![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abrexex2g | Structured version Visualization version GIF version |
Description: Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
abrexex2g | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ 𝑊) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1909 | . . . 4 ⊢ Ⅎ𝑧∃𝑥 ∈ 𝐴 𝜑 | |
2 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
3 | nfs1v 2145 | . . . . 5 ⊢ Ⅎ𝑦[𝑧 / 𝑦]𝜑 | |
4 | 2, 3 | nfrexw 3304 | . . . 4 ⊢ Ⅎ𝑦∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑 |
5 | sbequ12 2235 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜑)) | |
6 | 5 | rexbidv 3172 | . . . 4 ⊢ (𝑦 = 𝑧 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑)) |
7 | 1, 4, 6 | cbvabw 2800 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑} |
8 | df-clab 2704 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) | |
9 | 8 | rexbii 3088 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑) |
10 | 9 | abbii 2796 | . . 3 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑}} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑} |
11 | 7, 10 | eqtr4i 2757 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑}} |
12 | df-iun 4992 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑}} | |
13 | iunexg 7949 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ V) | |
14 | 12, 13 | eqeltrrid 2832 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ 𝑊) → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑}} ∈ V) |
15 | 11, 14 | eqeltrid 2831 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ 𝑊) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 [wsb 2059 ∈ wcel 2098 {cab 2703 ∀wral 3055 ∃wrex 3064 Vcvv 3468 ∪ ciun 4990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-v 3470 df-in 3950 df-ss 3960 df-uni 4903 df-iun 4992 |
This theorem is referenced by: abrexex2 7955 ptrescn 23498 satfvsuclem1 34878 satf0suclem 34894 fmlasuc0 34903 sdclem2 37123 sdclem1 37124 sprval 46719 prprval 46754 |
Copyright terms: Public domain | W3C validator |