| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj873 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj69 35033. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj873.4 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
| bnj873.7 | ⊢ (𝜑′ ↔ [𝑔 / 𝑓]𝜑) |
| bnj873.8 | ⊢ (𝜓′ ↔ [𝑔 / 𝑓]𝜓) |
| Ref | Expression |
|---|---|
| bnj873 | ⊢ 𝐵 = {𝑔 ∣ ∃𝑛 ∈ 𝐷 (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj873.4 | . 2 ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
| 2 | nfv 1915 | . . 3 ⊢ Ⅎ𝑔∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) | |
| 3 | nfcv 2896 | . . . 4 ⊢ Ⅎ𝑓𝐷 | |
| 4 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑓 𝑔 Fn 𝑛 | |
| 5 | bnj873.7 | . . . . . 6 ⊢ (𝜑′ ↔ [𝑔 / 𝑓]𝜑) | |
| 6 | nfsbc1v 3758 | . . . . . 6 ⊢ Ⅎ𝑓[𝑔 / 𝑓]𝜑 | |
| 7 | 5, 6 | nfxfr 1854 | . . . . 5 ⊢ Ⅎ𝑓𝜑′ |
| 8 | bnj873.8 | . . . . . 6 ⊢ (𝜓′ ↔ [𝑔 / 𝑓]𝜓) | |
| 9 | nfsbc1v 3758 | . . . . . 6 ⊢ Ⅎ𝑓[𝑔 / 𝑓]𝜓 | |
| 10 | 8, 9 | nfxfr 1854 | . . . . 5 ⊢ Ⅎ𝑓𝜓′ |
| 11 | 4, 7, 10 | nf3an 1902 | . . . 4 ⊢ Ⅎ𝑓(𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′) |
| 12 | 3, 11 | nfrexw 3282 | . . 3 ⊢ Ⅎ𝑓∃𝑛 ∈ 𝐷 (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′) |
| 13 | fneq1 6580 | . . . . 5 ⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝑛 ↔ 𝑔 Fn 𝑛)) | |
| 14 | sbceq1a 3749 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝜑 ↔ [𝑔 / 𝑓]𝜑)) | |
| 15 | 14, 5 | bitr4di 289 | . . . . 5 ⊢ (𝑓 = 𝑔 → (𝜑 ↔ 𝜑′)) |
| 16 | sbceq1a 3749 | . . . . . 6 ⊢ (𝑓 = 𝑔 → (𝜓 ↔ [𝑔 / 𝑓]𝜓)) | |
| 17 | 16, 8 | bitr4di 289 | . . . . 5 ⊢ (𝑓 = 𝑔 → (𝜓 ↔ 𝜓′)) |
| 18 | 13, 15, 17 | 3anbi123d 1438 | . . . 4 ⊢ (𝑓 = 𝑔 → ((𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′))) |
| 19 | 18 | rexbidv 3158 | . . 3 ⊢ (𝑓 = 𝑔 → (∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ ∃𝑛 ∈ 𝐷 (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′))) |
| 20 | 2, 12, 19 | cbvabw 2804 | . 2 ⊢ {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} = {𝑔 ∣ ∃𝑛 ∈ 𝐷 (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)} |
| 21 | 1, 20 | eqtri 2756 | 1 ⊢ 𝐵 = {𝑔 ∣ ∃𝑛 ∈ 𝐷 (𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 = wceq 1541 {cab 2711 ∃wrex 3058 [wsbc 3738 Fn wfn 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-fun 6491 df-fn 6492 |
| This theorem is referenced by: bnj849 34948 bnj893 34951 |
| Copyright terms: Public domain | W3C validator |