Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfinf Structured version   Visualization version   GIF version

Theorem smfinf 46739
Description: The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfinf.n 𝑛𝐹
smfinf.x 𝑥𝐹
smfinf.m (𝜑𝑀 ∈ ℤ)
smfinf.z 𝑍 = (ℤ𝑀)
smfinf.s (𝜑𝑆 ∈ SAlg)
smfinf.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfinf.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
smfinf.g 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
Assertion
Ref Expression
smfinf (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑦,𝐹   𝑛,𝑍,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝑆(𝑥,𝑦,𝑛)   𝐹(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem smfinf
Dummy variables 𝑚 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfinf.m . 2 (𝜑𝑀 ∈ ℤ)
2 smfinf.z . 2 𝑍 = (ℤ𝑀)
3 smfinf.s . 2 (𝜑𝑆 ∈ SAlg)
4 smfinf.f . 2 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5 smfinf.d . . 3 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
6 nfcv 2908 . . . 4 𝑤 𝑛𝑍 dom (𝐹𝑛)
7 nfcv 2908 . . . . 5 𝑥𝑍
8 smfinf.x . . . . . . 7 𝑥𝐹
9 nfcv 2908 . . . . . . 7 𝑥𝑚
108, 9nffv 6930 . . . . . 6 𝑥(𝐹𝑚)
1110nfdm 5976 . . . . 5 𝑥dom (𝐹𝑚)
127, 11nfiin 5047 . . . 4 𝑥 𝑚𝑍 dom (𝐹𝑚)
13 nfv 1913 . . . 4 𝑤𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)
14 nfcv 2908 . . . . 5 𝑥
15 nfcv 2908 . . . . . . 7 𝑥𝑧
16 nfcv 2908 . . . . . . 7 𝑥
17 nfcv 2908 . . . . . . . 8 𝑥𝑤
1810, 17nffv 6930 . . . . . . 7 𝑥((𝐹𝑚)‘𝑤)
1915, 16, 18nfbr 5213 . . . . . 6 𝑥 𝑧 ≤ ((𝐹𝑚)‘𝑤)
207, 19nfralw 3317 . . . . 5 𝑥𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)
2114, 20nfrexw 3319 . . . 4 𝑥𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)
22 nfcv 2908 . . . . . 6 𝑚dom (𝐹𝑛)
23 smfinf.n . . . . . . . 8 𝑛𝐹
24 nfcv 2908 . . . . . . . 8 𝑛𝑚
2523, 24nffv 6930 . . . . . . 7 𝑛(𝐹𝑚)
2625nfdm 5976 . . . . . 6 𝑛dom (𝐹𝑚)
27 fveq2 6920 . . . . . . 7 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
2827dmeqd 5930 . . . . . 6 (𝑛 = 𝑚 → dom (𝐹𝑛) = dom (𝐹𝑚))
2922, 26, 28cbviin 5060 . . . . 5 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚)
3029a1i 11 . . . 4 (𝑥 = 𝑤 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚))
31 fveq2 6920 . . . . . . . . 9 (𝑥 = 𝑤 → ((𝐹𝑛)‘𝑥) = ((𝐹𝑛)‘𝑤))
3231breq2d 5178 . . . . . . . 8 (𝑥 = 𝑤 → (𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ 𝑦 ≤ ((𝐹𝑛)‘𝑤)))
3332ralbidv 3184 . . . . . . 7 (𝑥 = 𝑤 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑤)))
34 nfv 1913 . . . . . . . . 9 𝑚 𝑦 ≤ ((𝐹𝑛)‘𝑤)
35 nfcv 2908 . . . . . . . . . 10 𝑛𝑦
36 nfcv 2908 . . . . . . . . . 10 𝑛
37 nfcv 2908 . . . . . . . . . . 11 𝑛𝑤
3825, 37nffv 6930 . . . . . . . . . 10 𝑛((𝐹𝑚)‘𝑤)
3935, 36, 38nfbr 5213 . . . . . . . . 9 𝑛 𝑦 ≤ ((𝐹𝑚)‘𝑤)
4027fveq1d 6922 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝐹𝑛)‘𝑤) = ((𝐹𝑚)‘𝑤))
4140breq2d 5178 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑦 ≤ ((𝐹𝑛)‘𝑤) ↔ 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
4234, 39, 41cbvralw 3312 . . . . . . . 8 (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑤) ↔ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤))
4342a1i 11 . . . . . . 7 (𝑥 = 𝑤 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑤) ↔ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
4433, 43bitrd 279 . . . . . 6 (𝑥 = 𝑤 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
4544rexbidv 3185 . . . . 5 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
46 breq1 5169 . . . . . . . 8 (𝑦 = 𝑧 → (𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
4746ralbidv 3184 . . . . . . 7 (𝑦 = 𝑧 → (∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
4847cbvrexvw 3244 . . . . . 6 (∃𝑦 ∈ ℝ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤))
4948a1i 11 . . . . 5 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
5045, 49bitrd 279 . . . 4 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
516, 12, 13, 21, 30, 50cbvrabcsfw 3965 . . 3 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)} = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)}
525, 51eqtri 2768 . 2 𝐷 = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)}
53 smfinf.g . . 3 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
54 nfrab1 3464 . . . . 5 𝑥{𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
555, 54nfcxfr 2906 . . . 4 𝑥𝐷
56 nfcv 2908 . . . 4 𝑤𝐷
57 nfcv 2908 . . . 4 𝑤inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )
587, 18nfmpt 5273 . . . . . 6 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
5958nfrn 5977 . . . . 5 𝑥ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
60 nfcv 2908 . . . . 5 𝑥 <
6159, 14, 60nfinf 9551 . . . 4 𝑥inf(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < )
6231mpteq2dv 5268 . . . . . . 7 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)))
63 nfcv 2908 . . . . . . . . 9 𝑚((𝐹𝑛)‘𝑤)
6463, 38, 40cbvmpt 5277 . . . . . . . 8 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
6564a1i 11 . . . . . . 7 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6662, 65eqtrd 2780 . . . . . 6 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6766rneqd 5963 . . . . 5 (𝑥 = 𝑤 → ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6867infeq1d 9546 . . . 4 (𝑥 = 𝑤 → inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) = inf(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
6955, 56, 57, 61, 68cbvmptf 5275 . . 3 (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑤𝐷 ↦ inf(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
7053, 69eqtri 2768 . 2 𝐺 = (𝑤𝐷 ↦ inf(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
711, 2, 3, 4, 52, 70smfinflem 46738 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wnfc 2893  wral 3067  wrex 3076  {crab 3443   ciin 5016   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  wf 6569  cfv 6573  infcinf 9510  cr 11183   < clt 11324  cle 11325  cz 12639  cuz 12903  SAlgcsalg 46229  SMblFncsmblfn 46616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-s4 14899  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-rest 17482  df-topgen 17503  df-top 22921  df-bases 22974  df-salg 46230  df-salgen 46234  df-smblfn 46617
This theorem is referenced by:  smfinfmpt  46740
  Copyright terms: Public domain W3C validator