Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfinf Structured version   Visualization version   GIF version

Theorem smfinf 46673
Description: The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfinf.n 𝑛𝐹
smfinf.x 𝑥𝐹
smfinf.m (𝜑𝑀 ∈ ℤ)
smfinf.z 𝑍 = (ℤ𝑀)
smfinf.s (𝜑𝑆 ∈ SAlg)
smfinf.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfinf.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
smfinf.g 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
Assertion
Ref Expression
smfinf (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑦,𝐹   𝑛,𝑍,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝑆(𝑥,𝑦,𝑛)   𝐹(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem smfinf
Dummy variables 𝑚 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfinf.m . 2 (𝜑𝑀 ∈ ℤ)
2 smfinf.z . 2 𝑍 = (ℤ𝑀)
3 smfinf.s . 2 (𝜑𝑆 ∈ SAlg)
4 smfinf.f . 2 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5 smfinf.d . . 3 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
6 nfcv 2904 . . . 4 𝑤 𝑛𝑍 dom (𝐹𝑛)
7 nfcv 2904 . . . . 5 𝑥𝑍
8 smfinf.x . . . . . . 7 𝑥𝐹
9 nfcv 2904 . . . . . . 7 𝑥𝑚
108, 9nffv 6929 . . . . . 6 𝑥(𝐹𝑚)
1110nfdm 5975 . . . . 5 𝑥dom (𝐹𝑚)
127, 11nfiin 5050 . . . 4 𝑥 𝑚𝑍 dom (𝐹𝑚)
13 nfv 1913 . . . 4 𝑤𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)
14 nfcv 2904 . . . . 5 𝑥
15 nfcv 2904 . . . . . . 7 𝑥𝑧
16 nfcv 2904 . . . . . . 7 𝑥
17 nfcv 2904 . . . . . . . 8 𝑥𝑤
1810, 17nffv 6929 . . . . . . 7 𝑥((𝐹𝑚)‘𝑤)
1915, 16, 18nfbr 5216 . . . . . 6 𝑥 𝑧 ≤ ((𝐹𝑚)‘𝑤)
207, 19nfralw 3312 . . . . 5 𝑥𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)
2114, 20nfrexw 3314 . . . 4 𝑥𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)
22 nfcv 2904 . . . . . 6 𝑚dom (𝐹𝑛)
23 smfinf.n . . . . . . . 8 𝑛𝐹
24 nfcv 2904 . . . . . . . 8 𝑛𝑚
2523, 24nffv 6929 . . . . . . 7 𝑛(𝐹𝑚)
2625nfdm 5975 . . . . . 6 𝑛dom (𝐹𝑚)
27 fveq2 6919 . . . . . . 7 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
2827dmeqd 5929 . . . . . 6 (𝑛 = 𝑚 → dom (𝐹𝑛) = dom (𝐹𝑚))
2922, 26, 28cbviin 5063 . . . . 5 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚)
3029a1i 11 . . . 4 (𝑥 = 𝑤 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚))
31 fveq2 6919 . . . . . . . . 9 (𝑥 = 𝑤 → ((𝐹𝑛)‘𝑥) = ((𝐹𝑛)‘𝑤))
3231breq2d 5181 . . . . . . . 8 (𝑥 = 𝑤 → (𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ 𝑦 ≤ ((𝐹𝑛)‘𝑤)))
3332ralbidv 3180 . . . . . . 7 (𝑥 = 𝑤 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑤)))
34 nfv 1913 . . . . . . . . 9 𝑚 𝑦 ≤ ((𝐹𝑛)‘𝑤)
35 nfcv 2904 . . . . . . . . . 10 𝑛𝑦
36 nfcv 2904 . . . . . . . . . 10 𝑛
37 nfcv 2904 . . . . . . . . . . 11 𝑛𝑤
3825, 37nffv 6929 . . . . . . . . . 10 𝑛((𝐹𝑚)‘𝑤)
3935, 36, 38nfbr 5216 . . . . . . . . 9 𝑛 𝑦 ≤ ((𝐹𝑚)‘𝑤)
4027fveq1d 6921 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝐹𝑛)‘𝑤) = ((𝐹𝑚)‘𝑤))
4140breq2d 5181 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑦 ≤ ((𝐹𝑛)‘𝑤) ↔ 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
4234, 39, 41cbvralw 3307 . . . . . . . 8 (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑤) ↔ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤))
4342a1i 11 . . . . . . 7 (𝑥 = 𝑤 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑤) ↔ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
4433, 43bitrd 279 . . . . . 6 (𝑥 = 𝑤 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
4544rexbidv 3181 . . . . 5 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
46 breq1 5172 . . . . . . . 8 (𝑦 = 𝑧 → (𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
4746ralbidv 3180 . . . . . . 7 (𝑦 = 𝑧 → (∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
