![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funfv2f | Structured version Visualization version GIF version |
Description: The value of a function. Version of funfv2 6581 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 19-Feb-2006.) |
Ref | Expression |
---|---|
funfv2f.1 | ⊢ Ⅎ𝑦𝐴 |
funfv2f.2 | ⊢ Ⅎ𝑦𝐹 |
Ref | Expression |
---|---|
funfv2f | ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfv2 6581 | . 2 ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ {𝑤 ∣ 𝐴𝐹𝑤}) | |
2 | funfv2f.1 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
3 | funfv2f.2 | . . . . 5 ⊢ Ⅎ𝑦𝐹 | |
4 | nfcv 2932 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
5 | 2, 3, 4 | nfbr 4977 | . . . 4 ⊢ Ⅎ𝑦 𝐴𝐹𝑤 |
6 | nfv 1873 | . . . 4 ⊢ Ⅎ𝑤 𝐴𝐹𝑦 | |
7 | breq2 4934 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝐴𝐹𝑤 ↔ 𝐴𝐹𝑦)) | |
8 | 5, 6, 7 | cbvab 2911 | . . 3 ⊢ {𝑤 ∣ 𝐴𝐹𝑤} = {𝑦 ∣ 𝐴𝐹𝑦} |
9 | 8 | unieqi 4722 | . 2 ⊢ ∪ {𝑤 ∣ 𝐴𝐹𝑤} = ∪ {𝑦 ∣ 𝐴𝐹𝑦} |
10 | 1, 9 | syl6eq 2830 | 1 ⊢ (Fun 𝐹 → (𝐹‘𝐴) = ∪ {𝑦 ∣ 𝐴𝐹𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 {cab 2758 Ⅎwnfc 2916 ∪ cuni 4713 class class class wbr 4930 Fun wfun 6184 ‘cfv 6190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3684 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-sn 4443 df-pr 4445 df-op 4449 df-uni 4714 df-br 4931 df-opab 4993 df-id 5313 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-iota 6154 df-fun 6192 df-fn 6193 df-fv 6198 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |