| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfv2f | Structured version Visualization version GIF version | ||
| Description: The value of a function. Version of funfv2 6996 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 19-Feb-2006.) |
| Ref | Expression |
|---|---|
| funfv2f.1 | ⊢ Ⅎ𝑦𝐴 |
| funfv2f.2 | ⊢ Ⅎ𝑦𝐹 |
| Ref | Expression |
|---|---|
| funfv2f | ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfv2 6996 | . 2 ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ {𝑤 ∣ 𝐴𝐹𝑤}) | |
| 2 | funfv2f.1 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 3 | funfv2f.2 | . . . . 5 ⊢ Ⅎ𝑦𝐹 | |
| 4 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
| 5 | 2, 3, 4 | nfbr 5189 | . . . 4 ⊢ Ⅎ𝑦 𝐴𝐹𝑤 |
| 6 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑤 𝐴𝐹𝑦 | |
| 7 | breq2 5146 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝐴𝐹𝑤 ↔ 𝐴𝐹𝑦)) | |
| 8 | 5, 6, 7 | cbvabw 2812 | . . 3 ⊢ {𝑤 ∣ 𝐴𝐹𝑤} = {𝑦 ∣ 𝐴𝐹𝑦} |
| 9 | 8 | unieqi 4918 | . 2 ⊢ ∪ {𝑤 ∣ 𝐴𝐹𝑤} = ∪ {𝑦 ∣ 𝐴𝐹𝑦} |
| 10 | 1, 9 | eqtrdi 2792 | 1 ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 {cab 2713 Ⅎwnfc 2889 ∪ cuni 4906 class class class wbr 5142 Fun wfun 6554 ‘cfv 6560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-fv 6568 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |