HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unierri Structured version   Visualization version   GIF version

Theorem unierri 32040
Description: If we approximate a chain of unitary transformations (quantum computer gates) 𝐹, 𝐺 by other unitary transformations 𝑆, 𝑇, the error increases at most additively. Equation 4.73 of [NielsenChuang] p. 195. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
unierr.1 𝐹 ∈ UniOp
unierr.2 𝐺 ∈ UniOp
unierr.3 𝑆 ∈ UniOp
unierr.4 𝑇 ∈ UniOp
Assertion
Ref Expression
unierri (normop‘((𝐹𝐺) −op (𝑆𝑇))) ≤ ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇)))

Proof of Theorem unierri
StepHypRef Expression
1 unierr.1 . . . . . . . 8 𝐹 ∈ UniOp
2 unopbd 31951 . . . . . . . 8 (𝐹 ∈ UniOp → 𝐹 ∈ BndLinOp)
31, 2ax-mp 5 . . . . . . 7 𝐹 ∈ BndLinOp
4 bdopf 31798 . . . . . . 7 (𝐹 ∈ BndLinOp → 𝐹: ℋ⟶ ℋ)
53, 4ax-mp 5 . . . . . 6 𝐹: ℋ⟶ ℋ
6 unierr.2 . . . . . . . 8 𝐺 ∈ UniOp
7 unopbd 31951 . . . . . . . 8 (𝐺 ∈ UniOp → 𝐺 ∈ BndLinOp)
86, 7ax-mp 5 . . . . . . 7 𝐺 ∈ BndLinOp
9 bdopf 31798 . . . . . . 7 (𝐺 ∈ BndLinOp → 𝐺: ℋ⟶ ℋ)
108, 9ax-mp 5 . . . . . 6 𝐺: ℋ⟶ ℋ
115, 10hocofi 31702 . . . . 5 (𝐹𝐺): ℋ⟶ ℋ
12 unierr.3 . . . . . . . 8 𝑆 ∈ UniOp
13 unopbd 31951 . . . . . . . 8 (𝑆 ∈ UniOp → 𝑆 ∈ BndLinOp)
1412, 13ax-mp 5 . . . . . . 7 𝑆 ∈ BndLinOp
15 bdopf 31798 . . . . . . 7 (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ)
1614, 15ax-mp 5 . . . . . 6 𝑆: ℋ⟶ ℋ
17 unierr.4 . . . . . . . 8 𝑇 ∈ UniOp
18 unopbd 31951 . . . . . . . 8 (𝑇 ∈ UniOp → 𝑇 ∈ BndLinOp)
1917, 18ax-mp 5 . . . . . . 7 𝑇 ∈ BndLinOp
20 bdopf 31798 . . . . . . 7 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
2119, 20ax-mp 5 . . . . . 6 𝑇: ℋ⟶ ℋ
2216, 21hocofi 31702 . . . . 5 (𝑆𝑇): ℋ⟶ ℋ
2311, 22hosubcli 31705 . . . 4 ((𝐹𝐺) −op (𝑆𝑇)): ℋ⟶ ℋ
24 nmop0h 31927 . . . 4 (( ℋ = 0 ∧ ((𝐹𝐺) −op (𝑆𝑇)): ℋ⟶ ℋ) → (normop‘((𝐹𝐺) −op (𝑆𝑇))) = 0)
2523, 24mpan2 691 . . 3 ( ℋ = 0 → (normop‘((𝐹𝐺) −op (𝑆𝑇))) = 0)
26 0le0 12294 . . . . 5 0 ≤ 0
27 00id 11356 . . . . 5 (0 + 0) = 0
2826, 27breqtrri 5137 . . . 4 0 ≤ (0 + 0)
295, 16hosubcli 31705 . . . . . 6 (𝐹op 𝑆): ℋ⟶ ℋ
30 nmop0h 31927 . . . . . 6 (( ℋ = 0 ∧ (𝐹op 𝑆): ℋ⟶ ℋ) → (normop‘(𝐹op 𝑆)) = 0)
3129, 30mpan2 691 . . . . 5 ( ℋ = 0 → (normop‘(𝐹op 𝑆)) = 0)
3210, 21hosubcli 31705 . . . . . 6 (𝐺op 𝑇): ℋ⟶ ℋ
33 nmop0h 31927 . . . . . 6 (( ℋ = 0 ∧ (𝐺op 𝑇): ℋ⟶ ℋ) → (normop‘(𝐺op 𝑇)) = 0)
