MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovord3 Structured version   Visualization version   GIF version

Theorem caovord3 7463
Description: Ordering law. (Contributed by NM, 29-Feb-1996.)
Hypotheses
Ref Expression
caovord.1 𝐴 ∈ V
caovord.2 𝐵 ∈ V
caovord.3 (𝑧𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
caovord2.3 𝐶 ∈ V
caovord2.com (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
caovord3.4 𝐷 ∈ V
Assertion
Ref Expression
caovord3 (((𝐵𝑆𝐶𝑆) ∧ (𝐴𝐹𝐵) = (𝐶𝐹𝐷)) → (𝐴𝑅𝐶𝐷𝑅𝐵))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovord3
StepHypRef Expression
1 caovord.1 . . . . 5 𝐴 ∈ V
2 caovord2.3 . . . . 5 𝐶 ∈ V
3 caovord.3 . . . . 5 (𝑧𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
4 caovord.2 . . . . 5 𝐵 ∈ V
5 caovord2.com . . . . 5 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
61, 2, 3, 4, 5caovord2 7462 . . . 4 (𝐵𝑆 → (𝐴𝑅𝐶 ↔ (𝐴𝐹𝐵)𝑅(𝐶𝐹𝐵)))
76adantr 480 . . 3 ((𝐵𝑆𝐶𝑆) → (𝐴𝑅𝐶 ↔ (𝐴𝐹𝐵)𝑅(𝐶𝐹𝐵)))
8 breq1 5073 . . 3 ((𝐴𝐹𝐵) = (𝐶𝐹𝐷) → ((𝐴𝐹𝐵)𝑅(𝐶𝐹𝐵) ↔ (𝐶𝐹𝐷)𝑅(𝐶𝐹𝐵)))
97, 8sylan9bb 509 . 2 (((𝐵𝑆𝐶𝑆) ∧ (𝐴𝐹𝐵) = (𝐶𝐹𝐷)) → (𝐴𝑅𝐶 ↔ (𝐶𝐹𝐷)𝑅(𝐶𝐹𝐵)))
10 caovord3.4 . . . 4 𝐷 ∈ V
1110, 4, 3caovord 7461 . . 3 (𝐶𝑆 → (𝐷𝑅𝐵 ↔ (𝐶𝐹𝐷)𝑅(𝐶𝐹𝐵)))
1211ad2antlr 723 . 2 (((𝐵𝑆𝐶𝑆) ∧ (𝐴𝐹𝐵) = (𝐶𝐹𝐷)) → (𝐷𝑅𝐵 ↔ (𝐶𝐹𝐷)𝑅(𝐶𝐹𝐵)))
139, 12bitr4d 281 1 (((𝐵𝑆𝐶𝑆) ∧ (𝐴𝐹𝐵) = (𝐶𝐹𝐷)) → (𝐴𝑅𝐶𝐷𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422   class class class wbr 5070  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by:  genpnnp  10692  ltsrpr  10764
  Copyright terms: Public domain W3C validator