Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cnvssrres Structured version   Visualization version   GIF version

Theorem br1cnvssrres 37901
Description: Restricted converse subset binary relation. (Contributed by Peter Mazsa, 25-Nov-2019.)
Assertion
Ref Expression
br1cnvssrres (𝐵𝑉 → (𝐵( S ↾ 𝐴)𝐶 ↔ (𝐶𝐴𝐶𝐵)))

Proof of Theorem br1cnvssrres
StepHypRef Expression
1 relres 6008 . . 3 Rel ( S ↾ 𝐴)
21relbrcnv 6105 . 2 (𝐵( S ↾ 𝐴)𝐶𝐶( S ↾ 𝐴)𝐵)
3 brssrres 37900 . 2 (𝐵𝑉 → (𝐶( S ↾ 𝐴)𝐵 ↔ (𝐶𝐴𝐶𝐵)))
42, 3bitrid 283 1 (𝐵𝑉 → (𝐵( S ↾ 𝐴)𝐶 ↔ (𝐶𝐴𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2099  wss 3944   class class class wbr 5142  ccnv 5671  cres 5674   S cssr 37573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-xp 5678  df-rel 5679  df-cnv 5680  df-res 5684  df-ssr 37894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator