Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexex2g Structured version   Visualization version   GIF version

Theorem abrexex2g 7670
 Description: Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
abrexex2g ((𝐴𝑉 ∧ ∀𝑥𝐴 {𝑦𝜑} ∈ 𝑊) → {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem abrexex2g
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1916 . . . 4 𝑧𝑥𝐴 𝜑
2 nfcv 2920 . . . . 5 𝑦𝐴
3 nfs1v 2158 . . . . 5 𝑦[𝑧 / 𝑦]𝜑
42, 3nfrex 3234 . . . 4 𝑦𝑥𝐴 [𝑧 / 𝑦]𝜑
5 sbequ12 2251 . . . . 5 (𝑦 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜑))
65rexbidv 3222 . . . 4 (𝑦 = 𝑧 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 [𝑧 / 𝑦]𝜑))
71, 4, 6cbvabw 2828 . . 3 {𝑦 ∣ ∃𝑥𝐴 𝜑} = {𝑧 ∣ ∃𝑥𝐴 [𝑧 / 𝑦]𝜑}
8 df-clab 2737 . . . . 5 (𝑧 ∈ {𝑦𝜑} ↔ [𝑧 / 𝑦]𝜑)
98rexbii 3176 . . . 4 (∃𝑥𝐴 𝑧 ∈ {𝑦𝜑} ↔ ∃𝑥𝐴 [𝑧 / 𝑦]𝜑)
109abbii 2824 . . 3 {𝑧 ∣ ∃𝑥𝐴 𝑧 ∈ {𝑦𝜑}} = {𝑧 ∣ ∃𝑥𝐴 [𝑧 / 𝑦]𝜑}
117, 10eqtr4i 2785 . 2 {𝑦 ∣ ∃𝑥𝐴 𝜑} = {𝑧 ∣ ∃𝑥𝐴 𝑧 ∈ {𝑦𝜑}}
12 df-iun 4886 . . 3 𝑥𝐴 {𝑦𝜑} = {𝑧 ∣ ∃𝑥𝐴 𝑧 ∈ {𝑦𝜑}}
13 iunexg 7669 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 {𝑦𝜑} ∈ 𝑊) → 𝑥𝐴 {𝑦𝜑} ∈ V)
1412, 13eqeltrrid 2858 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 {𝑦𝜑} ∈ 𝑊) → {𝑧 ∣ ∃𝑥𝐴 𝑧 ∈ {𝑦𝜑}} ∈ V)
1511, 14eqeltrid 2857 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 {𝑦𝜑} ∈ 𝑊) → {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 400  [wsb 2070   ∈ wcel 2112  {cab 2736  ∀wral 3071  ∃wrex 3072  Vcvv 3410  ∪ ciun 4884 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pr 5299  ax-un 7460 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344 This theorem is referenced by:  abrexex2  7675  ptrescn  22332  satfvsuclem1  32830  satf0suclem  32846  fmlasuc0  32855  sdclem2  35453  sdclem1  35454  sprval  44357  prprval  44392
 Copyright terms: Public domain W3C validator