| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brres | Structured version Visualization version GIF version | ||
| Description: Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015.) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022.) |
| Ref | Expression |
|---|---|
| brres | ⊢ (𝐶 ∈ 𝑉 → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelres 5936 | . 2 ⊢ (𝐶 ∈ 𝑉 → (〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅))) | |
| 2 | df-br 5093 | . 2 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ 〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴)) | |
| 3 | df-br 5093 | . . 3 ⊢ (𝐵𝑅𝐶 ↔ 〈𝐵, 𝐶〉 ∈ 𝑅) | |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅)) |
| 5 | 1, 2, 4 | 3bitr4g 314 | 1 ⊢ (𝐶 ∈ 𝑉 → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 〈cop 4583 class class class wbr 5092 ↾ cres 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-res 5631 |
| This theorem is referenced by: brresi 5939 dfima2 6013 predres 6287 elecres 8673 ttrclselem2 9622 axhcompl-zf 30942 fv1stcnv 35750 fv2ndcnv 35751 bj-idreseq 37136 bj-idreseqb 37137 brcnvepres 38242 brres2 38243 eldmres 38245 elrnres 38246 brinxprnres 38265 exanres 38269 eqres 38308 alrmomorn 38326 alrmomodm 38327 brxrn 38342 rnxrnres 38371 1cossres 38406 brressn 38418 eldm1cossres 38437 brssrres 38481 disjres 38722 antisymrelres 38741 dfdfat2 47112 |
| Copyright terms: Public domain | W3C validator |