| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caovord3 | Structured version Visualization version GIF version | ||
| Description: Ordering law. (Contributed by NM, 29-Feb-1996.) |
| Ref | Expression |
|---|---|
| caovord.1 | ⊢ 𝐴 ∈ V |
| caovord.2 | ⊢ 𝐵 ∈ V |
| caovord.3 | ⊢ (𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) |
| caovord2.3 | ⊢ 𝐶 ∈ V |
| caovord2.com | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) |
| caovord3.4 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| caovord3 | ⊢ (((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ∧ (𝐴𝐹𝐵) = (𝐶𝐹𝐷)) → (𝐴𝑅𝐶 ↔ 𝐷𝑅𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovord.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 2 | caovord2.3 | . . . . 5 ⊢ 𝐶 ∈ V | |
| 3 | caovord.3 | . . . . 5 ⊢ (𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) | |
| 4 | caovord.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 5 | caovord2.com | . . . . 5 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
| 6 | 1, 2, 3, 4, 5 | caovord2 7604 | . . . 4 ⊢ (𝐵 ∈ 𝑆 → (𝐴𝑅𝐶 ↔ (𝐴𝐹𝐵)𝑅(𝐶𝐹𝐵))) |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝑅𝐶 ↔ (𝐴𝐹𝐵)𝑅(𝐶𝐹𝐵))) |
| 8 | breq1 5113 | . . 3 ⊢ ((𝐴𝐹𝐵) = (𝐶𝐹𝐷) → ((𝐴𝐹𝐵)𝑅(𝐶𝐹𝐵) ↔ (𝐶𝐹𝐷)𝑅(𝐶𝐹𝐵))) | |
| 9 | 7, 8 | sylan9bb 509 | . 2 ⊢ (((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ∧ (𝐴𝐹𝐵) = (𝐶𝐹𝐷)) → (𝐴𝑅𝐶 ↔ (𝐶𝐹𝐷)𝑅(𝐶𝐹𝐵))) |
| 10 | caovord3.4 | . . . 4 ⊢ 𝐷 ∈ V | |
| 11 | 10, 4, 3 | caovord 7603 | . . 3 ⊢ (𝐶 ∈ 𝑆 → (𝐷𝑅𝐵 ↔ (𝐶𝐹𝐷)𝑅(𝐶𝐹𝐵))) |
| 12 | 11 | ad2antlr 727 | . 2 ⊢ (((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ∧ (𝐴𝐹𝐵) = (𝐶𝐹𝐷)) → (𝐷𝑅𝐵 ↔ (𝐶𝐹𝐷)𝑅(𝐶𝐹𝐵))) |
| 13 | 9, 12 | bitr4d 282 | 1 ⊢ (((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ∧ (𝐴𝐹𝐵) = (𝐶𝐹𝐷)) → (𝐴𝑅𝐶 ↔ 𝐷𝑅𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 (class class class)co 7390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: genpnnp 10965 ltsrpr 11037 |
| Copyright terms: Public domain | W3C validator |