| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvoprab1 | Structured version Visualization version GIF version | ||
| Description: Rule used to change first bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 5-Dec-2016.) |
| Ref | Expression |
|---|---|
| cbvoprab1.1 | ⊢ Ⅎ𝑤𝜑 |
| cbvoprab1.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvoprab1.3 | ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvoprab1 | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑤, 𝑦〉, 𝑧〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑤 𝑣 = 〈𝑥, 𝑦〉 | |
| 2 | cbvoprab1.1 | . . . . . 6 ⊢ Ⅎ𝑤𝜑 | |
| 3 | 1, 2 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑤(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 4 | 3 | nfex 2323 | . . . 4 ⊢ Ⅎ𝑤∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 5 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑥 𝑣 = 〈𝑤, 𝑦〉 | |
| 6 | cbvoprab1.2 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
| 7 | 5, 6 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑥(𝑣 = 〈𝑤, 𝑦〉 ∧ 𝜓) |
| 8 | 7 | nfex 2323 | . . . 4 ⊢ Ⅎ𝑥∃𝑦(𝑣 = 〈𝑤, 𝑦〉 ∧ 𝜓) |
| 9 | opeq1 4839 | . . . . . . 7 ⊢ (𝑥 = 𝑤 → 〈𝑥, 𝑦〉 = 〈𝑤, 𝑦〉) | |
| 10 | 9 | eqeq2d 2741 | . . . . . 6 ⊢ (𝑥 = 𝑤 → (𝑣 = 〈𝑥, 𝑦〉 ↔ 𝑣 = 〈𝑤, 𝑦〉)) |
| 11 | cbvoprab1.3 | . . . . . 6 ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜓)) | |
| 12 | 10, 11 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = 𝑤 → ((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑣 = 〈𝑤, 𝑦〉 ∧ 𝜓))) |
| 13 | 12 | exbidv 1921 | . . . 4 ⊢ (𝑥 = 𝑤 → (∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦(𝑣 = 〈𝑤, 𝑦〉 ∧ 𝜓))) |
| 14 | 4, 8, 13 | cbvexv1 2340 | . . 3 ⊢ (∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑤∃𝑦(𝑣 = 〈𝑤, 𝑦〉 ∧ 𝜓)) |
| 15 | 14 | opabbii 5176 | . 2 ⊢ {〈𝑣, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {〈𝑣, 𝑧〉 ∣ ∃𝑤∃𝑦(𝑣 = 〈𝑤, 𝑦〉 ∧ 𝜓)} |
| 16 | dfoprab2 7449 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑣, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 17 | dfoprab2 7449 | . 2 ⊢ {〈〈𝑤, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈𝑣, 𝑧〉 ∣ ∃𝑤∃𝑦(𝑣 = 〈𝑤, 𝑦〉 ∧ 𝜓)} | |
| 18 | 15, 16, 17 | 3eqtr4i 2763 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑤, 𝑦〉, 𝑧〉 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 Ⅎwnf 1783 〈cop 4597 {copab 5171 {coprab 7390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-opab 5172 df-oprab 7393 |
| This theorem is referenced by: cbvmpo1 45085 |
| Copyright terms: Public domain | W3C validator |