Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvmpo2 Structured version   Visualization version   GIF version

Theorem cbvmpo2 42647
Description: Rule to change the second bound variable in a maps-to function, using implicit substitution. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
cbvmpo2.1 𝑦𝐴
cbvmpo2.2 𝑤𝐴
cbvmpo2.3 𝑤𝐶
cbvmpo2.4 𝑦𝐸
cbvmpo2.5 (𝑦 = 𝑤𝐶 = 𝐸)
Assertion
Ref Expression
cbvmpo2 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑤𝐵𝐸)
Distinct variable groups:   𝑤,𝐵,𝑦   𝑥,𝑤,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥)   𝐶(𝑥,𝑦,𝑤)   𝐸(𝑥,𝑦,𝑤)

Proof of Theorem cbvmpo2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 cbvmpo2.2 . . . . . 6 𝑤𝐴
21nfcri 2894 . . . . 5 𝑤 𝑥𝐴
3 nfcv 2907 . . . . . 6 𝑤𝐵
43nfcri 2894 . . . . 5 𝑤 𝑦𝐵
52, 4nfan 1902 . . . 4 𝑤(𝑥𝐴𝑦𝐵)
6 cbvmpo2.3 . . . . 5 𝑤𝐶
76nfeq2 2924 . . . 4 𝑤 𝑢 = 𝐶
85, 7nfan 1902 . . 3 𝑤((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)
9 cbvmpo2.1 . . . . . 6 𝑦𝐴
109nfcri 2894 . . . . 5 𝑦 𝑥𝐴
11 nfv 1917 . . . . 5 𝑦 𝑤𝐵
1210, 11nfan 1902 . . . 4 𝑦(𝑥𝐴𝑤𝐵)
13 cbvmpo2.4 . . . . 5 𝑦𝐸
1413nfeq2 2924 . . . 4 𝑦 𝑢 = 𝐸
1512, 14nfan 1902 . . 3 𝑦((𝑥𝐴𝑤𝐵) ∧ 𝑢 = 𝐸)
16 eleq1w 2821 . . . . 5 (𝑦 = 𝑤 → (𝑦𝐵𝑤𝐵))
1716anbi2d 629 . . . 4 (𝑦 = 𝑤 → ((𝑥𝐴𝑦𝐵) ↔ (𝑥𝐴𝑤𝐵)))
18 cbvmpo2.5 . . . . 5 (𝑦 = 𝑤𝐶 = 𝐸)
1918eqeq2d 2749 . . . 4 (𝑦 = 𝑤 → (𝑢 = 𝐶𝑢 = 𝐸))
2017, 19anbi12d 631 . . 3 (𝑦 = 𝑤 → (((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶) ↔ ((𝑥𝐴𝑤𝐵) ∧ 𝑢 = 𝐸)))
218, 15, 20cbvoprab2 7363 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)} = {⟨⟨𝑥, 𝑤⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑤𝐵) ∧ 𝑢 = 𝐸)}
22 df-mpo 7280 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)}
23 df-mpo 7280 . 2 (𝑥𝐴, 𝑤𝐵𝐸) = {⟨⟨𝑥, 𝑤⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑤𝐵) ∧ 𝑢 = 𝐸)}
2421, 22, 233eqtr4i 2776 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑤𝐵𝐸)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  wnfc 2887  {coprab 7276  cmpo 7277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-oprab 7279  df-mpo 7280
This theorem is referenced by:  smflimlem4  44309
  Copyright terms: Public domain W3C validator