Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj873 Structured version   Visualization version   GIF version

Theorem bnj873 32904
Description: Technical lemma for bnj69 32990. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj873.4 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj873.7 (𝜑′[𝑔 / 𝑓]𝜑)
bnj873.8 (𝜓′[𝑔 / 𝑓]𝜓)
Assertion
Ref Expression
bnj873 𝐵 = {𝑔 ∣ ∃𝑛𝐷 (𝑔 Fn 𝑛𝜑′𝜓′)}
Distinct variable groups:   𝐷,𝑓,𝑔   𝑓,𝑛,𝑔   𝜑,𝑔   𝜓,𝑔
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝜓(𝑓,𝑛)   𝐵(𝑓,𝑔,𝑛)   𝐷(𝑛)   𝜑′(𝑓,𝑔,𝑛)   𝜓′(𝑓,𝑔,𝑛)

Proof of Theorem bnj873
StepHypRef Expression
1 bnj873.4 . 2 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
2 nfv 1917 . . 3 𝑔𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)
3 nfcv 2907 . . . 4 𝑓𝐷
4 nfv 1917 . . . . 5 𝑓 𝑔 Fn 𝑛
5 bnj873.7 . . . . . 6 (𝜑′[𝑔 / 𝑓]𝜑)
6 nfsbc1v 3736 . . . . . 6 𝑓[𝑔 / 𝑓]𝜑
75, 6nfxfr 1855 . . . . 5 𝑓𝜑′
8 bnj873.8 . . . . . 6 (𝜓′[𝑔 / 𝑓]𝜓)
9 nfsbc1v 3736 . . . . . 6 𝑓[𝑔 / 𝑓]𝜓
108, 9nfxfr 1855 . . . . 5 𝑓𝜓′
114, 7, 10nf3an 1904 . . . 4 𝑓(𝑔 Fn 𝑛𝜑′𝜓′)
123, 11nfrex 3242 . . 3 𝑓𝑛𝐷 (𝑔 Fn 𝑛𝜑′𝜓′)
13 fneq1 6524 . . . . 5 (𝑓 = 𝑔 → (𝑓 Fn 𝑛𝑔 Fn 𝑛))
14 sbceq1a 3727 . . . . . 6 (𝑓 = 𝑔 → (𝜑[𝑔 / 𝑓]𝜑))
1514, 5bitr4di 289 . . . . 5 (𝑓 = 𝑔 → (𝜑𝜑′))
16 sbceq1a 3727 . . . . . 6 (𝑓 = 𝑔 → (𝜓[𝑔 / 𝑓]𝜓))
1716, 8bitr4di 289 . . . . 5 (𝑓 = 𝑔 → (𝜓𝜓′))
1813, 15, 173anbi123d 1435 . . . 4 (𝑓 = 𝑔 → ((𝑓 Fn 𝑛𝜑𝜓) ↔ (𝑔 Fn 𝑛𝜑′𝜓′)))
1918rexbidv 3226 . . 3 (𝑓 = 𝑔 → (∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓) ↔ ∃𝑛𝐷 (𝑔 Fn 𝑛𝜑′𝜓′)))
202, 12, 19cbvabw 2812 . 2 {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)} = {𝑔 ∣ ∃𝑛𝐷 (𝑔 Fn 𝑛𝜑′𝜓′)}
211, 20eqtri 2766 1 𝐵 = {𝑔 ∣ ∃𝑛𝐷 (𝑔 Fn 𝑛𝜑′𝜓′)}
Colors of variables: wff setvar class
Syntax hints:  wb 205  w3a 1086   = wceq 1539  {cab 2715  wrex 3065  [wsbc 3716   Fn wfn 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-fun 6435  df-fn 6436
This theorem is referenced by:  bnj849  32905  bnj893  32908
  Copyright terms: Public domain W3C validator