Step | Hyp | Ref
| Expression |
1 | | smfinf.m |
. 2
⊢ (𝜑 → 𝑀 ∈ ℤ) |
2 | | smfinf.z |
. 2
⊢ 𝑍 =
(ℤ≥‘𝑀) |
3 | | smfinf.s |
. 2
⊢ (𝜑 → 𝑆 ∈ SAlg) |
4 | | smfinf.f |
. 2
⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
5 | | smfinf.d |
. . 3
⊢ 𝐷 = {𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} |
6 | | nfcv 2906 |
. . . 4
⊢
Ⅎ𝑤∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) |
7 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑥𝑍 |
8 | | smfinf.x |
. . . . . . 7
⊢
Ⅎ𝑥𝐹 |
9 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑥𝑚 |
10 | 8, 9 | nffv 6766 |
. . . . . 6
⊢
Ⅎ𝑥(𝐹‘𝑚) |
11 | 10 | nfdm 5849 |
. . . . 5
⊢
Ⅎ𝑥dom
(𝐹‘𝑚) |
12 | 7, 11 | nfiin 4952 |
. . . 4
⊢
Ⅎ𝑥∩ 𝑚 ∈ 𝑍 dom (𝐹‘𝑚) |
13 | | nfv 1918 |
. . . 4
⊢
Ⅎ𝑤∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥) |
14 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑥ℝ |
15 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑥𝑧 |
16 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑥
≤ |
17 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑤 |
18 | 10, 17 | nffv 6766 |
. . . . . . 7
⊢
Ⅎ𝑥((𝐹‘𝑚)‘𝑤) |
19 | 15, 16, 18 | nfbr 5117 |
. . . . . 6
⊢
Ⅎ𝑥 𝑧 ≤ ((𝐹‘𝑚)‘𝑤) |
20 | 7, 19 | nfralw 3149 |
. . . . 5
⊢
Ⅎ𝑥∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑤) |
21 | 14, 20 | nfrex 3237 |
. . . 4
⊢
Ⅎ𝑥∃𝑧 ∈ ℝ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑤) |
22 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑚dom
(𝐹‘𝑛) |
23 | | smfinf.n |
. . . . . . . 8
⊢
Ⅎ𝑛𝐹 |
24 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑛𝑚 |
25 | 23, 24 | nffv 6766 |
. . . . . . 7
⊢
Ⅎ𝑛(𝐹‘𝑚) |
26 | 25 | nfdm 5849 |
. . . . . 6
⊢
Ⅎ𝑛dom
(𝐹‘𝑚) |
27 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → (𝐹‘𝑛) = (𝐹‘𝑚)) |
28 | 27 | dmeqd 5803 |
. . . . . 6
⊢ (𝑛 = 𝑚 → dom (𝐹‘𝑛) = dom (𝐹‘𝑚)) |
29 | 22, 26, 28 | cbviin 4963 |
. . . . 5
⊢ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) = ∩ 𝑚 ∈ 𝑍 dom (𝐹‘𝑚) |
30 | 29 | a1i 11 |
. . . 4
⊢ (𝑥 = 𝑤 → ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) = ∩ 𝑚 ∈ 𝑍 dom (𝐹‘𝑚)) |
31 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑛)‘𝑥) = ((𝐹‘𝑛)‘𝑤)) |
32 | 31 | breq2d 5082 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝑦 ≤ ((𝐹‘𝑛)‘𝑥) ↔ 𝑦 ≤ ((𝐹‘𝑛)‘𝑤))) |
33 | 32 | ralbidv 3120 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → (∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥) ↔ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑤))) |
34 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑚 𝑦 ≤ ((𝐹‘𝑛)‘𝑤) |
35 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑛𝑦 |
36 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑛
≤ |
37 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛𝑤 |
38 | 25, 37 | nffv 6766 |
. . . . . . . . . 10
⊢
Ⅎ𝑛((𝐹‘𝑚)‘𝑤) |
39 | 35, 36, 38 | nfbr 5117 |
. . . . . . . . 9
⊢
Ⅎ𝑛 𝑦 ≤ ((𝐹‘𝑚)‘𝑤) |
40 | 27 | fveq1d 6758 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → ((𝐹‘𝑛)‘𝑤) = ((𝐹‘𝑚)‘𝑤)) |
41 | 40 | breq2d 5082 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑦 ≤ ((𝐹‘𝑛)‘𝑤) ↔ 𝑦 ≤ ((𝐹‘𝑚)‘𝑤))) |
42 | 34, 39, 41 | cbvralw 3363 |
. . . . . . . 8
⊢
(∀𝑛 ∈
𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑤) ↔ ∀𝑚 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑚)‘𝑤)) |
43 | 42 | a1i 11 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → (∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑤) ↔ ∀𝑚 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑚)‘𝑤))) |
44 | 33, 43 | bitrd 278 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥) ↔ ∀𝑚 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑚)‘𝑤))) |
45 | 44 | rexbidv 3225 |
. . . . 5
⊢ (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑚 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑚)‘𝑤))) |
46 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (𝑦 ≤ ((𝐹‘𝑚)‘𝑤) ↔ 𝑧 ≤ ((𝐹‘𝑚)‘𝑤))) |
47 | 46 | ralbidv 3120 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (∀𝑚 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑚)‘𝑤) ↔ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑤))) |
48 | 47 | cbvrexvw 3373 |
. . . . . 6
⊢
(∃𝑦 ∈
ℝ ∀𝑚 ∈
𝑍 𝑦 ≤ ((𝐹‘𝑚)‘𝑤) ↔ ∃𝑧 ∈ ℝ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑤)) |
49 | 48 | a1i 11 |
. . . . 5
⊢ (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑚 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑚)‘𝑤) ↔ ∃𝑧 ∈ ℝ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑤))) |
50 | 45, 49 | bitrd 278 |
. . . 4
⊢ (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥) ↔ ∃𝑧 ∈ ℝ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑤))) |
51 | 6, 12, 13, 21, 30, 50 | cbvrabcsfw 3872 |
. . 3
⊢ {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} = {𝑤 ∈ ∩
𝑚 ∈ 𝑍 dom (𝐹‘𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑤)} |
52 | 5, 51 | eqtri 2766 |
. 2
⊢ 𝐷 = {𝑤 ∈ ∩
𝑚 ∈ 𝑍 dom (𝐹‘𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚 ∈ 𝑍 𝑧 ≤ ((𝐹‘𝑚)‘𝑤)} |
53 | | smfinf.g |
. . 3
⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
54 | | nfrab1 3310 |
. . . . 5
⊢
Ⅎ𝑥{𝑥 ∈ ∩
𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} |
55 | 5, 54 | nfcxfr 2904 |
. . . 4
⊢
Ⅎ𝑥𝐷 |
56 | | nfcv 2906 |
. . . 4
⊢
Ⅎ𝑤𝐷 |
57 | | nfcv 2906 |
. . . 4
⊢
Ⅎ𝑤inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ) |
58 | 7, 18 | nfmpt 5177 |
. . . . . 6
⊢
Ⅎ𝑥(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑤)) |
59 | 58 | nfrn 5850 |
. . . . 5
⊢
Ⅎ𝑥ran
(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑤)) |
60 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑥
< |
61 | 59, 14, 60 | nfinf 9171 |
. . . 4
⊢
Ⅎ𝑥inf(ran (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑤)), ℝ, < ) |
62 | 31 | mpteq2dv 5172 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)) = (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑤))) |
63 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑚((𝐹‘𝑛)‘𝑤) |
64 | 63, 38, 40 | cbvmpt 5181 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑤)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑤)) |
65 | 64 | a1i 11 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑤)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑤))) |
66 | 62, 65 | eqtrd 2778 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑤))) |
67 | 66 | rneqd 5836 |
. . . . 5
⊢ (𝑥 = 𝑤 → ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)) = ran (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑤))) |
68 | 67 | infeq1d 9166 |
. . . 4
⊢ (𝑥 = 𝑤 → inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < ) = inf(ran (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑤)), ℝ, < )) |
69 | 55, 56, 57, 61, 68 | cbvmptf 5179 |
. . 3
⊢ (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) = (𝑤 ∈ 𝐷 ↦ inf(ran (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑤)), ℝ, < )) |
70 | 53, 69 | eqtri 2766 |
. 2
⊢ 𝐺 = (𝑤 ∈ 𝐷 ↦ inf(ran (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑤)), ℝ, < )) |
71 | 1, 2, 3, 4, 52, 70 | smfinflem 44237 |
1
⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) |