MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovord2 Structured version   Visualization version   GIF version

Theorem caovord2 7176
Description: Operation ordering law with commuted arguments. (Contributed by NM, 27-Feb-1996.)
Hypotheses
Ref Expression
caovord.1 𝐴 ∈ V
caovord.2 𝐵 ∈ V
caovord.3 (𝑧𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
caovord2.3 𝐶 ∈ V
caovord2.com (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
Assertion
Ref Expression
caovord2 (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovord2
StepHypRef Expression
1 caovord.1 . . 3 𝐴 ∈ V
2 caovord.2 . . 3 𝐵 ∈ V
3 caovord.3 . . 3 (𝑧𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
41, 2, 3caovord 7175 . 2 (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
5 caovord2.3 . . . 4 𝐶 ∈ V
6 caovord2.com . . . 4 (𝑥𝐹𝑦) = (𝑦𝐹𝑥)
75, 1, 6caovcom 7161 . . 3 (𝐶𝐹𝐴) = (𝐴𝐹𝐶)
85, 2, 6caovcom 7161 . . 3 (𝐶𝐹𝐵) = (𝐵𝐹𝐶)
97, 8breq12i 4938 . 2 ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶))
104, 9syl6bb 279 1 (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1507  wcel 2050  Vcvv 3415   class class class wbr 4929  (class class class)co 6976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2750
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-br 4930  df-iota 6152  df-fv 6196  df-ov 6979
This theorem is referenced by:  caovord3  7177  genpnmax  10227  addclprlem1  10236  mulclprlem  10239  distrlem4pr  10246  ltexprlem6  10261  reclem3pr  10269  ltsosr  10314
  Copyright terms: Public domain W3C validator