Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funfv2f | Structured version Visualization version GIF version |
Description: The value of a function. Version of funfv2 6850 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 19-Feb-2006.) |
Ref | Expression |
---|---|
funfv2f.1 | ⊢ Ⅎ𝑦𝐴 |
funfv2f.2 | ⊢ Ⅎ𝑦𝐹 |
Ref | Expression |
---|---|
funfv2f | ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfv2 6850 | . 2 ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ {𝑤 ∣ 𝐴𝐹𝑤}) | |
2 | funfv2f.1 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
3 | funfv2f.2 | . . . . 5 ⊢ Ⅎ𝑦𝐹 | |
4 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
5 | 2, 3, 4 | nfbr 5125 | . . . 4 ⊢ Ⅎ𝑦 𝐴𝐹𝑤 |
6 | nfv 1920 | . . . 4 ⊢ Ⅎ𝑤 𝐴𝐹𝑦 | |
7 | breq2 5082 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝐴𝐹𝑤 ↔ 𝐴𝐹𝑦)) | |
8 | 5, 6, 7 | cbvabw 2813 | . . 3 ⊢ {𝑤 ∣ 𝐴𝐹𝑤} = {𝑦 ∣ 𝐴𝐹𝑦} |
9 | 8 | unieqi 4857 | . 2 ⊢ ∪ {𝑤 ∣ 𝐴𝐹𝑤} = ∪ {𝑦 ∣ 𝐴𝐹𝑦} |
10 | 1, 9 | eqtrdi 2795 | 1 ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 {cab 2716 Ⅎwnfc 2888 ∪ cuni 4844 class class class wbr 5078 Fun wfun 6424 ‘cfv 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-fv 6438 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |