MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfv2f Structured version   Visualization version   GIF version

Theorem funfv2f 6997
Description: The value of a function. Version of funfv2 6996 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 19-Feb-2006.)
Hypotheses
Ref Expression
funfv2f.1 𝑦𝐴
funfv2f.2 𝑦𝐹
Assertion
Ref Expression
funfv2f (Fun 𝐹 → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})

Proof of Theorem funfv2f
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 funfv2 6996 . 2 (Fun 𝐹 → (𝐹𝐴) = {𝑤𝐴𝐹𝑤})
2 funfv2f.1 . . . . 5 𝑦𝐴
3 funfv2f.2 . . . . 5 𝑦𝐹
4 nfcv 2904 . . . . 5 𝑦𝑤
52, 3, 4nfbr 5189 . . . 4 𝑦 𝐴𝐹𝑤
6 nfv 1913 . . . 4 𝑤 𝐴𝐹𝑦
7 breq2 5146 . . . 4 (𝑤 = 𝑦 → (𝐴𝐹𝑤𝐴𝐹𝑦))
85, 6, 7cbvabw 2812 . . 3 {𝑤𝐴𝐹𝑤} = {𝑦𝐴𝐹𝑦}
98unieqi 4918 . 2 {𝑤𝐴𝐹𝑤} = {𝑦𝐴𝐹𝑦}
101, 9eqtrdi 2792 1 (Fun 𝐹 → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  {cab 2713  wnfc 2889   cuni 4906   class class class wbr 5142  Fun wfun 6554  cfv 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-fv 6568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator