MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovord2 Structured version   Visualization version   GIF version

Theorem caovord2 7516
Description: Operation ordering law with commuted arguments. (Contributed by NM, 27-Feb-1996.)
Hypotheses
Ref Expression
caovord.1 𝐴 ∈ V
caovord.2 𝐵 ∈ V
caovord.3 (𝑧𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
caovord2.3 𝐶 ∈ V
caovord2.com (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
Assertion
Ref Expression
caovord2 (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovord2
StepHypRef Expression
1 caovord.1 . . 3 𝐴 ∈ V
2 caovord.2 . . 3 𝐵 ∈ V
3 caovord.3 . . 3 (𝑧𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
41, 2, 3caovord 7515 . 2 (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
5 caovord2.3 . . . 4 𝐶 ∈ V
6 caovord2.com . . . 4 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
75, 1, 6caovcom 7501 . . 3 (𝐶𝐹𝐴) = (𝐴𝐹𝐶)
85, 2, 6caovcom 7501 . . 3 (𝐶𝐹𝐵) = (𝐵𝐹𝐶)
97, 8breq12i 5090 . 2 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶))
104, 9bitrdi 287 1 (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2104  Vcvv 3437   class class class wbr 5081  (class class class)co 7307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-iota 6410  df-fv 6466  df-ov 7310
This theorem is referenced by:  caovord3  7517  genpnmax  10809  addclprlem1  10818  mulclprlem  10821  distrlem4pr  10828  ltexprlem6  10843  reclem3pr  10851  ltsosr  10896
  Copyright terms: Public domain W3C validator