![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funfv2f | Structured version Visualization version GIF version |
Description: The value of a function. Version of funfv2 6997 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 19-Feb-2006.) |
Ref | Expression |
---|---|
funfv2f.1 | ⊢ Ⅎ𝑦𝐴 |
funfv2f.2 | ⊢ Ⅎ𝑦𝐹 |
Ref | Expression |
---|---|
funfv2f | ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfv2 6997 | . 2 ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ {𝑤 ∣ 𝐴𝐹𝑤}) | |
2 | funfv2f.1 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
3 | funfv2f.2 | . . . . 5 ⊢ Ⅎ𝑦𝐹 | |
4 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
5 | 2, 3, 4 | nfbr 5195 | . . . 4 ⊢ Ⅎ𝑦 𝐴𝐹𝑤 |
6 | nfv 1912 | . . . 4 ⊢ Ⅎ𝑤 𝐴𝐹𝑦 | |
7 | breq2 5152 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝐴𝐹𝑤 ↔ 𝐴𝐹𝑦)) | |
8 | 5, 6, 7 | cbvabw 2811 | . . 3 ⊢ {𝑤 ∣ 𝐴𝐹𝑤} = {𝑦 ∣ 𝐴𝐹𝑦} |
9 | 8 | unieqi 4924 | . 2 ⊢ ∪ {𝑤 ∣ 𝐴𝐹𝑤} = ∪ {𝑦 ∣ 𝐴𝐹𝑦} |
10 | 1, 9 | eqtrdi 2791 | 1 ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 {cab 2712 Ⅎwnfc 2888 ∪ cuni 4912 class class class wbr 5148 Fun wfun 6557 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-fv 6571 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |