| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brres | Structured version Visualization version GIF version | ||
| Description: Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015.) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022.) |
| Ref | Expression |
|---|---|
| brres | ⊢ (𝐶 ∈ 𝑉 → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelres 5945 | . 2 ⊢ (𝐶 ∈ 𝑉 → (〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅))) | |
| 2 | df-br 5103 | . 2 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ 〈𝐵, 𝐶〉 ∈ (𝑅 ↾ 𝐴)) | |
| 3 | df-br 5103 | . . 3 ⊢ (𝐵𝑅𝐶 ↔ 〈𝐵, 𝐶〉 ∈ 𝑅) | |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶) ↔ (𝐵 ∈ 𝐴 ∧ 〈𝐵, 𝐶〉 ∈ 𝑅)) |
| 5 | 1, 2, 4 | 3bitr4g 314 | 1 ⊢ (𝐶 ∈ 𝑉 → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 ↾ cres 5633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-res 5643 |
| This theorem is referenced by: brresi 5948 dfima2 6022 predres 6300 elecres 8696 ttrclselem2 9655 axhcompl-zf 30900 fv1stcnv 35737 fv2ndcnv 35738 bj-idreseq 37123 bj-idreseqb 37124 brcnvepres 38229 brres2 38230 eldmres 38232 elrnres 38233 brinxprnres 38252 exanres 38256 eqres 38295 alrmomorn 38313 alrmomodm 38314 brxrn 38329 rnxrnres 38358 1cossres 38393 brressn 38405 eldm1cossres 38424 brssrres 38468 disjres 38709 antisymrelres 38728 dfdfat2 47102 |
| Copyright terms: Public domain | W3C validator |