 3 ( ℋ = 0 → 0 ≤ ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇))))
3725, 36eqbrtrd 5171 . 2 ( ℋ = 0 → (normop‘((𝐹𝐺) −op (𝑆𝑇))) ≤ ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇))))
3816, 10hocofi 31648 . . . . . 6 (𝑆𝐺): ℋ⟶ ℋ
3911, 38, 22honpncani 31709 . . . . 5 (((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇))) = ((𝐹𝐺) −op (𝑆𝑇))
4039fveq2i 6899 . . . 4 (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) = (normop‘((𝐹𝐺) −op (𝑆𝑇)))
413, 8bdopcoi 31980 . . . . . . 7 (𝐹𝐺) ∈ BndLinOp
4214, 8bdopcoi 31980 . . . . . . 7 (𝑆𝐺) ∈ BndLinOp
4341, 42bdophdi 31979 . . . . . 6 ((𝐹𝐺) −op (𝑆𝐺)) ∈ BndLinOp
4414, 19bdopcoi 31980 . . . . . . 7 (𝑆𝑇) ∈ BndLinOp
4542, 44bdophdi 31979 . . . . . 6 ((𝑆𝐺) −op (𝑆𝑇)) ∈ BndLinOp
4643, 45nmoptrii 31976 . . . . 5 (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ≤ ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇))))
475, 16, 10hocsubdiri 31662 . . . . . . . 8 ((𝐹op 𝑆) ∘ 𝐺) = ((𝐹𝐺) −op (𝑆𝐺))
4847fveq2i 6899 . . . . . . 7 (normop‘((𝐹op 𝑆) ∘ 𝐺)) = (normop‘((𝐹𝐺) −op (𝑆𝐺)))
493, 14bdophdi 31979 . . . . . . . 8 (𝐹op 𝑆) ∈ BndLinOp
5049, 8nmopcoi 31977 . . . . . . 7 (normop‘((𝐹op 𝑆) ∘ 𝐺)) ≤ ((normop‘(𝐹op 𝑆)) · (normop𝐺))
5148, 50eqbrtrri 5172 . . . . . 6 (normop‘((𝐹𝐺) −op (𝑆𝐺))) ≤ ((normop‘(𝐹op 𝑆)) · (normop𝐺))
52 bdopln 31743 . . . . . . . . . 10 (𝑆 ∈ BndLinOp → 𝑆 ∈ LinOp)
5314, 52ax-mp 5 . . . . . . . . 9 𝑆 ∈ LinOp
5453, 10, 21hoddii 31871 . . . . . . . 8 (𝑆 ∘ (𝐺op 𝑇)) = ((𝑆𝐺) −op (𝑆𝑇))
5554fveq2i 6899 . . . . . . 7 (normop‘(𝑆 ∘ (𝐺op 𝑇))) = (normop‘((𝑆𝐺) −op (𝑆𝑇)))
568, 19bdophdi 31979 . . . . . . . 8 (𝐺op 𝑇) ∈ BndLinOp
5714, 56nmopcoi 31977 . . . . . . 7 (normop‘(𝑆 ∘ (𝐺op 𝑇))) ≤ ((normop𝑆) · (normop‘(𝐺op 𝑇)))
5855, 57eqbrtrri 5172 . . . . . 6 (normop‘((𝑆𝐺) −op (𝑆𝑇))) ≤ ((normop𝑆) · (normop‘(𝐺op 𝑇)))
59 nmopre 31752 . . . . . . . 8 (((𝐹𝐺) −op (𝑆𝐺)) ∈ BndLinOp → (normop‘((𝐹𝐺) −op (𝑆𝐺))) ∈ ℝ)
6043, 59ax-mp 5 . . . . . . 7 (normop‘((𝐹𝐺) −op (𝑆𝐺))) ∈ ℝ
61 nmopre 31752 . . . . . . . 8 (((𝑆𝐺) −op (𝑆𝑇)) ∈ BndLinOp → (normop‘((𝑆𝐺) −op (𝑆𝑇))) ∈ ℝ)
6245, 61ax-mp 5 . . . . . . 7 (normop‘((𝑆𝐺) −op (𝑆𝑇))) ∈ ℝ
63 nmopre 31752 . . . . . . . . 9 ((𝐹op 𝑆) ∈ BndLinOp → (normop‘(𝐹op 𝑆)) ∈ ℝ)
6449, 63ax-mp 5 . . . . . . . 8 (normop‘(𝐹op 𝑆)) ∈ ℝ
65 nmopre 31752 . . . . . . . . 9 (𝐺 ∈ BndLinOp → (normop𝐺) ∈ ℝ)
668, 65ax-mp 5 . . . . . . . 8 (normop𝐺) ∈ ℝ
6764, 66remulcli 11262 . . . . . . 7 ((normop‘(𝐹op 𝑆)) · (normop𝐺)) ∈ ℝ
68 nmopre 31752 . . . . . . . . 9 (𝑆 ∈ BndLinOp → (normop𝑆) ∈ ℝ)
6914, 68ax-mp 5 . . . . . . . 8 (normop𝑆) ∈ ℝ
70 nmopre 31752 . . . . . . . . 9 ((𝐺op 𝑇) ∈ BndLinOp → (normop‘(𝐺op 𝑇)) ∈ ℝ)
7156, 70ax-mp 5 . . . . . . . 8 (normop‘(𝐺op 𝑇)) ∈ ℝ
7269, 71remulcli 11262 . . . . . . 7 ((normop𝑆) · (normop‘(𝐺op 𝑇))) ∈ ℝ
7360, 62, 67, 72le2addi 11809 . . . . . 6 (((normop‘((𝐹𝐺) −op (𝑆𝐺))) ≤ ((normop‘(𝐹op 𝑆)) · (normop𝐺)) ∧ (normop‘((𝑆𝐺) −op (𝑆𝑇))) ≤ ((normop𝑆) · (normop‘(𝐺op 𝑇)))) → ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇)))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇)))))
7451, 58, 73mp2an 690 . . . . 5 ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇)))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇))))
7543, 45bdophsi 31978 . . . . . . 7 (((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇))) ∈ BndLinOp
76 nmopre 31752 . . . . . . 7 ((((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇))) ∈ BndLinOp → (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ∈ ℝ)
7775, 76ax-mp 5 . . . . . 6 (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ∈ ℝ
7860, 62readdcli 11261 . . . . . 6 ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇)))) ∈ ℝ
7967, 72readdcli 11261 . . . . . 6 (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇)))) ∈ ℝ
8077, 78, 79letri 11375 . . . . 5 (((normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ≤ ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇)))) ∧ ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇)))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇))))) → (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇)))))
8146, 74, 80mp2an 690 . . . 4 (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇))))
8240, 81eqbrtrri 5172 . . 3 (normop‘((𝐹𝐺) −op (𝑆𝑇))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇))))
83 nmopun 31896 . . . . . . 7 (( ℋ ≠ 0𝐺 ∈ UniOp) → (normop𝐺) = 1)
846, 83mpan2 689 . . . . . 6 ( ℋ ≠ 0 → (normop𝐺) = 1)
8584oveq2d 7435 . . . . 5 ( ℋ ≠ 0 → ((normop‘(𝐹op 𝑆)) · (normop𝐺)) = ((normop‘(𝐹op 𝑆)) · 1))
8664recni 11260 . . . . . 6 (normop‘(𝐹op 𝑆)) ∈ ℂ
8786mulridi 11250 . . . . 5 ((normop‘(𝐹op 𝑆)) · 1) = (normop‘(𝐹op 𝑆))
8885, 87eqtrdi 2781 . . . 4 ( ℋ ≠ 0 → ((normop‘(𝐹op 𝑆)) · (normop𝐺)) = (normop‘(𝐹op 𝑆)))
89 nmopun 31896 . . . . . . 7 (( ℋ ≠ 0𝑆 ∈ UniOp) → (normop𝑆) = 1)
9012, 89mpan2 689 . . . . . 6 ( ℋ ≠ 0 → (normop𝑆) = 1)
9190oveq1d 7434 . . . . 5 ( ℋ ≠ 0 → ((normop𝑆) · (normop‘(𝐺op 𝑇))) = (1 · (normop‘(𝐺op 𝑇))))
9271recni 11260 . . . . . 6 (normop‘(𝐺op 𝑇)) ∈ ℂ
9392mullidi 11251 . . . . 5 (1 · (normop‘(𝐺op 𝑇))) = (normop‘(𝐺op 𝑇))
9491, 93eqtrdi 2781 . . . 4 ( ℋ ≠ 0 → ((normop𝑆) · (normop‘(𝐺op 𝑇))) = (normop‘(𝐺op 𝑇)))
9588, 94oveq12d 7437 . . 3 ( ℋ ≠ 0 → (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇)))) = ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇))))
9682, 95breqtrid 5186 . 2 ( ℋ ≠ 0 → (normop‘((𝐹𝐺) −op (𝑆𝑇))) ≤ ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇))))
9737, 96pm2.61ine 3014 1 (normop‘((𝐹𝐺) −op (𝑆𝑇))) ≤ ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  wne 2929   class class class wbr 5149  ccom 5682  wf 6545  cfv 6549  (class class class)co 7419  cr 11139  0cc0 11140  1c1 11141   + caddc 11143   · cmul 11145  cle 11281  chba 30801  0c0h 30817   +op chos 30820  op chod 30822  normopcnop 30827  LinOpclo 30829  BndLinOpcbo 30830  UniOpcuo 30831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cc 10460  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219  ax-mulf 11220  ax-hilex 30881  ax-hfvadd 30882  ax-hvcom 30883  ax-hvass 30884  ax-hv0cl 30885  ax-hvaddid 30886  ax-hfvmul 30887  ax-hvmulid 30888  ax-hvmulass 30889  ax-hvdistr1 30890  ax-hvdistr2 30891  ax-hvmul0 30892  ax-hfi 30961  ax-his1 30964  ax-his2 30965  ax-his3 30966  ax-his4 30967  ax-hcompl 31084
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-omul 8492  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-acn 9967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-rlim 15469  df-sum 15669  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-cn 23175  df-cnp 23176  df-lm 23177  df-haus 23263  df-tx 23510  df-hmeo 23703  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-tms 24272  df-cfil 25227  df-cau 25228  df-cmet 25229  df-grpo 30375  df-gid 30376  df-ginv 30377  df-gdiv 30378  df-ablo 30427  df-vc 30441  df-nv 30474  df-va 30477  df-ba 30478  df-sm 30479  df-0v 30480  df-vs 30481  df-nmcv 30482  df-ims 30483  df-dip 30583  df-ssp 30604  df-lno 30626  df-nmoo 30627  df-0o 30629  df-ph 30695  df-cbn 30745  df-hnorm 30850  df-hba 30851  df-hvsub 30853  df-hlim 30854  df-hcau 30855  df-sh 31089  df-ch 31103  df-oc 31134  df-ch0 31135  df-shs 31190  df-pjh 31277  df-hosum 31612  df-homul 31613  df-hodif 31614  df-h0op 31630  df-nmop 31721  df-lnop 31723  df-bdop 31724  df-unop 31725  df-hmop 31726
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator