Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsup Structured version   Visualization version   GIF version

Theorem smfsup 42525
Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsup.n 𝑛𝐹
smfsup.x 𝑥𝐹
smfsup.m (𝜑𝑀 ∈ ℤ)
smfsup.z 𝑍 = (ℤ𝑀)
smfsup.s (𝜑𝑆 ∈ SAlg)
smfsup.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsup.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
smfsup.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
Assertion
Ref Expression
smfsup (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑦,𝐹   𝑛,𝑍,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝑆(𝑥,𝑦,𝑛)   𝐹(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem smfsup
Dummy variables 𝑚 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfsup.m . 2 (𝜑𝑀 ∈ ℤ)
2 smfsup.z . 2 𝑍 = (ℤ𝑀)
3 smfsup.s . 2 (𝜑𝑆 ∈ SAlg)
4 smfsup.f . 2 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5 smfsup.d . . 3 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
6 nfcv 2932 . . . 4 𝑤 𝑛𝑍 dom (𝐹𝑛)
7 nfcv 2932 . . . . 5 𝑥𝑍
8 smfsup.x . . . . . . 7 𝑥𝐹
9 nfcv 2932 . . . . . . 7 𝑥𝑚
108, 9nffv 6509 . . . . . 6 𝑥(𝐹𝑚)
1110nfdm 5666 . . . . 5 𝑥dom (𝐹𝑚)
127, 11nfiin 4822 . . . 4 𝑥 𝑚𝑍 dom (𝐹𝑚)
13 nfv 1873 . . . 4 𝑤𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦
14 nfcv 2932 . . . . 5 𝑥
15 nfcv 2932 . . . . . . . 8 𝑥𝑤
1610, 15nffv 6509 . . . . . . 7 𝑥((𝐹𝑚)‘𝑤)
17 nfcv 2932 . . . . . . 7 𝑥
18 nfcv 2932 . . . . . . 7 𝑥𝑧
1916, 17, 18nfbr 4976 . . . . . 6 𝑥((𝐹𝑚)‘𝑤) ≤ 𝑧
207, 19nfral 3174 . . . . 5 𝑥𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧
2114, 20nfrex 3253 . . . 4 𝑥𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧
22 nfcv 2932 . . . . . 6 𝑚dom (𝐹𝑛)
23 smfsup.n . . . . . . . 8 𝑛𝐹
24 nfcv 2932 . . . . . . . 8 𝑛𝑚
2523, 24nffv 6509 . . . . . . 7 𝑛(𝐹𝑚)
2625nfdm 5666 . . . . . 6 𝑛dom (𝐹𝑚)
27 fveq2 6499 . . . . . . 7 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
2827dmeqd 5624 . . . . . 6 (𝑛 = 𝑚 → dom (𝐹𝑛) = dom (𝐹𝑚))
2922, 26, 28cbviin 4832 . . . . 5 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚)
3029a1i 11 . . . 4 (𝑥 = 𝑤 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚))
31 fveq2 6499 . . . . . . . . 9 (𝑥 = 𝑤 → ((𝐹𝑛)‘𝑥) = ((𝐹𝑛)‘𝑤))
3231breq1d 4939 . . . . . . . 8 (𝑥 = 𝑤 → (((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ((𝐹𝑛)‘𝑤) ≤ 𝑦))
3332ralbidv 3147 . . . . . . 7 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦))
34 nfv 1873 . . . . . . . . 9 𝑚((𝐹𝑛)‘𝑤) ≤ 𝑦
35 nfcv 2932 . . . . . . . . . . 11 𝑛𝑤
3625, 35nffv 6509 . . . . . . . . . 10 𝑛((𝐹𝑚)‘𝑤)
37 nfcv 2932 . . . . . . . . . 10 𝑛
38 nfcv 2932 . . . . . . . . . 10 𝑛𝑦
3936, 37, 38nfbr 4976 . . . . . . . . 9 𝑛((𝐹𝑚)‘𝑤) ≤ 𝑦
4027fveq1d 6501 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝐹𝑛)‘𝑤) = ((𝐹𝑚)‘𝑤))
4140breq1d 4939 . . . . . . . . 9 (𝑛 = 𝑚 → (((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ((𝐹𝑚)‘𝑤) ≤ 𝑦))
4234, 39, 41cbvral 3379 . . . . . . . 8 (∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦)
4342a1i 11 . . . . . . 7 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
4433, 43bitrd 271 . . . . . 6 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
4544rexbidv 3242 . . . . 5 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
46 breq2 4933 . . . . . . . 8 (𝑦 = 𝑧 → (((𝐹𝑚)‘𝑤) ≤ 𝑦 ↔ ((𝐹𝑚)‘𝑤) ≤ 𝑧))
4746ralbidv 3147 . . . . . . 7 (𝑦 = 𝑧 → (∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧))
4847cbvrexv 3384 . . . . . 6 (∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦 ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧)
4948a1i 11 . . . . 5 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦 ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧))
5045, 49bitrd 271 . . . 4 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧))
516, 12, 13, 21, 30, 50cbvrabcsf 3823 . . 3 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧}
525, 51eqtri 2802 . 2 𝐷 = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧}
53 smfsup.g . . 3 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
54 nfrab1 3324 . . . . 5 𝑥{𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
555, 54nfcxfr 2930 . . . 4 𝑥𝐷
56 nfcv 2932 . . . 4 𝑤𝐷
57 nfcv 2932 . . . 4 𝑤sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )
587, 16nfmpt 5024 . . . . . 6 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
5958nfrn 5667 . . . . 5 𝑥ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
60 nfcv 2932 . . . . 5 𝑥 <
6159, 14, 60nfsup 8710 . . . 4 𝑥sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < )
6231mpteq2dv 5023 . . . . . . 7 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)))
63 nfcv 2932 . . . . . . . . 9 𝑚((𝐹𝑛)‘𝑤)
6463, 36, 40cbvmpt 5027 . . . . . . . 8 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
6564a1i 11 . . . . . . 7 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6662, 65eqtrd 2814 . . . . . 6 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6766rneqd 5651 . . . . 5 (𝑥 = 𝑤 → ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6867supeq1d 8705 . . . 4 (𝑥 = 𝑤 → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
6955, 56, 57, 61, 68cbvmptf 5026 . . 3 (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑤𝐷 ↦ sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
7053, 69eqtri 2802 . 2 𝐺 = (𝑤𝐷 ↦ sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
711, 2, 3, 4, 52, 70smfsuplem3 42524 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1507  wcel 2050  wnfc 2916  wral 3088  wrex 3089  {crab 3092   ciin 4793   class class class wbr 4929  cmpt 5008  dom cdm 5407  ran crn 5408  wf 6184  cfv 6188  supcsup 8699  cr 10334   < clt 10474  cle 10475  cz 11793  cuz 12058  SAlgcsalg 42030  SMblFncsmblfn 42414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-cc 9655  ax-ac2 9683  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-iin 4795  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-omul 7910  df-er 8089  df-map 8208  df-pm 8209  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-sup 8701  df-inf 8702  df-oi 8769  df-card 9162  df-acn 9165  df-ac 9336  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-n0 11708  df-z 11794  df-uz 12059  df-q 12163  df-rp 12205  df-ioo 12558  df-ioc 12559  df-ico 12560  df-fl 12977  df-rest 16552  df-topgen 16573  df-top 21206  df-bases 21258  df-salg 42031  df-salgen 42035  df-smblfn 42415
This theorem is referenced by:  smfsupmpt  42526  smfsupxr  42527
  Copyright terms: Public domain W3C validator