MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brres Structured version   Visualization version   GIF version

Theorem brres 5949
Description: Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015.) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022.)
Assertion
Ref Expression
brres (𝐶𝑉 → (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶)))

Proof of Theorem brres
StepHypRef Expression
1 opelres 5948 . 2 (𝐶𝑉 → (⟨𝐵, 𝐶⟩ ∈ (𝑅𝐴) ↔ (𝐵𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅)))
2 df-br 5111 . 2 (𝐵(𝑅𝐴)𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ (𝑅𝐴))
3 df-br 5111 . . 3 (𝐵𝑅𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝑅)
43anbi2i 624 . 2 ((𝐵𝐴𝐵𝑅𝐶) ↔ (𝐵𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅))
51, 2, 43bitr4g 314 1 (𝐶𝑉 → (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107  cop 4597   class class class wbr 5110  cres 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-br 5111  df-opab 5173  df-xp 5644  df-res 5650
This theorem is referenced by:  brresi  5951  dfima2  6020  predres  6298  ttrclselem2  9669  axhcompl-zf  29982  fv1stcnv  34390  fv2ndcnv  34391  bj-idreseq  35662  bj-idreseqb  35663  brcnvepres  36756  brres2  36757  eldmres  36759  elrnres  36760  elecres  36766  brinxprnres  36781  exanres  36785  eqres  36830  alrmomorn  36848  alrmomodm  36849  brxrn  36865  rnxrnres  36890  1cossres  36920  brressn  36932  eldm1cossres  36951  brssrres  36995  disjres  37235  antisymrelres  37254  dfdfat2  45434
  Copyright terms: Public domain W3C validator