|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brparts2 | Structured version Visualization version GIF version | ||
| Description: Binary partitions relation. (Contributed by Peter Mazsa, 30-Dec-2021.) | 
| Ref | Expression | 
|---|---|
| brparts2 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ (dom 𝑅 / 𝑅) = 𝐴))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | brparts 38772 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴))) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴))) | 
| 3 | brdmqss 38647 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 DomainQss 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)) | |
| 4 | 3 | anbi2d 630 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ((𝑅 ∈ Disjs ∧ 𝑅 DomainQss 𝐴) ↔ (𝑅 ∈ Disjs ∧ (dom 𝑅 / 𝑅) = 𝐴))) | 
| 5 | 2, 4 | bitrd 279 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 Parts 𝐴 ↔ (𝑅 ∈ Disjs ∧ (dom 𝑅 / 𝑅) = 𝐴))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 dom cdm 5685 / cqs 8744 DomainQss cdmqss 38205 Disjs cdisjs 38215 Parts cparts 38220 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-cnv 5693 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ec 8747 df-qs 8751 df-dmqss 38639 df-parts 38766 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |