Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvmpo2 Structured version   Visualization version   GIF version

Theorem cbvmpo2 44999
Description: Rule to change the second bound variable in a maps-to function, using implicit substitution. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
cbvmpo2.1 𝑦𝐴
cbvmpo2.2 𝑤𝐴
cbvmpo2.3 𝑤𝐶
cbvmpo2.4 𝑦𝐸
cbvmpo2.5 (𝑦 = 𝑤𝐶 = 𝐸)
Assertion
Ref Expression
cbvmpo2 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑤𝐵𝐸)
Distinct variable groups:   𝑤,𝐵,𝑦   𝑥,𝑤,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥)   𝐶(𝑥,𝑦,𝑤)   𝐸(𝑥,𝑦,𝑤)

Proof of Theorem cbvmpo2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 cbvmpo2.2 . . . . . 6 𝑤𝐴
21nfcri 2900 . . . . 5 𝑤 𝑥𝐴
3 nfcv 2908 . . . . . 6 𝑤𝐵
43nfcri 2900 . . . . 5 𝑤 𝑦𝐵
52, 4nfan 1898 . . . 4 𝑤(𝑥𝐴𝑦𝐵)
6 cbvmpo2.3 . . . . 5 𝑤𝐶
76nfeq2 2926 . . . 4 𝑤 𝑢 = 𝐶
85, 7nfan 1898 . . 3 𝑤((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)
9 cbvmpo2.1 . . . . . 6 𝑦𝐴
109nfcri 2900 . . . . 5 𝑦 𝑥𝐴
11 nfv 1913 . . . . 5 𝑦 𝑤𝐵
1210, 11nfan 1898 . . . 4 𝑦(𝑥𝐴𝑤𝐵)
13 cbvmpo2.4 . . . . 5 𝑦𝐸
1413nfeq2 2926 . . . 4 𝑦 𝑢 = 𝐸
1512, 14nfan 1898 . . 3 𝑦((𝑥𝐴𝑤𝐵) ∧ 𝑢 = 𝐸)
16 eleq1w 2827 . . . . 5 (𝑦 = 𝑤 → (𝑦𝐵𝑤𝐵))
1716anbi2d 629 . . . 4 (𝑦 = 𝑤 → ((𝑥𝐴𝑦𝐵) ↔ (𝑥𝐴𝑤𝐵)))
18 cbvmpo2.5 . . . . 5 (𝑦 = 𝑤𝐶 = 𝐸)
1918eqeq2d 2751 . . . 4 (𝑦 = 𝑤 → (𝑢 = 𝐶𝑢 = 𝐸))
2017, 19anbi12d 631 . . 3 (𝑦 = 𝑤 → (((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶) ↔ ((𝑥𝐴𝑤𝐵) ∧ 𝑢 = 𝐸)))
218, 15, 20cbvoprab2 7538 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)} = {⟨⟨𝑥, 𝑤⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑤𝐵) ∧ 𝑢 = 𝐸)}
22 df-mpo 7453 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)}
23 df-mpo 7453 . 2 (𝑥𝐴, 𝑤𝐵𝐸) = {⟨⟨𝑥, 𝑤⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑤𝐵) ∧ 𝑢 = 𝐸)}
2421, 22, 233eqtr4i 2778 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑤𝐵𝐸)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  wnfc 2893  {coprab 7449  cmpo 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-oprab 7452  df-mpo 7453
This theorem is referenced by:  smflimlem4  46695
  Copyright terms: Public domain W3C validator