![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brres | Structured version Visualization version GIF version |
Description: Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015.) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022.) |
Ref | Expression |
---|---|
brres | ⊢ (𝐶 ∈ 𝑉 → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelres 5988 | . 2 ⊢ (𝐶 ∈ 𝑉 → (⟨𝐵, 𝐶⟩ ∈ (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅))) | |
2 | df-br 5150 | . 2 ⊢ (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ (𝑅 ↾ 𝐴)) | |
3 | df-br 5150 | . . 3 ⊢ (𝐵𝑅𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝑅) | |
4 | 3 | anbi2i 624 | . 2 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶) ↔ (𝐵 ∈ 𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅)) |
5 | 1, 2, 4 | 3bitr4g 314 | 1 ⊢ (𝐶 ∈ 𝑉 → (𝐵(𝑅 ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 ⟨cop 4635 class class class wbr 5149 ↾ cres 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-res 5689 |
This theorem is referenced by: brresi 5991 dfima2 6062 predres 6341 ttrclselem2 9721 axhcompl-zf 30251 fv1stcnv 34748 fv2ndcnv 34749 bj-idreseq 36043 bj-idreseqb 36044 brcnvepres 37135 brres2 37136 eldmres 37138 elrnres 37139 elecres 37145 brinxprnres 37160 exanres 37164 eqres 37209 alrmomorn 37227 alrmomodm 37228 brxrn 37244 rnxrnres 37269 1cossres 37299 brressn 37311 eldm1cossres 37330 brssrres 37374 disjres 37614 antisymrelres 37633 dfdfat2 45836 |
Copyright terms: Public domain | W3C validator |