MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrnf Structured version   Visualization version   GIF version

Theorem dfrnf 5859
Description: Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
dfrnf.1 𝑥𝐴
dfrnf.2 𝑦𝐴
Assertion
Ref Expression
dfrnf ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem dfrnf
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrn2 5797 . 2 ran 𝐴 = {𝑤 ∣ ∃𝑣 𝑣𝐴𝑤}
2 nfcv 2907 . . . . 5 𝑥𝑣
3 dfrnf.1 . . . . 5 𝑥𝐴
4 nfcv 2907 . . . . 5 𝑥𝑤
52, 3, 4nfbr 5121 . . . 4 𝑥 𝑣𝐴𝑤
6 nfv 1917 . . . 4 𝑣 𝑥𝐴𝑤
7 breq1 5077 . . . 4 (𝑣 = 𝑥 → (𝑣𝐴𝑤𝑥𝐴𝑤))
85, 6, 7cbvexv1 2339 . . 3 (∃𝑣 𝑣𝐴𝑤 ↔ ∃𝑥 𝑥𝐴𝑤)
98abbii 2808 . 2 {𝑤 ∣ ∃𝑣 𝑣𝐴𝑤} = {𝑤 ∣ ∃𝑥 𝑥𝐴𝑤}
10 nfcv 2907 . . . . 5 𝑦𝑥
11 dfrnf.2 . . . . 5 𝑦𝐴
12 nfcv 2907 . . . . 5 𝑦𝑤
1310, 11, 12nfbr 5121 . . . 4 𝑦 𝑥𝐴𝑤
1413nfex 2318 . . 3 𝑦𝑥 𝑥𝐴𝑤
15 nfv 1917 . . 3 𝑤𝑥 𝑥𝐴𝑦
16 breq2 5078 . . . 4 (𝑤 = 𝑦 → (𝑥𝐴𝑤𝑥𝐴𝑦))
1716exbidv 1924 . . 3 (𝑤 = 𝑦 → (∃𝑥 𝑥𝐴𝑤 ↔ ∃𝑥 𝑥𝐴𝑦))
1814, 15, 17cbvabw 2812 . 2 {𝑤 ∣ ∃𝑥 𝑥𝐴𝑤} = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
191, 9, 183eqtri 2770 1 ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wex 1782  {cab 2715  wnfc 2887   class class class wbr 5074  ran crn 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-cnv 5597  df-dm 5599  df-rn 5600
This theorem is referenced by:  rnopab  5863
  Copyright terms: Public domain W3C validator