![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brres | Structured version Visualization version GIF version |
Description: Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015.) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022.) |
Ref | Expression |
---|---|
brres | ⊢ (𝐶 ∈ 𝑉 → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelres 5977 | . 2 ⊢ (𝐶 ∈ 𝑉 → (⟨𝐵, 𝐶⟩ ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅))) | |
2 | df-br 5139 | . 2 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ (𝑅 ↾ 𝐴)) | |
3 | df-br 5139 | . . 3 ⊢ (𝐵𝑅𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝑅) | |
4 | 3 | anbi2i 622 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶) ↔ (𝐵 ∈ 𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅)) |
5 | 1, 2, 4 | 3bitr4g 314 | 1 ⊢ (𝐶 ∈ 𝑉 → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 ⟨cop 4626 class class class wbr 5138 ↾ cres 5668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-xp 5672 df-res 5678 |
This theorem is referenced by: brresi 5980 dfima2 6051 predres 6330 ttrclselem2 9717 axhcompl-zf 30720 fv1stcnv 35243 fv2ndcnv 35244 bj-idreseq 36533 bj-idreseqb 36534 brcnvepres 37625 brres2 37626 eldmres 37628 elrnres 37629 elecres 37635 brinxprnres 37650 exanres 37654 eqres 37699 alrmomorn 37717 alrmomodm 37718 brxrn 37734 rnxrnres 37759 1cossres 37789 brressn 37801 eldm1cossres 37820 brssrres 37864 disjres 38104 antisymrelres 38123 dfdfat2 46321 |
Copyright terms: Public domain | W3C validator |