| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abrexex2g | Structured version Visualization version GIF version | ||
| Description: Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| abrexex2g | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ 𝑊) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑧∃𝑥 ∈ 𝐴 𝜑 | |
| 2 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfs1v 2161 | . . . . 5 ⊢ Ⅎ𝑦[𝑧 / 𝑦]𝜑 | |
| 4 | 2, 3 | nfrexw 3281 | . . . 4 ⊢ Ⅎ𝑦∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑 |
| 5 | sbequ12 2256 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜑)) | |
| 6 | 5 | rexbidv 3157 | . . . 4 ⊢ (𝑦 = 𝑧 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑)) |
| 7 | 1, 4, 6 | cbvabw 2804 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑} |
| 8 | df-clab 2712 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) | |
| 9 | 8 | rexbii 3080 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑) |
| 10 | 9 | abbii 2800 | . . 3 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑}} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 [𝑧 / 𝑦]𝜑} |
| 11 | 7, 10 | eqtr4i 2759 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑}} |
| 12 | df-iun 4943 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑}} | |
| 13 | iunexg 7901 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ 𝑊) → ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ V) | |
| 14 | 12, 13 | eqeltrrid 2838 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ 𝑊) → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑦 ∣ 𝜑}} ∈ V) |
| 15 | 11, 14 | eqeltrid 2837 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ∈ 𝑊) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 [wsb 2067 ∈ wcel 2113 {cab 2711 ∀wral 3048 ∃wrex 3057 Vcvv 3437 ∪ ciun 4941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-v 3439 df-ss 3915 df-uni 4859 df-iun 4943 |
| This theorem is referenced by: abrexex2 7907 ptrescn 23555 satfvsuclem1 35424 satf0suclem 35440 fmlasuc0 35449 sdclem2 37802 sdclem1 37803 sprval 47603 prprval 47638 |
| Copyright terms: Public domain | W3C validator |