3432, 33mpan2 691 . . . . 5 ( ℋ = 0 → (normop‘(𝐺op 𝑇)) = 0)
3531, 34oveq12d 7408 . . . 4 ( ℋ = 0 → ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇))) = (0 + 0))
3628, 35breqtrrid 5148 . . 3 ( ℋ = 0 → 0 ≤ ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇))))
3725, 36eqbrtrd 5132 . 2 ( ℋ = 0 → (normop‘((𝐹𝐺) −op (𝑆𝑇))) ≤ ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇))))
3816, 10hocofi 31702 . . . . . 6 (𝑆𝐺): ℋ⟶ ℋ
3911, 38, 22honpncani 31763 . . . . 5 (((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇))) = ((𝐹𝐺) −op (𝑆𝑇))
4039fveq2i 6864 . . . 4 (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) = (normop‘((𝐹𝐺) −op (𝑆𝑇)))
413, 8bdopcoi 32034 . . . . . . 7 (𝐹𝐺) ∈ BndLinOp
4214, 8bdopcoi 32034 . . . . . . 7 (𝑆𝐺) ∈ BndLinOp
4341, 42bdophdi 32033 . . . . . 6 ((𝐹𝐺) −op (𝑆𝐺)) ∈ BndLinOp
4414, 19bdopcoi 32034 . . . . . . 7 (𝑆𝑇) ∈ BndLinOp
4542, 44bdophdi 32033 . . . . . 6 ((𝑆𝐺) −op (𝑆𝑇)) ∈ BndLinOp
4643, 45nmoptrii 32030 . . . . 5 (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ≤ ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇))))
475, 16, 10hocsubdiri 31716 . . . . . . . 8 ((𝐹op 𝑆) ∘ 𝐺) = ((𝐹𝐺) −op (𝑆𝐺))
4847fveq2i 6864 . . . . . . 7 (normop‘((𝐹op 𝑆) ∘ 𝐺)) = (normop‘((𝐹𝐺) −op (𝑆𝐺)))
493, 14bdophdi 32033 . . . . . . . 8 (𝐹op 𝑆) ∈ BndLinOp
5049, 8nmopcoi 32031 . . . . . . 7 (normop‘((𝐹op 𝑆) ∘ 𝐺)) ≤ ((normop‘(𝐹op 𝑆)) · (normop𝐺))
5148, 50eqbrtrri 5133 . . . . . 6 (normop‘((𝐹𝐺) −op (𝑆𝐺))) ≤ ((normop‘(𝐹op 𝑆)) · (normop𝐺))
52 bdopln 31797 . . . . . . . . . 10 (𝑆 ∈ BndLinOp → 𝑆 ∈ LinOp)
5314, 52ax-mp 5 . . . . . . . . 9 𝑆 ∈ LinOp
5453, 10, 21hoddii 31925 . . . . . . . 8 (𝑆 ∘ (𝐺op 𝑇)) = ((𝑆𝐺) −op (𝑆𝑇))
5554fveq2i 6864 . . . . . . 7 (normop‘(𝑆 ∘ (𝐺op 𝑇))) = (normop‘((𝑆𝐺) −op (𝑆𝑇)))
568, 19bdophdi 32033 . . . . . . . 8 (𝐺op 𝑇) ∈ BndLinOp
5714, 56nmopcoi 32031 . . . . . . 7 (normop‘(𝑆 ∘ (𝐺op 𝑇))) ≤ ((normop𝑆) · (normop‘(𝐺op 𝑇)))
5855, 57eqbrtrri 5133 . . . . . 6 (normop‘((𝑆𝐺) −op (𝑆𝑇))) ≤ ((normop𝑆) · (normop‘(𝐺op 𝑇)))
59 nmopre 31806 . . . . . . . 8 (((𝐹𝐺) −op (𝑆𝐺)) ∈ BndLinOp → (normop‘((𝐹𝐺) −op (𝑆𝐺))) ∈ ℝ)
6043, 59ax-mp 5 . . . . . . 7 (normop‘((𝐹𝐺) −op (𝑆𝐺))) ∈ ℝ
61 nmopre 31806 . . . . . . . 8 (((𝑆𝐺) −op (𝑆𝑇)) ∈ BndLinOp → (normop‘((𝑆𝐺) −op (𝑆𝑇))) ∈ ℝ)
6245, 61ax-mp 5 . . . . . . 7 (normop‘((𝑆𝐺) −op (𝑆𝑇))) ∈ ℝ
63 nmopre 31806 . . . . . . . . 9 ((𝐹op 𝑆) ∈ BndLinOp → (normop‘(𝐹op 𝑆)) ∈ ℝ)
