MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfv2f Structured version   Visualization version   GIF version

Theorem funfv2f 7011
Description: The value of a function. Version of funfv2 7010 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 19-Feb-2006.)
Hypotheses
Ref Expression
funfv2f.1 𝑦𝐴
funfv2f.2 𝑦𝐹
Assertion
Ref Expression
funfv2f (Fun 𝐹 → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})

Proof of Theorem funfv2f
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 funfv2 7010 . 2 (Fun 𝐹 → (𝐹𝐴) = {𝑤𝐴𝐹𝑤})
2 funfv2f.1 . . . . 5 𝑦𝐴
3 funfv2f.2 . . . . 5 𝑦𝐹
4 nfcv 2908 . . . . 5 𝑦𝑤
52, 3, 4nfbr 5213 . . . 4 𝑦 𝐴𝐹𝑤
6 nfv 1913 . . . 4 𝑤 𝐴𝐹𝑦
7 breq2 5170 . . . 4 (𝑤 = 𝑦 → (𝐴𝐹𝑤𝐴𝐹𝑦))
85, 6, 7cbvabw 2816 . . 3 {𝑤𝐴𝐹𝑤} = {𝑦𝐴𝐹𝑦}
98unieqi 4943 . 2 {𝑤𝐴𝐹𝑤} = {𝑦𝐴𝐹𝑦}
101, 9eqtrdi 2796 1 (Fun 𝐹 → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  {cab 2717  wnfc 2893   cuni 4931   class class class wbr 5166  Fun wfun 6567  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator