| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caovord2 | Structured version Visualization version GIF version | ||
| Description: Operation ordering law with commuted arguments. (Contributed by NM, 27-Feb-1996.) |
| Ref | Expression |
|---|---|
| caovord.1 | ⊢ 𝐴 ∈ V |
| caovord.2 | ⊢ 𝐵 ∈ V |
| caovord.3 | ⊢ (𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) |
| caovord2.3 | ⊢ 𝐶 ∈ V |
| caovord2.com | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) |
| Ref | Expression |
|---|---|
| caovord2 | ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovord.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | caovord.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | caovord.3 | . . 3 ⊢ (𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) | |
| 4 | 1, 2, 3 | caovord 7560 | . 2 ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
| 5 | caovord2.3 | . . . 4 ⊢ 𝐶 ∈ V | |
| 6 | caovord2.com | . . . 4 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
| 7 | 5, 1, 6 | caovcom 7546 | . . 3 ⊢ (𝐶𝐹𝐴) = (𝐴𝐹𝐶) |
| 8 | 5, 2, 6 | caovcom 7546 | . . 3 ⊢ (𝐶𝐹𝐵) = (𝐵𝐹𝐶) |
| 9 | 7, 8 | breq12i 5101 | . 2 ⊢ ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶)) |
| 10 | 4, 9 | bitrdi 287 | 1 ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3436 class class class wbr 5092 (class class class)co 7349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 |
| This theorem is referenced by: caovord3 7562 genpnmax 10901 addclprlem1 10910 mulclprlem 10913 distrlem4pr 10920 ltexprlem6 10935 reclem3pr 10943 ltsosr 10988 |
| Copyright terms: Public domain | W3C validator |