6449, 63ax-mp 5 . . . . . . . 8 (normop‘(𝐹op 𝑆)) ∈ ℝ
65 nmopre 31806 . . . . . . . . 9 (𝐺 ∈ BndLinOp → (normop𝐺) ∈ ℝ)
668, 65ax-mp 5 . . . . . . . 8 (normop𝐺) ∈ ℝ
6764, 66remulcli 11197 . . . . . . 7 ((normop‘(𝐹op 𝑆)) · (normop𝐺)) ∈ ℝ
68 nmopre 31806 . . . . . . . . 9 (𝑆 ∈ BndLinOp → (normop𝑆) ∈ ℝ)
6914, 68ax-mp 5 . . . . . . . 8 (normop𝑆) ∈ ℝ
70 nmopre 31806 . . . . . . . . 9 ((𝐺op 𝑇) ∈ BndLinOp → (normop‘(𝐺op 𝑇)) ∈ ℝ)
7156, 70ax-mp 5 . . . . . . . 8 (normop‘(𝐺op 𝑇)) ∈ ℝ
7269, 71remulcli 11197 . . . . . . 7 ((normop𝑆) · (normop‘(𝐺op 𝑇))) ∈ ℝ
7360, 62, 67, 72le2addi 11748 . . . . . 6 (((normop‘((𝐹𝐺) −op (𝑆𝐺))) ≤ ((normop‘(𝐹op 𝑆)) · (normop𝐺)) ∧ (normop‘((𝑆𝐺) −op (𝑆𝑇))) ≤ ((normop𝑆) · (normop‘(𝐺op 𝑇)))) → ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇)))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇)))))
7451, 58, 73mp2an 692 . . . . 5 ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇)))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇))))
7543, 45bdophsi 32032 . . . . . . 7 (((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇))) ∈ BndLinOp
76 nmopre 31806 . . . . . . 7 ((((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇))) ∈ BndLinOp → (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ∈ ℝ)
7775, 76ax-mp 5 . . . . . 6 (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ∈ ℝ
7860, 62readdcli 11196 . . . . . 6 ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇)))) ∈ ℝ
7967, 72readdcli 11196 . . . . . 6 (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇)))) ∈ ℝ
8077, 78, 79letri 11310 . . . . 5 (((normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ≤ ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇)))) ∧ ((normop‘((𝐹𝐺) −op (𝑆𝐺))) + (normop‘((𝑆𝐺) −op (𝑆𝑇)))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇))))) → (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇)))))
8146, 74, 80mp2an 692 . . . 4 (normop‘(((𝐹𝐺) −op (𝑆𝐺)) +op ((𝑆𝐺) −op (𝑆𝑇)))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇))))
8240, 81eqbrtrri 5133 . . 3 (normop‘((𝐹𝐺) −op (𝑆𝑇))) ≤ (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇))))
83 nmopun 31950 . . . . . . 7 (( ℋ ≠ 0𝐺 ∈ UniOp) → (normop𝐺) = 1)
846, 83mpan2 691 . . . . . 6 ( ℋ ≠ 0 → (normop𝐺) = 1)
8584oveq2d 7406 . . . . 5 ( ℋ ≠ 0 → ((normop‘(𝐹op 𝑆)) · (normop𝐺)) = ((normop‘(𝐹op 𝑆)) · 1))
