| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrnf | Structured version Visualization version GIF version | ||
| Description: Definition of range, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| dfrnf.1 | ⊢ Ⅎ𝑥𝐴 |
| dfrnf.2 | ⊢ Ⅎ𝑦𝐴 |
| Ref | Expression |
|---|---|
| dfrnf | ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrn2 5834 | . 2 ⊢ ran 𝐴 = {𝑤 ∣ ∃𝑣 𝑣𝐴𝑤} | |
| 2 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑥𝑣 | |
| 3 | dfrnf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
| 5 | 2, 3, 4 | nfbr 5142 | . . . 4 ⊢ Ⅎ𝑥 𝑣𝐴𝑤 |
| 6 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑣 𝑥𝐴𝑤 | |
| 7 | breq1 5098 | . . . 4 ⊢ (𝑣 = 𝑥 → (𝑣𝐴𝑤 ↔ 𝑥𝐴𝑤)) | |
| 8 | 5, 6, 7 | cbvexv1 2344 | . . 3 ⊢ (∃𝑣 𝑣𝐴𝑤 ↔ ∃𝑥 𝑥𝐴𝑤) |
| 9 | 8 | abbii 2800 | . 2 ⊢ {𝑤 ∣ ∃𝑣 𝑣𝐴𝑤} = {𝑤 ∣ ∃𝑥 𝑥𝐴𝑤} |
| 10 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑦𝑥 | |
| 11 | dfrnf.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 12 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
| 13 | 10, 11, 12 | nfbr 5142 | . . . 4 ⊢ Ⅎ𝑦 𝑥𝐴𝑤 |
| 14 | 13 | nfex 2327 | . . 3 ⊢ Ⅎ𝑦∃𝑥 𝑥𝐴𝑤 |
| 15 | nfv 1915 | . . 3 ⊢ Ⅎ𝑤∃𝑥 𝑥𝐴𝑦 | |
| 16 | breq2 5099 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝑥𝐴𝑤 ↔ 𝑥𝐴𝑦)) | |
| 17 | 16 | exbidv 1922 | . . 3 ⊢ (𝑤 = 𝑦 → (∃𝑥 𝑥𝐴𝑤 ↔ ∃𝑥 𝑥𝐴𝑦)) |
| 18 | 14, 15, 17 | cbvabw 2804 | . 2 ⊢ {𝑤 ∣ ∃𝑥 𝑥𝐴𝑤} = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| 19 | 1, 9, 18 | 3eqtri 2760 | 1 ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∃wex 1780 {cab 2711 Ⅎwnfc 2880 class class class wbr 5095 ran crn 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-cnv 5629 df-dm 5631 df-rn 5632 |
| This theorem is referenced by: rnopab 5900 |
| Copyright terms: Public domain | W3C validator |