4847cbvrexvw 3239 . . . . . 6 (∃𝑦 ∈ ℝ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤))
4948a1i 11 . . . . 5 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
5045, 49bitrd 279 . . . 4 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
516, 12, 13, 21, 30, 50cbvrabcsfw 3959 . . 3 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)} = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)}
525, 51eqtri 2762 . 2 𝐷 = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)}
53 smfinf.g . . 3 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
54 nfrab1 3458 . . . . 5 𝑥{𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
555, 54nfcxfr 2902 . . . 4 𝑥𝐷
56 nfcv 2904 . . . 4 𝑤𝐷
57 nfcv 2904 . . . 4 𝑤inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )
587, 18nfmpt 5276 . . . . . 6 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
5958nfrn 5976 . . . . 5 𝑥ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
60 nfcv 2904 . . . . 5 𝑥 <
6159, 14, 60nfinf 9547 . . . 4 𝑥inf(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < )
6231mpteq2dv 5271 . . . . . . 7 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)))
63 nfcv 2904 . . . . . . . . 9 𝑚((𝐹𝑛)‘𝑤)
6463, 38, 40cbvmpt 5280 . . . . . . . 8 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
6564a1i 11 . . . . . . 7 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6662, 65eqtrd 2774 . . . . . 6 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6766rneqd 5962 . . . . 5 (𝑥 = 𝑤 → ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6867infeq1d 9542 . . . 4 (𝑥 = 𝑤 → inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) = inf(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
6955, 56, 57, 61, 68cbvmptf 5278 . . 3 (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑤𝐷 ↦ inf(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
7053, 69eqtri 2762 . 2 𝐺 = (𝑤𝐷 ↦ inf(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
711, 2, 3, 4, 52, 70smfinflem 46672 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2103  wnfc 2888  wral 3063  wrex 3072  {crab 3438   ciin 5020   class class class wbr 5169  cmpt 5252  dom cdm 5699  ran crn 5700  wf 6568  cfv 6572  infcinf 9506  cr 11179   < clt 11320  cle 11321  cz 12635  cuz 12899  SAlgcsalg 46163  SMblFncsmblfn 46550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-inf2 9706  ax-cc 10500  ax-ac2 10528  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257  ax-pre-sup 11258
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-iin 5022  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-se 5655  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-isom 6581  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-1st 8026  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-2o 8519  df-oadd 8522  df-omul 8523  df-er 8759  df-map 8882  df-pm 8883  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-sup 9507  df-inf 9508  df-oi 9575  df-card 10004  df-acn 10007  df-ac 10181  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-div 11944  df-nn 12290  df-2 12352  df-3 12353  df-4 12354  df-n0 12550  df-z 12636  df-uz 12900  df-q 13010  df-rp 13054  df-ioo 13407  df-ioc 13408  df-ico 13409  df-icc 13410  df-fz 13564  df-fzo 13708  df-fl 13839  df-seq 14049  df-exp 14109  df-hash 14376  df-word 14559  df-concat 14615  df-s1 14640  df-s2 14893  df-s3 14894  df-s4 14895  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-rest 17477  df-topgen 17498  df-top 22914  df-bases 22967  df-salg 46164  df-salgen 46168  df-smblfn 46551
This theorem is referenced by:  smfinfmpt  46674
  Copyright terms: Public domain W3C validator