MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexex2g Structured version   Visualization version   GIF version

Theorem abrexex2g 7966
Description: Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
abrexex2g ((𝐴𝑉 ∧ ∀𝑥𝐴 {𝑦𝜑} ∈ 𝑊) → {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem abrexex2g
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1909 . . . 4 𝑧𝑥𝐴 𝜑
2 nfcv 2892 . . . . 5 𝑦𝐴
3 nfs1v 2145 . . . . 5 𝑦[𝑧 / 𝑦]𝜑
42, 3nfrexw 3301 . . . 4 𝑦𝑥𝐴 [𝑧 / 𝑦]𝜑
5 sbequ12 2238 . . . . 5 (𝑦 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜑))
65rexbidv 3169 . . . 4 (𝑦 = 𝑧 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 [𝑧 / 𝑦]𝜑))
71, 4, 6cbvabw 2799 . . 3 {𝑦 ∣ ∃𝑥𝐴 𝜑} = {𝑧 ∣ ∃𝑥𝐴 [𝑧 / 𝑦]𝜑}
8 df-clab 2703 . . . . 5 (𝑧 ∈ {𝑦𝜑} ↔ [𝑧 / 𝑦]𝜑)
98rexbii 3084 . . . 4 (∃𝑥𝐴 𝑧 ∈ {𝑦𝜑} ↔ ∃𝑥𝐴 [𝑧 / 𝑦]𝜑)
109abbii 2795 . . 3 {𝑧 ∣ ∃𝑥𝐴 𝑧 ∈ {𝑦𝜑}} = {𝑧 ∣ ∃𝑥𝐴 [𝑧 / 𝑦]𝜑}
117, 10eqtr4i 2756 . 2 {𝑦 ∣ ∃𝑥𝐴 𝜑} = {𝑧 ∣ ∃𝑥𝐴 𝑧 ∈ {𝑦𝜑}}
12 df-iun 4993 . . 3 𝑥𝐴 {𝑦𝜑} = {𝑧 ∣ ∃𝑥𝐴 𝑧 ∈ {𝑦𝜑}}
13 iunexg 7965 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 {𝑦𝜑} ∈ 𝑊) → 𝑥𝐴 {𝑦𝜑} ∈ V)
1412, 13eqeltrrid 2830 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 {𝑦𝜑} ∈ 𝑊) → {𝑧 ∣ ∃𝑥𝐴 𝑧 ∈ {𝑦𝜑}} ∈ V)
1511, 14eqeltrid 2829 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 {𝑦𝜑} ∈ 𝑊) → {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  [wsb 2059  wcel 2098  {cab 2702  wral 3051  wrex 3060  Vcvv 3463   ciun 4991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3052  df-rex 3061  df-v 3465  df-ss 3956  df-uni 4904  df-iun 4993
This theorem is referenced by:  abrexex2  7971  ptrescn  23561  satfvsuclem1  35026  satf0suclem  35042  fmlasuc0  35051  sdclem2  37272  sdclem1  37273  sprval  46882  prprval  46917
  Copyright terms: Public domain W3C validator