![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cnvssrres | Structured version Visualization version GIF version |
Description: Restricted converse subset binary relation. (Contributed by Peter Mazsa, 25-Nov-2019.) |
Ref | Expression |
---|---|
br1cnvssrres | ⊢ (𝐵 ∈ 𝑉 → (𝐵◡( S ↾ 𝐴)𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶 ⊆ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 5636 | . . 3 ⊢ Rel ( S ↾ 𝐴) | |
2 | 1 | relbrcnv 5723 | . 2 ⊢ (𝐵◡( S ↾ 𝐴)𝐶 ↔ 𝐶( S ↾ 𝐴)𝐵) |
3 | brssrres 34748 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐶( S ↾ 𝐴)𝐵 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶 ⊆ 𝐵))) | |
4 | 2, 3 | syl5bb 275 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵◡( S ↾ 𝐴)𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶 ⊆ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∈ wcel 2157 ⊆ wss 3769 class class class wbr 4843 ◡ccnv 5311 ↾ cres 5314 S cssr 34472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-xp 5318 df-rel 5319 df-cnv 5320 df-res 5324 df-ssr 34742 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |