MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovordig Structured version   Visualization version   GIF version

Theorem caovordig 7455
Description: Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 31-Dec-2014.)
Hypothesis
Ref Expression
caovordig.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
Assertion
Ref Expression
caovordig ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovordig
StepHypRef Expression
1 caovordig.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
21ralrimivvva 3115 . 2 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑧𝑆 (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
3 breq1 5073 . . . 4 (𝑥 = 𝐴 → (𝑥𝑅𝑦𝐴𝑅𝑦))
4 oveq2 7263 . . . . 5 (𝑥 = 𝐴 → (𝑧𝐹𝑥) = (𝑧𝐹𝐴))
54breq1d 5080 . . . 4 (𝑥 = 𝐴 → ((𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦) ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦)))
63, 5imbi12d 344 . . 3 (𝑥 = 𝐴 → ((𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)) ↔ (𝐴𝑅𝑦 → (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦))))
7 breq2 5074 . . . 4 (𝑦 = 𝐵 → (𝐴𝑅𝑦𝐴𝑅𝐵))
8 oveq2 7263 . . . . 5 (𝑦 = 𝐵 → (𝑧𝐹𝑦) = (𝑧𝐹𝐵))
98breq2d 5082 . . . 4 (𝑦 = 𝐵 → ((𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦) ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵)))
107, 9imbi12d 344 . . 3 (𝑦 = 𝐵 → ((𝐴𝑅𝑦 → (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦)) ↔ (𝐴𝑅𝐵 → (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵))))
11 oveq1 7262 . . . . 5 (𝑧 = 𝐶 → (𝑧𝐹𝐴) = (𝐶𝐹𝐴))
12 oveq1 7262 . . . . 5 (𝑧 = 𝐶 → (𝑧𝐹𝐵) = (𝐶𝐹𝐵))
1311, 12breq12d 5083 . . . 4 (𝑧 = 𝐶 → ((𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵) ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
1413imbi2d 340 . . 3 (𝑧 = 𝐶 → ((𝐴𝑅𝐵 → (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵)) ↔ (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))))
156, 10, 14rspc3v 3565 . 2 ((𝐴𝑆𝐵𝑆𝐶𝑆) → (∀𝑥𝑆𝑦𝑆𝑧𝑆 (𝑥𝑅𝑦 → (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)) → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))))
162, 15mpan9 506 1 ((𝜑 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → (𝐴𝑅𝐵 → (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by:  caovordid  7456
  Copyright terms: Public domain W3C validator