![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caovord2 | Structured version Visualization version GIF version |
Description: Operation ordering law with commuted arguments. (Contributed by NM, 27-Feb-1996.) |
Ref | Expression |
---|---|
caovord.1 | ⊢ 𝐴 ∈ V |
caovord.2 | ⊢ 𝐵 ∈ V |
caovord.3 | ⊢ (𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) |
caovord2.3 | ⊢ 𝐶 ∈ V |
caovord2.com | ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) |
Ref | Expression |
---|---|
caovord2 | ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovord.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | caovord.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | caovord.3 | . . 3 ⊢ (𝑧 ∈ 𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) | |
4 | 1, 2, 3 | caovord 7175 | . 2 ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))) |
5 | caovord2.3 | . . . 4 ⊢ 𝐶 ∈ V | |
6 | caovord2.com | . . . 4 ⊢ (𝑥𝐹𝑦) = (𝑦𝐹𝑥) | |
7 | 5, 1, 6 | caovcom 7161 | . . 3 ⊢ (𝐶𝐹𝐴) = (𝐴𝐹𝐶) |
8 | 5, 2, 6 | caovcom 7161 | . . 3 ⊢ (𝐶𝐹𝐵) = (𝐵𝐹𝐶) |
9 | 7, 8 | breq12i 4938 | . 2 ⊢ ((𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵) ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶)) |
10 | 4, 9 | syl6bb 279 | 1 ⊢ (𝐶 ∈ 𝑆 → (𝐴𝑅𝐵 ↔ (𝐴𝐹𝐶)𝑅(𝐵𝐹𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1507 ∈ wcel 2050 Vcvv 3415 class class class wbr 4929 (class class class)co 6976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-iota 6152 df-fv 6196 df-ov 6979 |
This theorem is referenced by: caovord3 7177 genpnmax 10227 addclprlem1 10236 mulclprlem 10239 distrlem4pr 10246 ltexprlem6 10261 reclem3pr 10269 ltsosr 10314 |
Copyright terms: Public domain | W3C validator |