MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brres Structured version   Visualization version   GIF version

Theorem brres 5831
Description: Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015.) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022.)
Assertion
Ref Expression
brres (𝐶𝑉 → (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶)))

Proof of Theorem brres
StepHypRef Expression
1 opelres 5830 . 2 (𝐶𝑉 → (⟨𝐵, 𝐶⟩ ∈ (𝑅𝐴) ↔ (𝐵𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅)))
2 df-br 5034 . 2 (𝐵(𝑅𝐴)𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ (𝑅𝐴))
3 df-br 5034 . . 3 (𝐵𝑅𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝑅)
43anbi2i 626 . 2 ((𝐵𝐴𝐵𝑅𝐶) ↔ (𝐵𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅))
51, 2, 43bitr4g 318 1 (𝐶𝑉 → (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  wcel 2112  cop 4529   class class class wbr 5033  cres 5527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pr 5299
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-ral 3076  df-rex 3077  df-v 3412  df-dif 3862  df-un 3864  df-in 3866  df-nul 4227  df-if 4422  df-sn 4524  df-pr 4526  df-op 4530  df-br 5034  df-opab 5096  df-xp 5531  df-res 5537
This theorem is referenced by:  brresi  5833  dfima2  5904  axhcompl-zf  28881  fv1stcnv  33268  fv2ndcnv  33269  bj-idreseq  34858  bj-idreseqb  34859  brcnvepres  35969  brres2  35970  eldmres  35971  elecres  35975  brinxprnres  35989  exanres  35993  eqres  36038  alrmomorn  36053  alrmomodm  36054  brxrn  36067  rnxrnres  36088  1cossres  36115  eldm1cossres  36141  brssrres  36185  dfdfat2  44053
  Copyright terms: Public domain W3C validator