Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsup Structured version   Visualization version   GIF version

Theorem smfsup 46340
Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsup.n 𝑛𝐹
smfsup.x 𝑥𝐹
smfsup.m (𝜑𝑀 ∈ ℤ)
smfsup.z 𝑍 = (ℤ𝑀)
smfsup.s (𝜑𝑆 ∈ SAlg)
smfsup.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsup.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
smfsup.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
Assertion
Ref Expression
smfsup (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑦,𝐹   𝑛,𝑍,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝑆(𝑥,𝑦,𝑛)   𝐹(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem smfsup
Dummy variables 𝑚 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfsup.m . 2 (𝜑𝑀 ∈ ℤ)
2 smfsup.z . 2 𝑍 = (ℤ𝑀)
3 smfsup.s . 2 (𝜑𝑆 ∈ SAlg)
4 smfsup.f . 2 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5 smfsup.d . . 3 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
6 nfcv 2891 . . . 4 𝑤 𝑛𝑍 dom (𝐹𝑛)
7 nfcv 2891 . . . . 5 𝑥𝑍
8 smfsup.x . . . . . . 7 𝑥𝐹
9 nfcv 2891 . . . . . . 7 𝑥𝑚
108, 9nffv 6906 . . . . . 6 𝑥(𝐹𝑚)
1110nfdm 5953 . . . . 5 𝑥dom (𝐹𝑚)
127, 11nfiin 5028 . . . 4 𝑥 𝑚𝑍 dom (𝐹𝑚)
13 nfv 1909 . . . 4 𝑤𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦
14 nfcv 2891 . . . . 5 𝑥
15 nfcv 2891 . . . . . . . 8 𝑥𝑤
1610, 15nffv 6906 . . . . . . 7 𝑥((𝐹𝑚)‘𝑤)
17 nfcv 2891 . . . . . . 7 𝑥
18 nfcv 2891 . . . . . . 7 𝑥𝑧
1916, 17, 18nfbr 5196 . . . . . 6 𝑥((𝐹𝑚)‘𝑤) ≤ 𝑧
207, 19nfralw 3298 . . . . 5 𝑥𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧
2114, 20nfrexw 3300 . . . 4 𝑥𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧
22 nfcv 2891 . . . . . 6 𝑚dom (𝐹𝑛)
23 smfsup.n . . . . . . . 8 𝑛𝐹
24 nfcv 2891 . . . . . . . 8 𝑛𝑚
2523, 24nffv 6906 . . . . . . 7 𝑛(𝐹𝑚)
2625nfdm 5953 . . . . . 6 𝑛dom (𝐹𝑚)
27 fveq2 6896 . . . . . . 7 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
2827dmeqd 5908 . . . . . 6 (𝑛 = 𝑚 → dom (𝐹𝑛) = dom (𝐹𝑚))
2922, 26, 28cbviin 5041 . . . . 5 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚)
3029a1i 11 . . . 4 (𝑥 = 𝑤 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚))
31 fveq2 6896 . . . . . . . . 9 (𝑥 = 𝑤 → ((𝐹𝑛)‘𝑥) = ((𝐹𝑛)‘𝑤))
3231breq1d 5159 . . . . . . . 8 (𝑥 = 𝑤 → (((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ((𝐹𝑛)‘𝑤) ≤ 𝑦))
3332ralbidv 3167 . . . . . . 7 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦))
34 nfv 1909 . . . . . . . . 9 𝑚((𝐹𝑛)‘𝑤) ≤ 𝑦
35 nfcv 2891 . . . . . . . . . . 11 𝑛𝑤
3625, 35nffv 6906 . . . . . . . . . 10 𝑛((𝐹𝑚)‘𝑤)
37 nfcv 2891 . . . . . . . . . 10 𝑛
38 nfcv 2891 . . . . . . . . . 10 𝑛𝑦
3936, 37, 38nfbr 5196 . . . . . . . . 9 𝑛((𝐹𝑚)‘𝑤) ≤ 𝑦
4027fveq1d 6898 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝐹𝑛)‘𝑤) = ((𝐹𝑚)‘𝑤))
4140breq1d 5159 . . . . . . . . 9 (𝑛 = 𝑚 → (((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ((𝐹𝑚)‘𝑤) ≤ 𝑦))
4234, 39, 41cbvralw 3293 . . . . . . . 8 (∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦)
4342a1i 11 . . . . . . 7 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
4433, 43bitrd 278 . . . . . 6 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
4544rexbidv 3168 . . . . 5 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
46 breq2 5153 . . . . . . . 8 (𝑦 = 𝑧 → (((𝐹𝑚)‘𝑤) ≤ 𝑦 ↔ ((𝐹𝑚)‘𝑤) ≤ 𝑧))
4746ralbidv 3167 . . . . . . 7 (𝑦 = 𝑧 → (∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧))
4847cbvrexvw 3225 . . . . . 6 (∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦 ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧)
4948a1i 11 . . . . 5 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦 ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧))
5045, 49bitrd 278 . . . 4 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧))
516, 12, 13, 21, 30, 50cbvrabcsfw 3933 . . 3 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧}
525, 51eqtri 2753 . 2 𝐷 = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧}
53 smfsup.g . . 3 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
54 nfrab1 3438 . . . . 5 𝑥{𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
555, 54nfcxfr 2889 . . . 4 𝑥𝐷
56 nfcv 2891 . . . 4 𝑤𝐷
57 nfcv 2891 . . . 4 𝑤sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )
587, 16nfmpt 5256 . . . . . 6 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
5958nfrn 5954 . . . . 5 𝑥ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
60 nfcv 2891 . . . . 5 𝑥 <
6159, 14, 60nfsup 9476 . . . 4 𝑥sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < )
6231mpteq2dv 5251 . . . . . . 7 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)))
63 nfcv 2891 . . . . . . . . 9 𝑚((𝐹𝑛)‘𝑤)
6463, 36, 40cbvmpt 5260 . . . . . . . 8 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
6564a1i 11 . . . . . . 7 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6662, 65eqtrd 2765 . . . . . 6 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6766rneqd 5940 . . . . 5 (𝑥 = 𝑤 → ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6867supeq1d 9471 . . . 4 (𝑥 = 𝑤 → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
6955, 56, 57, 61, 68cbvmptf 5258 . . 3 (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑤𝐷 ↦ sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
7053, 69eqtri 2753 . 2 𝐺 = (𝑤𝐷 ↦ sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
711, 2, 3, 4, 52, 70smfsuplem3 46339 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  wnfc 2875  wral 3050  wrex 3059  {crab 3418   ciin 4998   class class class wbr 5149  cmpt 5232  dom cdm 5678  ran crn 5679  wf 6545  cfv 6549  supcsup 9465  cr 11139   < clt 11280  cle 11281  cz 12591  cuz 12855  SAlgcsalg 45834  SMblFncsmblfn 46221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cc 10460  ax-ac2 10488  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-omul 8492  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-acn 9967  df-ac 10141  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-q 12966  df-rp 13010  df-ioo 13363  df-ioc 13364  df-ico 13365  df-fl 13793  df-rest 17407  df-topgen 17428  df-top 22840  df-bases 22893  df-salg 45835  df-salgen 45839  df-smblfn 46222
This theorem is referenced by:  smfsupmpt  46341  smfsupxr  46342
  Copyright terms: Public domain W3C validator