Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfinf Structured version   Visualization version   GIF version

Theorem smfinf 44991
Description: The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfinf.n 𝑛𝐹
smfinf.x 𝑥𝐹
smfinf.m (𝜑𝑀 ∈ ℤ)
smfinf.z 𝑍 = (ℤ𝑀)
smfinf.s (𝜑𝑆 ∈ SAlg)
smfinf.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfinf.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
smfinf.g 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
Assertion
Ref Expression
smfinf (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑦,𝐹   𝑛,𝑍,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝑆(𝑥,𝑦,𝑛)   𝐹(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem smfinf
Dummy variables 𝑚 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfinf.m . 2 (𝜑𝑀 ∈ ℤ)
2 smfinf.z . 2 𝑍 = (ℤ𝑀)
3 smfinf.s . 2 (𝜑𝑆 ∈ SAlg)
4 smfinf.f . 2 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5 smfinf.d . . 3 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
6 nfcv 2905 . . . 4 𝑤 𝑛𝑍 dom (𝐹𝑛)
7 nfcv 2905 . . . . 5 𝑥𝑍
8 smfinf.x . . . . . . 7 𝑥𝐹
9 nfcv 2905 . . . . . . 7 𝑥𝑚
108, 9nffv 6849 . . . . . 6 𝑥(𝐹𝑚)
1110nfdm 5904 . . . . 5 𝑥dom (𝐹𝑚)
127, 11nfiin 4983 . . . 4 𝑥 𝑚𝑍 dom (𝐹𝑚)
13 nfv 1917 . . . 4 𝑤𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)
14 nfcv 2905 . . . . 5 𝑥
15 nfcv 2905 . . . . . . 7 𝑥𝑧
16 nfcv 2905 . . . . . . 7 𝑥
17 nfcv 2905 . . . . . . . 8 𝑥𝑤
1810, 17nffv 6849 . . . . . . 7 𝑥((𝐹𝑚)‘𝑤)
1915, 16, 18nfbr 5150 . . . . . 6 𝑥 𝑧 ≤ ((𝐹𝑚)‘𝑤)
207, 19nfralw 3292 . . . . 5 𝑥𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)
2114, 20nfrexw 3294 . . . 4 𝑥𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)
22 nfcv 2905 . . . . . 6 𝑚dom (𝐹𝑛)
23 smfinf.n . . . . . . . 8 𝑛𝐹
24 nfcv 2905 . . . . . . . 8 𝑛𝑚
2523, 24nffv 6849 . . . . . . 7 𝑛(𝐹𝑚)
2625nfdm 5904 . . . . . 6 𝑛dom (𝐹𝑚)
27 fveq2 6839 . . . . . . 7 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
2827dmeqd 5859 . . . . . 6 (𝑛 = 𝑚 → dom (𝐹𝑛) = dom (𝐹𝑚))
2922, 26, 28cbviin 4995 . . . . 5 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚)
3029a1i 11 . . . 4 (𝑥 = 𝑤 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚))
31 fveq2 6839 . . . . . . . . 9 (𝑥 = 𝑤 → ((𝐹𝑛)‘𝑥) = ((𝐹𝑛)‘𝑤))
3231breq2d 5115 . . . . . . . 8 (𝑥 = 𝑤 → (𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ 𝑦 ≤ ((𝐹𝑛)‘𝑤)))
3332ralbidv 3172 . . . . . . 7 (𝑥 = 𝑤 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑤)))
34 nfv 1917 . . . . . . . . 9 𝑚 𝑦 ≤ ((𝐹𝑛)‘𝑤)
35 nfcv 2905 . . . . . . . . . 10 𝑛𝑦
36 nfcv 2905 . . . . . . . . . 10 𝑛
37 nfcv 2905 . . . . . . . . . . 11 𝑛𝑤
3825, 37nffv 6849 . . . . . . . . . 10 𝑛((𝐹𝑚)‘𝑤)
3935, 36, 38nfbr 5150 . . . . . . . . 9 𝑛 𝑦 ≤ ((𝐹𝑚)‘𝑤)
4027fveq1d 6841 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝐹𝑛)‘𝑤) = ((𝐹𝑚)‘𝑤))
4140breq2d 5115 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑦 ≤ ((𝐹𝑛)‘𝑤) ↔ 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
4234, 39, 41cbvralw 3287 . . . . . . . 8 (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑤) ↔ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤))
4342a1i 11 . . . . . . 7 (𝑥 = 𝑤 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑤) ↔ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
4433, 43bitrd 278 . . . . . 6 (𝑥 = 𝑤 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
4544rexbidv 3173 . . . . 5 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
46 breq1 5106 . . . . . . . 8 (𝑦 = 𝑧 → (𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
4746ralbidv 3172 . . . . . . 7 (𝑦 = 𝑧 → (∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
4847cbvrexvw 3224 . . . . . 6 (∃𝑦 ∈ ℝ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤))
4948a1i 11 . . . . 5 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
5045, 49bitrd 278 . . . 4 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
516, 12, 13, 21, 30, 50cbvrabcsfw 3897 . . 3 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)} = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)}
525, 51eqtri 2764 . 2 𝐷 = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)}
53 smfinf.g . . 3 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
54 nfrab1 3424 . . . . 5 𝑥{𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
555, 54nfcxfr 2903 . . . 4 𝑥𝐷
56 nfcv 2905 . . . 4 𝑤𝐷
57 nfcv 2905 . . . 4 𝑤inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )
587, 18nfmpt 5210 . . . . . 6 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
5958nfrn 5905 . . . . 5 𝑥ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
60 nfcv 2905 . . . . 5 𝑥 <
6159, 14, 60nfinf 9414 . . . 4 𝑥inf(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < )
6231mpteq2dv 5205 . . . . . . 7 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)))
63 nfcv 2905 . . . . . . . . 9 𝑚((𝐹𝑛)‘𝑤)
6463, 38, 40cbvmpt 5214 . . . . . . . 8 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
6564a1i 11 . . . . . . 7 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6662, 65eqtrd 2776 . . . . . 6 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6766rneqd 5891 . . . . 5 (𝑥 = 𝑤 → ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6867infeq1d 9409 . . . 4 (𝑥 = 𝑤 → inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) = inf(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
6955, 56, 57, 61, 68cbvmptf 5212 . . 3 (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑤𝐷 ↦ inf(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
7053, 69eqtri 2764 . 2 𝐺 = (𝑤𝐷 ↦ inf(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
711, 2, 3, 4, 52, 70smfinflem 44990 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  wnfc 2885  wral 3062  wrex 3071  {crab 3405   ciin 4953   class class class wbr 5103  cmpt 5186  dom cdm 5631  ran crn 5632  wf 6489  cfv 6493  infcinf 9373  cr 11046   < clt 11185  cle 11186  cz 12495  cuz 12759  SAlgcsalg 44481  SMblFncsmblfn 44868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668  ax-inf2 9573  ax-cc 10367  ax-ac2 10395  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-iin 4955  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-isom 6502  df-riota 7309  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7799  df-1st 7917  df-2nd 7918  df-frecs 8208  df-wrecs 8239  df-recs 8313  df-rdg 8352  df-1o 8408  df-oadd 8412  df-omul 8413  df-er 8644  df-map 8763  df-pm 8764  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9374  df-inf 9375  df-oi 9442  df-card 9871  df-acn 9874  df-ac 10048  df-pnf 11187  df-mnf 11188  df-xr 11189  df-ltxr 11190  df-le 11191  df-sub 11383  df-neg 11384  df-div 11809  df-nn 12150  df-2 12212  df-3 12213  df-4 12214  df-n0 12410  df-z 12496  df-uz 12760  df-q 12866  df-rp 12908  df-ioo 13260  df-ioc 13261  df-ico 13262  df-icc 13263  df-fz 13417  df-fzo 13560  df-fl 13689  df-seq 13899  df-exp 13960  df-hash 14223  df-word 14395  df-concat 14451  df-s1 14476  df-s2 14729  df-s3 14730  df-s4 14731  df-cj 14976  df-re 14977  df-im 14978  df-sqrt 15112  df-abs 15113  df-rest 17296  df-topgen 17317  df-top 22227  df-bases 22280  df-salg 44482  df-salgen 44486  df-smblfn 44869
This theorem is referenced by:  smfinfmpt  44992
  Copyright terms: Public domain W3C validator