Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvoprab1 | Structured version Visualization version GIF version |
Description: Rule used to change first bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 5-Dec-2016.) |
Ref | Expression |
---|---|
cbvoprab1.1 | ⊢ Ⅎ𝑤𝜑 |
cbvoprab1.2 | ⊢ Ⅎ𝑥𝜓 |
cbvoprab1.3 | ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvoprab1 | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑤, 𝑦〉, 𝑧〉 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑤 𝑣 = 〈𝑥, 𝑦〉 | |
2 | cbvoprab1.1 | . . . . . 6 ⊢ Ⅎ𝑤𝜑 | |
3 | 1, 2 | nfan 1902 | . . . . 5 ⊢ Ⅎ𝑤(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
4 | 3 | nfex 2318 | . . . 4 ⊢ Ⅎ𝑤∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
5 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑥 𝑣 = 〈𝑤, 𝑦〉 | |
6 | cbvoprab1.2 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
7 | 5, 6 | nfan 1902 | . . . . 5 ⊢ Ⅎ𝑥(𝑣 = 〈𝑤, 𝑦〉 ∧ 𝜓) |
8 | 7 | nfex 2318 | . . . 4 ⊢ Ⅎ𝑥∃𝑦(𝑣 = 〈𝑤, 𝑦〉 ∧ 𝜓) |
9 | opeq1 4804 | . . . . . . 7 ⊢ (𝑥 = 𝑤 → 〈𝑥, 𝑦〉 = 〈𝑤, 𝑦〉) | |
10 | 9 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑥 = 𝑤 → (𝑣 = 〈𝑥, 𝑦〉 ↔ 𝑣 = 〈𝑤, 𝑦〉)) |
11 | cbvoprab1.3 | . . . . . 6 ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜓)) | |
12 | 10, 11 | anbi12d 631 | . . . . 5 ⊢ (𝑥 = 𝑤 → ((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑣 = 〈𝑤, 𝑦〉 ∧ 𝜓))) |
13 | 12 | exbidv 1924 | . . . 4 ⊢ (𝑥 = 𝑤 → (∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑦(𝑣 = 〈𝑤, 𝑦〉 ∧ 𝜓))) |
14 | 4, 8, 13 | cbvexv1 2339 | . . 3 ⊢ (∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑤∃𝑦(𝑣 = 〈𝑤, 𝑦〉 ∧ 𝜓)) |
15 | 14 | opabbii 5141 | . 2 ⊢ {〈𝑣, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {〈𝑣, 𝑧〉 ∣ ∃𝑤∃𝑦(𝑣 = 〈𝑤, 𝑦〉 ∧ 𝜓)} |
16 | dfoprab2 7333 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑣, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
17 | dfoprab2 7333 | . 2 ⊢ {〈〈𝑤, 𝑦〉, 𝑧〉 ∣ 𝜓} = {〈𝑣, 𝑧〉 ∣ ∃𝑤∃𝑦(𝑣 = 〈𝑤, 𝑦〉 ∧ 𝜓)} | |
18 | 15, 16, 17 | 3eqtr4i 2776 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑤, 𝑦〉, 𝑧〉 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 Ⅎwnf 1786 〈cop 4567 {copab 5136 {coprab 7276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 df-oprab 7279 |
This theorem is referenced by: cbvmpo1 42648 |
Copyright terms: Public domain | W3C validator |