MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfv2f Structured version   Visualization version   GIF version

Theorem funfv2f 6917
Description: The value of a function. Version of funfv2 6916 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 19-Feb-2006.)
Hypotheses
Ref Expression
funfv2f.1 𝑦𝐴
funfv2f.2 𝑦𝐹
Assertion
Ref Expression
funfv2f (Fun 𝐹 → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})

Proof of Theorem funfv2f
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 funfv2 6916 . 2 (Fun 𝐹 → (𝐹𝐴) = {𝑤𝐴𝐹𝑤})
2 funfv2f.1 . . . . 5 𝑦𝐴
3 funfv2f.2 . . . . 5 𝑦𝐹
4 nfcv 2895 . . . . 5 𝑦𝑤
52, 3, 4nfbr 5140 . . . 4 𝑦 𝐴𝐹𝑤
6 nfv 1915 . . . 4 𝑤 𝐴𝐹𝑦
7 breq2 5097 . . . 4 (𝑤 = 𝑦 → (𝐴𝐹𝑤𝐴𝐹𝑦))
85, 6, 7cbvabw 2804 . . 3 {𝑤𝐴𝐹𝑤} = {𝑦𝐴𝐹𝑦}
98unieqi 4870 . 2 {𝑤𝐴𝐹𝑤} = {𝑦𝐴𝐹𝑦}
101, 9eqtrdi 2784 1 (Fun 𝐹 → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  {cab 2711  wnfc 2880   cuni 4858   class class class wbr 5093  Fun wfun 6480  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator