Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brres | Structured version Visualization version GIF version |
Description: Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015.) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022.) |
Ref | Expression |
---|---|
brres | ⊢ (𝐶 ∈ 𝑉 → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelres 5886 | . 2 ⊢ (𝐶 ∈ 𝑉 → (〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅))) | |
2 | df-br 5071 | . 2 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ 〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴)) | |
3 | df-br 5071 | . . 3 ⊢ (𝐵𝑅𝐶 ↔ 〈𝐵, 𝐶〉 ∈ 𝑅) | |
4 | 3 | anbi2i 622 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅)) |
5 | 1, 2, 4 | 3bitr4g 313 | 1 ⊢ (𝐶 ∈ 𝑉 → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-res 5592 |
This theorem is referenced by: brresi 5889 dfima2 5960 axhcompl-zf 29261 fv1stcnv 33657 fv2ndcnv 33658 ttrclselem2 33712 bj-idreseq 35260 bj-idreseqb 35261 brcnvepres 36333 brres2 36334 eldmres 36335 elecres 36339 brinxprnres 36353 exanres 36357 eqres 36402 alrmomorn 36417 alrmomodm 36418 brxrn 36431 rnxrnres 36452 1cossres 36479 eldm1cossres 36505 brssrres 36549 dfdfat2 44507 |
Copyright terms: Public domain | W3C validator |