![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brres | Structured version Visualization version GIF version |
Description: Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015.) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022.) |
Ref | Expression |
---|---|
brres | ⊢ (𝐶 ∈ 𝑉 → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelres 5985 | . 2 ⊢ (𝐶 ∈ 𝑉 → (⟨𝐵, 𝐶⟩ ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅))) | |
2 | df-br 5148 | . 2 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ (𝑅 ↾ 𝐴)) | |
3 | df-br 5148 | . . 3 ⊢ (𝐵𝑅𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝑅) | |
4 | 3 | anbi2i 623 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶) ↔ (𝐵 ∈ 𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅)) |
5 | 1, 2, 4 | 3bitr4g 313 | 1 ⊢ (𝐶 ∈ 𝑉 → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ⟨cop 4633 class class class wbr 5147 ↾ cres 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-res 5687 |
This theorem is referenced by: brresi 5988 dfima2 6059 predres 6337 ttrclselem2 9717 axhcompl-zf 30238 fv1stcnv 34736 fv2ndcnv 34737 bj-idreseq 36031 bj-idreseqb 36032 brcnvepres 37123 brres2 37124 eldmres 37126 elrnres 37127 elecres 37133 brinxprnres 37148 exanres 37152 eqres 37197 alrmomorn 37215 alrmomodm 37216 brxrn 37232 rnxrnres 37257 1cossres 37287 brressn 37299 eldm1cossres 37318 brssrres 37362 disjres 37602 antisymrelres 37621 dfdfat2 45822 |
Copyright terms: Public domain | W3C validator |