Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfrnf | Structured version Visualization version GIF version |
Description: Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
dfrnf.1 | ⊢ Ⅎ𝑥𝐴 |
dfrnf.2 | ⊢ Ⅎ𝑦𝐴 |
Ref | Expression |
---|---|
dfrnf | ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrn2 5786 | . 2 ⊢ ran 𝐴 = {𝑤 ∣ ∃𝑣 𝑣𝐴𝑤} | |
2 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥𝑣 | |
3 | dfrnf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
4 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
5 | 2, 3, 4 | nfbr 5117 | . . . 4 ⊢ Ⅎ𝑥 𝑣𝐴𝑤 |
6 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑣 𝑥𝐴𝑤 | |
7 | breq1 5073 | . . . 4 ⊢ (𝑣 = 𝑥 → (𝑣𝐴𝑤 ↔ 𝑥𝐴𝑤)) | |
8 | 5, 6, 7 | cbvexv1 2341 | . . 3 ⊢ (∃𝑣 𝑣𝐴𝑤 ↔ ∃𝑥 𝑥𝐴𝑤) |
9 | 8 | abbii 2809 | . 2 ⊢ {𝑤 ∣ ∃𝑣 𝑣𝐴𝑤} = {𝑤 ∣ ∃𝑥 𝑥𝐴𝑤} |
10 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑦𝑥 | |
11 | dfrnf.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
12 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
13 | 10, 11, 12 | nfbr 5117 | . . . 4 ⊢ Ⅎ𝑦 𝑥𝐴𝑤 |
14 | 13 | nfex 2322 | . . 3 ⊢ Ⅎ𝑦∃𝑥 𝑥𝐴𝑤 |
15 | nfv 1918 | . . 3 ⊢ Ⅎ𝑤∃𝑥 𝑥𝐴𝑦 | |
16 | breq2 5074 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝑥𝐴𝑤 ↔ 𝑥𝐴𝑦)) | |
17 | 16 | exbidv 1925 | . . 3 ⊢ (𝑤 = 𝑦 → (∃𝑥 𝑥𝐴𝑤 ↔ ∃𝑥 𝑥𝐴𝑦)) |
18 | 14, 15, 17 | cbvabw 2813 | . 2 ⊢ {𝑤 ∣ ∃𝑥 𝑥𝐴𝑤} = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
19 | 1, 9, 18 | 3eqtri 2770 | 1 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∃wex 1783 {cab 2715 Ⅎwnfc 2886 class class class wbr 5070 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: rnopab 5852 |
Copyright terms: Public domain | W3C validator |