| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfv2f | Structured version Visualization version GIF version | ||
| Description: The value of a function. Version of funfv2 6949 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 19-Feb-2006.) |
| Ref | Expression |
|---|---|
| funfv2f.1 | ⊢ Ⅎ𝑦𝐴 |
| funfv2f.2 | ⊢ Ⅎ𝑦𝐹 |
| Ref | Expression |
|---|---|
| funfv2f | ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfv2 6949 | . 2 ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ {𝑤 ∣ 𝐴𝐹𝑤}) | |
| 2 | funfv2f.1 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 3 | funfv2f.2 | . . . . 5 ⊢ Ⅎ𝑦𝐹 | |
| 4 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
| 5 | 2, 3, 4 | nfbr 5154 | . . . 4 ⊢ Ⅎ𝑦 𝐴𝐹𝑤 |
| 6 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑤 𝐴𝐹𝑦 | |
| 7 | breq2 5111 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝐴𝐹𝑤 ↔ 𝐴𝐹𝑦)) | |
| 8 | 5, 6, 7 | cbvabw 2800 | . . 3 ⊢ {𝑤 ∣ 𝐴𝐹𝑤} = {𝑦 ∣ 𝐴𝐹𝑦} |
| 9 | 8 | unieqi 4883 | . 2 ⊢ ∪ {𝑤 ∣ 𝐴𝐹𝑤} = ∪ {𝑦 ∣ 𝐴𝐹𝑦} |
| 10 | 1, 9 | eqtrdi 2780 | 1 ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {cab 2707 Ⅎwnfc 2876 ∪ cuni 4871 class class class wbr 5107 Fun wfun 6505 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |