| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cnvssrres | Structured version Visualization version GIF version | ||
| Description: Restricted converse subset binary relation. (Contributed by Peter Mazsa, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| br1cnvssrres | ⊢ (𝐵 ∈ 𝑉 → (𝐵◡( S ↾ 𝐴)𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶 ⊆ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5959 | . . 3 ⊢ Rel ( S ↾ 𝐴) | |
| 2 | 1 | relbrcnv 6061 | . 2 ⊢ (𝐵◡( S ↾ 𝐴)𝐶 ↔ 𝐶( S ↾ 𝐴)𝐵) |
| 3 | brssrres 38602 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐶( S ↾ 𝐴)𝐵 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶 ⊆ 𝐵))) | |
| 4 | 2, 3 | bitrid 283 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵◡( S ↾ 𝐴)𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶 ⊆ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3897 class class class wbr 5093 ◡ccnv 5618 ↾ cres 5621 S cssr 38231 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-res 5631 df-ssr 38596 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |