Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cnvssrres Structured version   Visualization version   GIF version

Theorem br1cnvssrres 38463
Description: Restricted converse subset binary relation. (Contributed by Peter Mazsa, 25-Nov-2019.)
Assertion
Ref Expression
br1cnvssrres (𝐵𝑉 → (𝐵( S ↾ 𝐴)𝐶 ↔ (𝐶𝐴𝐶𝐵)))

Proof of Theorem br1cnvssrres
StepHypRef Expression
1 relres 6037 . . 3 Rel ( S ↾ 𝐴)
21relbrcnv 6139 . 2 (𝐵( S ↾ 𝐴)𝐶𝐶( S ↾ 𝐴)𝐵)
3 brssrres 38462 . 2 (𝐵𝑉 → (𝐶( S ↾ 𝐴)𝐵 ↔ (𝐶𝐴𝐶𝐵)))
42, 3bitrid 283 1 (𝐵𝑉 → (𝐵( S ↾ 𝐴)𝐶 ↔ (𝐶𝐴𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wss 3976   class class class wbr 5166  ccnv 5699  cres 5702   S cssr 38140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-res 5712  df-ssr 38456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator