HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unierri Structured version   Visualization version   GIF version

Theorem unierri 30445
Description: If we approximate a chain of unitary transformations (quantum computer gates) 𝐹, 𝐺 by other unitary transformations 𝑆, 𝑇, the error increases at most additively. Equation 4.73 of [NielsenChuang] p. 195. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
unierr.1 𝐹 ∈ UniOp
unierr.2 𝐺 ∈ UniOp
unierr.3 𝑆 ∈ UniOp
unierr.4 𝑇 ∈ UniOp
Assertion
Ref Expression
unierri (normop‘((𝐹𝐺) −op (𝑆𝑇))) ≤ ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇)))

Proof of Theorem unierri
StepHypRef Expression
1 unierr.1 . . . . . . . 8 𝐹 ∈ UniOp
2 unopbd 30356 . . . . . . . 8 (𝐹 ∈ UniOp → 𝐹 ∈ BndLinOp)
31, 2ax-mp 5 . . . . . . 7 𝐹 ∈ BndLinOp
4 bdopf 30203 . . . . . . 7 (𝐹 ∈ BndLinOp → 𝐹: ℋ⟶ ℋ)
53, 4ax-mp 5 . . . . . 6 𝐹: ℋ⟶ ℋ
6 unierr.2 . . . . . . . 8 𝐺 ∈ UniOp
7 unopbd 30356 . . . . . . . 8 (𝐺 ∈ UniOp → 𝐺 ∈ BndLinOp)
86, 7ax-mp 5 . . . . . . 7 𝐺 ∈ BndLinOp
9 bdopf 30203 . . . . . . 7 (𝐺 ∈ BndLinOp → 𝐺: ℋ⟶ ℋ)
108, 9ax-mp 5 . . . . . 6 𝐺: ℋ⟶ ℋ
115, 10hocofi 30107 . . . . 5 (𝐹𝐺): ℋ⟶ ℋ
12 unierr.3 . . . . . . . 8 𝑆 ∈ UniOp
13 unopbd 30356 . . . . . . . 8 (𝑆 ∈ UniOp → 𝑆 ∈ BndLinOp)
1412, 13ax-mp 5 . . . . . . 7 𝑆 ∈ BndLinOp
15 bdopf 30203 . . . . . . 7 (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ)
1614, 15ax-mp 5 . . . . . 6 𝑆: ℋ⟶ ℋ
17 unierr.4 . . . . . . . 8 𝑇 ∈ UniOp
18 unopbd 30356 . . . . . . . 8 (𝑇 ∈ UniOp → 𝑇 ∈ BndLinOp)
1917, 18ax-mp 5 . . . . . . 7 𝑇 ∈ BndLinOp
20 bdopf 30203 . . . . . . 7 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
2119, 20ax-mp 5 . . . . . 6 𝑇: ℋ⟶ ℋ
2216, 21hocofi 30107 . . . . 5 (𝑆𝑇): ℋ⟶ ℋ
2311, 22hosubcli 30110 . . . 4 ((𝐹𝐺) −op (𝑆𝑇)): ℋ⟶ ℋ
24 nmop0h 30332 . . . 4 (( ℋ = 0 ∧ ((𝐹𝐺) −op (𝑆𝑇)): ℋ⟶ ℋ) → (normop‘((𝐹𝐺) −op (𝑆𝑇))) = 0)
2523, 24mpan2 687 . . 3 ( ℋ = 0 → (normop‘((𝐹𝐺) −op (𝑆𝑇))) = 0)
26 0le0 12057 . . . . 5 0 ≤ 0
27 00id 11133 . . . . 5 (0 + 0) = 0
2826, 27breqtrri 5105 . . . 4 0 ≤ (0 + 0)
295, 16hosubcli 30110 . . . . . 6 (𝐹op 𝑆): ℋ⟶ ℋ
30 nmop0h 30332 . . . . . 6 (( ℋ = 0 ∧ (𝐹op 𝑆): ℋ⟶ ℋ) → (normop‘(𝐹op 𝑆)) = 0)
3129, 30mpan2 687 . . . . 5 ( ℋ = 0 → (normop‘(𝐹op 𝑆)) = 0)
3210, 21hosubcli 30110 . . . . . 6 (𝐺op 𝑇): ℋ⟶ ℋ
33 nmop0h 30332 . . . . . 6 (( ℋ = 0 ∧ (𝐺op 𝑇): ℋ⟶ ℋ) → (normop‘(𝐺op 𝑇)) = 0)
3432, 33mpan2 687 . . . . 5 ( ℋ = 0 → (normop‘(𝐺op 𝑇)) = 0)
3531, 34oveq12d 7286 . . . 4 ( ℋ = 0 → ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇))) = (0 + 0))
3628, 35breqtrrid 5116 . . 3 ( ℋ = 0 → 0 ≤ ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇))))
3725, 36eqbrtrd 5100 . 2 ( ℋ = 0 → (normop‘((𝐹𝐺) −op (𝑆𝑇))) ≤ ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇))))
3816, 10hocofi 30107 . . . . . 6 (𝑆𝐺): ℋ⟶ ℋ
3911, 38, 22honpncani 30168 . . . . 5 (((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇))) = ((𝐹𝐺) −op (𝑆𝑇))
4039fveq2i 6771 . . . 4 (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) = (normop‘((𝐹𝐺) −op (𝑆𝑇)))
413, 8bdopcoi 30439 . . . . . . 7 (𝐹𝐺) ∈ BndLinOp
4214, 8bdopcoi 30439 . . . . . . 7 (𝑆𝐺) ∈ BndLinOp
4341, 42bdophdi 30438 . . . . . 6 ((𝐹𝐺) −op (𝑆𝐺)) ∈ BndLinOp
4414, 19bdopcoi 30439 . . . . . . 7 (𝑆𝑇) ∈ BndLinOp
4542, 44bdophdi 30438 . . . . . 6 ((𝑆𝐺) −op (𝑆𝑇)) ∈ BndLinOp
4643, 45nmoptrii 30435 . . . . 5 (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ≤ ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇))))
475, 16, 10hocsubdiri 30121 . . . . . . . 8 ((𝐹op 𝑆) ∘ 𝐺) = ((𝐹𝐺) −op (𝑆𝐺))
4847fveq2i 6771 . . . . . . 7 (normop‘((𝐹op 𝑆) ∘ 𝐺)) = (normop‘((𝐹𝐺) −op (𝑆𝐺)))
493, 14bdophdi 30438 . . . . . . . 8 (𝐹op 𝑆) ∈ BndLinOp
5049, 8nmopcoi 30436 . . . . . . 7 (normop‘((𝐹op 𝑆) ∘ 𝐺)) ≤ ((normop‘(𝐹op 𝑆)) · (normop𝐺))
5148, 50eqbrtrri 5101 . . . . . 6 (normop‘((𝐹𝐺) −op (𝑆𝐺))) ≤ ((normop‘(𝐹op 𝑆)) · (normop𝐺))
52 bdopln 30202 . . . . . . . . . 10 (𝑆 ∈ BndLinOp → 𝑆 ∈ LinOp)
5314, 52ax-mp 5 . . . . . . . . 9 𝑆 ∈ LinOp
5453, 10, 21hoddii 30330 . . . . . . . 8 (𝑆 ∘ (𝐺op 𝑇)) = ((𝑆𝐺) −op (𝑆𝑇))
5554fveq2i 6771 . . . . . . 7 (normop‘(𝑆 ∘ (𝐺op 𝑇))) = (normop‘((𝑆𝐺) −op (𝑆𝑇)))
568, 19bdophdi 30438 . . . . . . . 8 (𝐺op 𝑇) ∈ BndLinOp
5714, 56nmopcoi 30436 . . . . . . 7 (normop‘(𝑆 ∘ (𝐺op 𝑇))) ≤ ((normop𝑆) · (normop‘(𝐺op 𝑇)))
5855, 57eqbrtrri 5101 . . . . . 6 (normop‘((𝑆𝐺) −op (𝑆𝑇))) ≤ ((normop𝑆) · (normop‘(𝐺op 𝑇)))
59 nmopre 30211 . . . . . . . 8 (((𝐹𝐺) −op (𝑆𝐺)) ∈ BndLinOp → (normop‘((𝐹𝐺) −op (𝑆𝐺))) ∈ ℝ)
6043, 59ax-mp 5 . . . . . . 7 (normop‘((𝐹𝐺) −op (𝑆𝐺))) ∈ ℝ
61 nmopre 30211 . . . . . . . 8 (((𝑆𝐺) −op (𝑆𝑇)) ∈ BndLinOp → (normop‘((𝑆𝐺) −op (𝑆𝑇))) ∈ ℝ)
6245, 61ax-mp 5 . . . . . . 7 (normop‘((𝑆𝐺) −op (𝑆𝑇))) ∈ ℝ
63 nmopre 30211 . . . . . . . . 9 ((𝐹op 𝑆) ∈ BndLinOp → (normop‘(𝐹op 𝑆)) ∈ ℝ)
6449, 63ax-mp 5 . . . . . . . 8 (normop‘(𝐹op 𝑆)) ∈ ℝ
65 nmopre 30211 . . . . . . . . 9 (𝐺 ∈ BndLinOp → (normop𝐺) ∈ ℝ)
668, 65ax-mp 5 . . . . . . . 8 (normop𝐺) ∈ ℝ
6764, 66remulcli 10975 . . . . . . 7 ((normop‘(𝐹op 𝑆)) · (normop𝐺)) ∈ ℝ
68 nmopre 30211 . . . . . . . . 9 (𝑆 ∈ BndLinOp → (normop𝑆) ∈ ℝ)
6914, 68ax-mp 5 . . . . . . . 8 (normop𝑆) ∈ ℝ
70 nmopre 30211 . . . . . . . . 9 ((𝐺op 𝑇) ∈ BndLinOp → (normop‘(𝐺op 𝑇)) ∈ ℝ)
7156, 70ax-mp 5 . . . . . . . 8 (normop‘(𝐺op 𝑇)) ∈ ℝ
7269, 71remulcli 10975 . . . . . . 7 ((normop𝑆) · (normop‘(𝐺op 𝑇))) ∈ ℝ
7360, 62, 67, 72le2addi 11521 . . . . . 6 (((normop‘((𝐹𝐺) −op (𝑆𝐺))) ≤ ((normop‘(𝐹op 𝑆)) · (normop𝐺)) ∧ (normop‘((𝑆𝐺) −op (𝑆𝑇))) ≤ ((normop𝑆) · (normop‘(𝐺op 𝑇)))) → ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇)))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇)))))
7451, 58, 73mp2an 688 . . . . 5 ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇)))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇))))
7543, 45bdophsi 30437 . . . . . . 7 (((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇))) ∈ BndLinOp
76 nmopre 30211 . . . . . . 7 ((((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇))) ∈ BndLinOp → (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ∈ ℝ)
7775, 76ax-mp 5 . . . . . 6 (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ∈ ℝ
7860, 62readdcli 10974 . . . . . 6 ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇)))) ∈ ℝ
7967, 72readdcli 10974 . . . . . 6 (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇)))) ∈ ℝ
8077, 78, 79letri 11087 . . . . 5 (((normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ≤ ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇)))) ∧ ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇)))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇))))) → (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇)))))
8146, 74, 80mp2an 688 . . . 4 (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇))))
8240, 81eqbrtrri 5101 . . 3 (normop‘((𝐹𝐺) −op (𝑆𝑇))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇))))
83 nmopun 30355 . . . . . . 7 (( ℋ ≠ 0𝐺 ∈ UniOp) → (normop𝐺) = 1)
846, 83mpan2 687 . . . . . 6 ( ℋ ≠ 0 → (normop𝐺) = 1)
8584oveq2d 7284 . . . . 5 ( ℋ ≠ 0 → ((normop‘(𝐹op 𝑆)) · (normop𝐺)) = ((normop‘(𝐹op 𝑆)) · 1))
8664recni 10973 . . . . . 6 (normop‘(𝐹op 𝑆)) ∈ ℂ
8786mulid1i 10963 . . . . 5 ((normop‘(𝐹op 𝑆)) · 1) = (normop‘(𝐹op 𝑆))
8885, 87eqtrdi 2795 . . . 4 ( ℋ ≠ 0 → ((normop‘(𝐹op 𝑆)) · (normop𝐺)) = (normop‘(𝐹op 𝑆)))
89 nmopun 30355 . . . . . . 7 (( ℋ ≠ 0𝑆 ∈ UniOp) → (normop𝑆) = 1)
9012, 89mpan2 687 . . . . . 6 ( ℋ ≠ 0 → (normop𝑆) = 1)
9190oveq1d 7283 . . . . 5 ( ℋ ≠ 0 → ((normop𝑆) · (normop‘(𝐺op 𝑇))) = (1 · (normop‘(𝐺op 𝑇))))
9271recni 10973 . . . . . 6 (normop‘(𝐺op 𝑇)) ∈ ℂ
9392mulid2i 10964 . . . . 5 (1 · (normop‘(𝐺op 𝑇))) = (normop‘(𝐺op 𝑇))
9491, 93eqtrdi 2795 . . . 4 ( ℋ ≠ 0 → ((normop𝑆) · (normop‘(𝐺op 𝑇))) = (normop‘(𝐺op 𝑇)))
9588, 94oveq12d 7286 . . 3 ( ℋ ≠ 0 → (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇)))) = ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇))))
9682, 95breqtrid 5115 . 2 ( ℋ ≠ 0 → (normop‘((𝐹𝐺) −op (𝑆𝑇))) ≤ ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇))))