8664recni 11195 . . . . . 6 (normop‘(𝐹op 𝑆)) ∈ ℂ
8786mulridi 11185 . . . . 5 ((normop‘(𝐹op 𝑆)) · 1) = (normop‘(𝐹op 𝑆))
8885, 87eqtrdi 2781 . . . 4 ( ℋ ≠ 0 → ((normop‘(𝐹op 𝑆)) · (normop𝐺)) = (normop‘(𝐹op 𝑆)))
89 nmopun 31950 . . . . . . 7 (( ℋ ≠ 0𝑆 ∈ UniOp) → (normop𝑆) = 1)
9012, 89mpan2 691 . . . . . 6 ( ℋ ≠ 0 → (normop𝑆) = 1)
9190oveq1d 7405 . . . . 5 ( ℋ ≠ 0 → ((normop𝑆) · (normop‘(𝐺op 𝑇))) = (1 · (normop‘(𝐺op 𝑇))))
9271recni 11195 . . . . . 6 (normop‘(𝐺op 𝑇)) ∈ ℂ
9392mullidi 11186 . . . . 5 (1 · (normop‘(𝐺op 𝑇))) = (normop‘(𝐺op 𝑇))
9491, 93eqtrdi 2781 . . . 4 ( ℋ ≠ 0 → ((normop𝑆) · (normop‘(𝐺op 𝑇))) = (normop‘(𝐺op 𝑇)))
9588, 94oveq12d 7408 . . 3 ( ℋ ≠ 0 → (((normop‘(𝐹op 𝑆)) · (normop𝐺)) + ((normop𝑆) · (normop‘(𝐺op 𝑇)))) = ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇))))
9682, 95breqtrid 5147 . 2 ( ℋ ≠ 0 → (normop‘((𝐹𝐺) −op (𝑆𝑇))) ≤ ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇))))
9737, 96pm2.61ine 3009 1 (normop‘((𝐹𝐺) −op (𝑆𝑇))) ≤ ((normop‘(𝐹op 𝑆)) + (normop‘(𝐺op 𝑇)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cle 11216  chba 30855  0c0h 30871   +op chos 30874  op chod 30876  normopcnop 30881  LinOpclo 30883  BndLinOpcbo 30884  UniOpcuo 30885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155  ax-hilex 30935  ax-hfvadd 30936  ax-hvcom 30937  ax-hvass 30938  ax-hv0cl 30939  ax-hvaddid 30940  ax-hfvmul 30941  ax-hvmulid 30942  ax-hvmulass 30943  ax-hvdistr1 30944  ax-hvdistr2 30945  ax-hvmul0 30946  ax-hfi 31015  ax-his1 31018  ax-his2 31019  ax-his3 31020  ax-his4 31021  ax-hcompl 31138
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-cn 23121  df-cnp 23122  df-lm 23123  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cfil 25162  df-cau 25163  df-cmet 25164  df-grpo 30429  df-gid 30430  df-ginv 30431  df-gdiv 30432  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-vs 30535  df-nmcv 30536  df-ims 30537  df-dip 30637  df-ssp 30658  df-lno 30680  df-nmoo 30681  df-0o 30683  df-ph 30749  df-cbn 30799  df-hnorm 30904  df-hba 30905  df-hvsub 30907  df-hlim 30908  df-hcau 30909  df-sh 31143  df-ch 31157  df-oc 31188  df-ch0 31189  df-shs 31244  df-pjh 31331  df-hosum 31666  df-homul 31667  df-hodif 31668  df-h0op 31684  df-nmop 31775  df-lnop 31777  df-bdop 31778  df-unop 31779  df-hmop 31780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator