MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexex2g Structured version   Visualization version   GIF version

Theorem abrexex2g 7950
Description: Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
abrexex2g ((𝐴𝑉 ∧ ∀𝑥𝐴 {𝑦𝜑} ∈ 𝑊) → {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem abrexex2g
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . . . 4 𝑧𝑥𝐴 𝜑
2 nfcv 2903 . . . . 5 𝑦𝐴
3 nfs1v 2153 . . . . 5 𝑦[𝑧 / 𝑦]𝜑
42, 3nfrexw 3310 . . . 4 𝑦𝑥𝐴 [𝑧 / 𝑦]𝜑
5 sbequ12 2243 . . . . 5 (𝑦 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜑))
65rexbidv 3178 . . . 4 (𝑦 = 𝑧 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 [𝑧 / 𝑦]𝜑))
71, 4, 6cbvabw 2806 . . 3 {𝑦 ∣ ∃𝑥𝐴 𝜑} = {𝑧 ∣ ∃𝑥𝐴 [𝑧 / 𝑦]𝜑}
8 df-clab 2710 . . . . 5 (𝑧 ∈ {𝑦𝜑} ↔ [𝑧 / 𝑦]𝜑)
98rexbii 3094 . . . 4 (∃𝑥𝐴 𝑧 ∈ {𝑦𝜑} ↔ ∃𝑥𝐴 [𝑧 / 𝑦]𝜑)
109abbii 2802 . . 3 {𝑧 ∣ ∃𝑥𝐴 𝑧 ∈ {𝑦𝜑}} = {𝑧 ∣ ∃𝑥𝐴 [𝑧 / 𝑦]𝜑}
117, 10eqtr4i 2763 . 2 {𝑦 ∣ ∃𝑥𝐴 𝜑} = {𝑧 ∣ ∃𝑥𝐴 𝑧 ∈ {𝑦𝜑}}
12 df-iun 4999 . . 3 𝑥𝐴 {𝑦𝜑} = {𝑧 ∣ ∃𝑥𝐴 𝑧 ∈ {𝑦𝜑}}
13 iunexg 7949 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 {𝑦𝜑} ∈ 𝑊) → 𝑥𝐴 {𝑦𝜑} ∈ V)
1412, 13eqeltrrid 2838 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 {𝑦𝜑} ∈ 𝑊) → {𝑧 ∣ ∃𝑥𝐴 𝑧 ∈ {𝑦𝜑}} ∈ V)
1511, 14eqeltrid 2837 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 {𝑦𝜑} ∈ 𝑊) → {𝑦 ∣ ∃𝑥𝐴 𝜑} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  [wsb 2067  wcel 2106  {cab 2709  wral 3061  wrex 3070  Vcvv 3474   ciun 4997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-v 3476  df-in 3955  df-ss 3965  df-uni 4909  df-iun 4999
This theorem is referenced by:  abrexex2  7955  ptrescn  23142  satfvsuclem1  34345  satf0suclem  34361  fmlasuc0  34370  sdclem2  36605  sdclem1  36606  sprval  46137  prprval  46172
  Copyright terms: Public domain W3C validator