9737, 96pm2.61ine 3029 1 (normop‘((𝐹𝐺) −op (𝑆𝑇))) ≤ ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2109  wne 2944   class class class wbr 5078  ccom 5592  wf 6426  cfv 6430  (class class class)co 7268  cr 10854  0cc0 10855  1c1 10856   + caddc 10858   · cmul 10860  cle 10994  chba 29260  0c0h 29276   +op chos 29279  op chod 29281  normopcnop 29286  LinOpclo 29288  BndLinOpcbo 29289  UniOpcuo 29290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cc 10175  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933  ax-addf 10934  ax-mulf 10935  ax-hilex 29340  ax-hfvadd 29341  ax-hvcom 29342  ax-hvass 29343  ax-hv0cl 29344  ax-hvaddid 29345  ax-hfvmul 29346  ax-hvmulid 29347  ax-hvmulass 29348  ax-hvdistr1 29349  ax-hvdistr2 29350  ax-hvmul0 29351  ax-hfi 29420  ax-his1 29423  ax-his2 29424  ax-his3 29425  ax-his4 29426  ax-hcompl 29543
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-supp 7962  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-oadd 8285  df-omul 8286  df-er 8472  df-map 8591  df-pm 8592  df-ixp 8660  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fsupp 9090  df-fi 9131  df-sup 9162  df-inf 9163  df-oi 9230  df-card 9681  df-acn 9684  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-q 12671  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-ioo 13065  df-ico 13067  df-icc 13068  df-fz 13222  df-fzo 13365  df-fl 13493  df-seq 13703  df-exp 13764  df-hash 14026  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-clim 15178  df-rlim 15179  df-sum 15379  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-starv 16958  df-sca 16959  df-vsca 16960  df-ip 16961  df-tset 16962  df-ple 16963  df-ds 16965  df-unif 16966  df-hom 16967  df-cco 16968  df-rest 17114  df-topn 17115  df-0g 17133  df-gsum 17134  df-topgen 17135  df-pt 17136  df-prds 17139  df-xrs 17194  df-qtop 17199  df-imas 17200  df-xps 17202  df-mre 17276  df-mrc 17277  df-acs 17279  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-submnd 18412  df-mulg 18682  df-cntz 18904  df-cmn 19369  df-psmet 20570  df-xmet 20571  df-met 20572  df-bl 20573  df-mopn 20574  df-fbas 20575  df-fg 20576  df-cnfld 20579  df-top 22024  df-topon 22041  df-topsp 22063  df-bases 22077  df-cld 22151  df-ntr 22152  df-cls 22153  df-nei 22230  df-cn 22359  df-cnp 22360  df-lm 22361  df-haus 22447  df-tx 22694  df-hmeo 22887  df-fil 22978  df-fm 23070  df-flim 23071  df-flf 23072  df-xms 23454  df-ms 23455  df-tms 23456  df-cfil 24400  df-cau 24401  df-cmet 24402  df-grpo 28834  df-gid 28835  df-ginv 28836  df-gdiv 28837  df-ablo 28886  df-vc 28900  df-nv 28933  df-va 28936  df-ba 28937  df-sm 28938  df-0v 28939  df-vs 28940  df-nmcv 28941  df-ims 28942  df-dip 29042  df-ssp 29063  df-lno 29085  df-nmoo 29086  df-0o 29088  df-ph 29154  df-cbn 29204  df-hnorm 29309  df-hba 29310  df-hvsub 29312  df-hlim 29313  df-hcau 29314  df-sh 29548  df-ch 29562  df-oc 29593  df-ch0 29594  df-shs 29649  df-pjh 29736  df-hosum 30071  df-homul 30072  df-hodif 30073  df-h0op 30089  df-nmop 30180  df-lnop 30182  df-bdop 30183  df-unop 30184  df-hmop 30185
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator