MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brres Structured version   Visualization version   GIF version

Theorem brres 5978
Description: Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015.) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022.)
Assertion
Ref Expression
brres (𝐶𝑉 → (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶)))

Proof of Theorem brres
StepHypRef Expression
1 opelres 5977 . 2 (𝐶𝑉 → (⟨𝐵, 𝐶⟩ ∈ (𝑅𝐴) ↔ (𝐵𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅)))
2 df-br 5125 . 2 (𝐵(𝑅𝐴)𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ (𝑅𝐴))
3 df-br 5125 . . 3 (𝐵𝑅𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝑅)
43anbi2i 623 . 2 ((𝐵𝐴𝐵𝑅𝐶) ↔ (𝐵𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅))
51, 2, 43bitr4g 314 1 (𝐶𝑉 → (𝐵(𝑅𝐴)𝐶 ↔ (𝐵𝐴𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  cop 4612   class class class wbr 5124  cres 5661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-res 5671
This theorem is referenced by:  brresi  5980  dfima2  6054  predres  6333  ttrclselem2  9745  axhcompl-zf  30984  fv1stcnv  35799  fv2ndcnv  35800  bj-idreseq  37185  bj-idreseqb  37186  brcnvepres  38290  brres2  38291  eldmres  38293  elrnres  38294  elecres  38300  brinxprnres  38314  exanres  38318  eqres  38363  alrmomorn  38381  alrmomodm  38382  brxrn  38397  rnxrnres  38422  1cossres  38452  brressn  38464  eldm1cossres  38483  brssrres  38527  disjres  38767  antisymrelres  38786  dfdfat2  47124
  Copyright terms: Public domain W3C validator