Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brres | Structured version Visualization version GIF version |
Description: Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015.) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022.) |
Ref | Expression |
---|---|
brres | ⊢ (𝐶 ∈ 𝑉 → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelres 5830 | . 2 ⊢ (𝐶 ∈ 𝑉 → (〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅))) | |
2 | df-br 5034 | . 2 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ 〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴)) | |
3 | df-br 5034 | . . 3 ⊢ (𝐵𝑅𝐶 ↔ 〈𝐵, 𝐶〉 ∈ 𝑅) | |
4 | 3 | anbi2i 626 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅)) |
5 | 1, 2, 4 | 3bitr4g 318 | 1 ⊢ (𝐶 ∈ 𝑉 → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 ∈ wcel 2112 〈cop 4529 class class class wbr 5033 ↾ cres 5527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-ral 3076 df-rex 3077 df-v 3412 df-dif 3862 df-un 3864 df-in 3866 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-br 5034 df-opab 5096 df-xp 5531 df-res 5537 |
This theorem is referenced by: brresi 5833 dfima2 5904 axhcompl-zf 28881 fv1stcnv 33268 fv2ndcnv 33269 bj-idreseq 34858 bj-idreseqb 34859 brcnvepres 35969 brres2 35970 eldmres 35971 elecres 35975 brinxprnres 35989 exanres 35993 eqres 36038 alrmomorn 36053 alrmomodm 36054 brxrn 36067 rnxrnres 36088 1cossres 36115 eldm1cossres 36141 brssrres 36185 dfdfat2 44053 |
Copyright terms: Public domain | W3C validator |