Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cnvssrres | Structured version Visualization version GIF version |
Description: Restricted converse subset binary relation. (Contributed by Peter Mazsa, 25-Nov-2019.) |
Ref | Expression |
---|---|
br1cnvssrres | ⊢ (𝐵 ∈ 𝑉 → (𝐵◡( S ↾ 𝐴)𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶 ⊆ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 5909 | . . 3 ⊢ Rel ( S ↾ 𝐴) | |
2 | 1 | relbrcnv 6004 | . 2 ⊢ (𝐵◡( S ↾ 𝐴)𝐶 ↔ 𝐶( S ↾ 𝐴)𝐵) |
3 | brssrres 36549 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐶( S ↾ 𝐴)𝐵 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶 ⊆ 𝐵))) | |
4 | 2, 3 | syl5bb 282 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵◡( S ↾ 𝐴)𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝐶 ⊆ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3883 class class class wbr 5070 ◡ccnv 5579 ↾ cres 5582 S cssr 36263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-res 5592 df-ssr 36543 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |