Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cnvssrres Structured version   Visualization version   GIF version

Theorem br1cnvssrres 38502
Description: Restricted converse subset binary relation. (Contributed by Peter Mazsa, 25-Nov-2019.)
Assertion
Ref Expression
br1cnvssrres (𝐵𝑉 → (𝐵( S ↾ 𝐴)𝐶 ↔ (𝐶𝐴𝐶𝐵)))

Proof of Theorem br1cnvssrres
StepHypRef Expression
1 relres 5956 . . 3 Rel ( S ↾ 𝐴)
21relbrcnv 6058 . 2 (𝐵( S ↾ 𝐴)𝐶𝐶( S ↾ 𝐴)𝐵)
3 brssrres 38501 . 2 (𝐵𝑉 → (𝐶( S ↾ 𝐴)𝐵 ↔ (𝐶𝐴𝐶𝐵)))
42, 3bitrid 283 1 (𝐵𝑉 → (𝐵( S ↾ 𝐴)𝐶 ↔ (𝐶𝐴𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wss 3903   class class class wbr 5092  ccnv 5618  cres 5621   S cssr 38178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-res 5631  df-ssr 38495
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator