MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfv2f Structured version   Visualization version   GIF version

Theorem funfv2f 6998
Description: The value of a function. Version of funfv2 6997 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 19-Feb-2006.)
Hypotheses
Ref Expression
funfv2f.1 𝑦𝐴
funfv2f.2 𝑦𝐹
Assertion
Ref Expression
funfv2f (Fun 𝐹 → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})

Proof of Theorem funfv2f
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 funfv2 6997 . 2 (Fun 𝐹 → (𝐹𝐴) = {𝑤𝐴𝐹𝑤})
2 funfv2f.1 . . . . 5 𝑦𝐴
3 funfv2f.2 . . . . 5 𝑦𝐹
4 nfcv 2903 . . . . 5 𝑦𝑤
52, 3, 4nfbr 5195 . . . 4 𝑦 𝐴𝐹𝑤
6 nfv 1912 . . . 4 𝑤 𝐴𝐹𝑦
7 breq2 5152 . . . 4 (𝑤 = 𝑦 → (𝐴𝐹𝑤𝐴𝐹𝑦))
85, 6, 7cbvabw 2811 . . 3 {𝑤𝐴𝐹𝑤} = {𝑦𝐴𝐹𝑦}
98unieqi 4924 . 2 {𝑤𝐴𝐹𝑤} = {𝑦𝐴𝐹𝑦}
101, 9eqtrdi 2791 1 (Fun 𝐹 → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  {cab 2712  wnfc 2888   cuni 4912   class class class wbr 5148  Fun wfun 6557  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator