MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvoprab1 Structured version   Visualization version   GIF version

Theorem cbvoprab1 7478
Description: Rule used to change first bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 5-Dec-2016.)
Hypotheses
Ref Expression
cbvoprab1.1 𝑤𝜑
cbvoprab1.2 𝑥𝜓
cbvoprab1.3 (𝑥 = 𝑤 → (𝜑𝜓))
Assertion
Ref Expression
cbvoprab1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
Distinct variable group:   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvoprab1
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . . 6 𝑤 𝑣 = ⟨𝑥, 𝑦
2 cbvoprab1.1 . . . . . 6 𝑤𝜑
31, 2nfan 1899 . . . . 5 𝑤(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
43nfex 2323 . . . 4 𝑤𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
5 nfv 1914 . . . . . 6 𝑥 𝑣 = ⟨𝑤, 𝑦
6 cbvoprab1.2 . . . . . 6 𝑥𝜓
75, 6nfan 1899 . . . . 5 𝑥(𝑣 = ⟨𝑤, 𝑦⟩ ∧ 𝜓)
87nfex 2323 . . . 4 𝑥𝑦(𝑣 = ⟨𝑤, 𝑦⟩ ∧ 𝜓)
9 opeq1 4839 . . . . . . 7 (𝑥 = 𝑤 → ⟨𝑥, 𝑦⟩ = ⟨𝑤, 𝑦⟩)
109eqeq2d 2741 . . . . . 6 (𝑥 = 𝑤 → (𝑣 = ⟨𝑥, 𝑦⟩ ↔ 𝑣 = ⟨𝑤, 𝑦⟩))
11 cbvoprab1.3 . . . . . 6 (𝑥 = 𝑤 → (𝜑𝜓))
1210, 11anbi12d 632 . . . . 5 (𝑥 = 𝑤 → ((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑣 = ⟨𝑤, 𝑦⟩ ∧ 𝜓)))
1312exbidv 1921 . . . 4 (𝑥 = 𝑤 → (∃𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑦(𝑣 = ⟨𝑤, 𝑦⟩ ∧ 𝜓)))
144, 8, 13cbvexv1 2340 . . 3 (∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑤𝑦(𝑣 = ⟨𝑤, 𝑦⟩ ∧ 𝜓))
1514opabbii 5176 . 2 {⟨𝑣, 𝑧⟩ ∣ ∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {⟨𝑣, 𝑧⟩ ∣ ∃𝑤𝑦(𝑣 = ⟨𝑤, 𝑦⟩ ∧ 𝜓)}
16 dfoprab2 7449 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑣, 𝑧⟩ ∣ ∃𝑥𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
17 dfoprab2 7449 . 2 {⟨⟨𝑤, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨𝑣, 𝑧⟩ ∣ ∃𝑤𝑦(𝑣 = ⟨𝑤, 𝑦⟩ ∧ 𝜓)}
1815, 16, 173eqtr4i 2763 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wnf 1783  cop 4597  {copab 5171  {coprab 7390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-opab 5172  df-oprab 7393
This theorem is referenced by:  cbvmpo1  45085
  Copyright terms: Public domain W3C validator