| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brres | Structured version Visualization version GIF version | ||
| Description: Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015.) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022.) |
| Ref | Expression |
|---|---|
| brres | ⊢ (𝐶 ∈ 𝑉 → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelres 5959 | . 2 ⊢ (𝐶 ∈ 𝑉 → (〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅))) | |
| 2 | df-br 5111 | . 2 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ 〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴)) | |
| 3 | df-br 5111 | . . 3 ⊢ (𝐵𝑅𝐶 ↔ 〈𝐵, 𝐶〉 ∈ 𝑅) | |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅)) |
| 5 | 1, 2, 4 | 3bitr4g 314 | 1 ⊢ (𝐶 ∈ 𝑉 → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 〈cop 4598 class class class wbr 5110 ↾ cres 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-res 5653 |
| This theorem is referenced by: brresi 5962 dfima2 6036 predres 6315 elecres 8722 ttrclselem2 9686 axhcompl-zf 30934 fv1stcnv 35771 fv2ndcnv 35772 bj-idreseq 37157 bj-idreseqb 37158 brcnvepres 38263 brres2 38264 eldmres 38266 elrnres 38267 brinxprnres 38286 exanres 38290 eqres 38329 alrmomorn 38347 alrmomodm 38348 brxrn 38363 rnxrnres 38392 1cossres 38427 brressn 38439 eldm1cossres 38458 brssrres 38502 disjres 38743 antisymrelres 38762 dfdfat2 47133 |
| Copyright terms: Public domain | W3C validator |