Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsup Structured version   Visualization version   GIF version

Theorem smfsup 46799
Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsup.n 𝑛𝐹
smfsup.x 𝑥𝐹
smfsup.m (𝜑𝑀 ∈ ℤ)
smfsup.z 𝑍 = (ℤ𝑀)
smfsup.s (𝜑𝑆 ∈ SAlg)
smfsup.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsup.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
smfsup.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
Assertion
Ref Expression
smfsup (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑦,𝐹   𝑛,𝑍,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝑆(𝑥,𝑦,𝑛)   𝐹(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem smfsup
Dummy variables 𝑚 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfsup.m . 2 (𝜑𝑀 ∈ ℤ)
2 smfsup.z . 2 𝑍 = (ℤ𝑀)
3 smfsup.s . 2 (𝜑𝑆 ∈ SAlg)
4 smfsup.f . 2 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5 smfsup.d . . 3 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
6 nfcv 2891 . . . 4 𝑤 𝑛𝑍 dom (𝐹𝑛)
7 nfcv 2891 . . . . 5 𝑥𝑍
8 smfsup.x . . . . . . 7 𝑥𝐹
9 nfcv 2891 . . . . . . 7 𝑥𝑚
108, 9nffv 6836 . . . . . 6 𝑥(𝐹𝑚)
1110nfdm 5897 . . . . 5 𝑥dom (𝐹𝑚)
127, 11nfiin 4977 . . . 4 𝑥 𝑚𝑍 dom (𝐹𝑚)
13 nfv 1914 . . . 4 𝑤𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦
14 nfcv 2891 . . . . 5 𝑥
15 nfcv 2891 . . . . . . . 8 𝑥𝑤
1610, 15nffv 6836 . . . . . . 7 𝑥((𝐹𝑚)‘𝑤)
17 nfcv 2891 . . . . . . 7 𝑥
18 nfcv 2891 . . . . . . 7 𝑥𝑧
1916, 17, 18nfbr 5142 . . . . . 6 𝑥((𝐹𝑚)‘𝑤) ≤ 𝑧
207, 19nfralw 3277 . . . . 5 𝑥𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧
2114, 20nfrexw 3278 . . . 4 𝑥𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧
22 nfcv 2891 . . . . . 6 𝑚dom (𝐹𝑛)
23 smfsup.n . . . . . . . 8 𝑛𝐹
24 nfcv 2891 . . . . . . . 8 𝑛𝑚
2523, 24nffv 6836 . . . . . . 7 𝑛(𝐹𝑚)
2625nfdm 5897 . . . . . 6 𝑛dom (𝐹𝑚)
27 fveq2 6826 . . . . . . 7 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
2827dmeqd 5852 . . . . . 6 (𝑛 = 𝑚 → dom (𝐹𝑛) = dom (𝐹𝑚))
2922, 26, 28cbviin 4989 . . . . 5 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚)
3029a1i 11 . . . 4 (𝑥 = 𝑤 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚))
31 fveq2 6826 . . . . . . . . 9 (𝑥 = 𝑤 → ((𝐹𝑛)‘𝑥) = ((𝐹𝑛)‘𝑤))
3231breq1d 5105 . . . . . . . 8 (𝑥 = 𝑤 → (((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ((𝐹𝑛)‘𝑤) ≤ 𝑦))
3332ralbidv 3152 . . . . . . 7 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦))
34 nfv 1914 . . . . . . . . 9 𝑚((𝐹𝑛)‘𝑤) ≤ 𝑦
35 nfcv 2891 . . . . . . . . . . 11 𝑛𝑤
3625, 35nffv 6836 . . . . . . . . . 10 𝑛((𝐹𝑚)‘𝑤)
37 nfcv 2891 . . . . . . . . . 10 𝑛
38 nfcv 2891 . . . . . . . . . 10 𝑛𝑦
3936, 37, 38nfbr 5142 . . . . . . . . 9 𝑛((𝐹𝑚)‘𝑤) ≤ 𝑦
4027fveq1d 6828 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝐹𝑛)‘𝑤) = ((𝐹𝑚)‘𝑤))
4140breq1d 5105 . . . . . . . . 9 (𝑛 = 𝑚 → (((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ((𝐹𝑚)‘𝑤) ≤ 𝑦))
4234, 39, 41cbvralw 3272 . . . . . . . 8 (∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦)
4342a1i 11 . . . . . . 7 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
4433, 43bitrd 279 . . . . . 6 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
4544rexbidv 3153 . . . . 5 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
46 breq2 5099 . . . . . . . 8 (𝑦 = 𝑧 → (((𝐹𝑚)‘𝑤) ≤ 𝑦 ↔ ((𝐹𝑚)‘𝑤) ≤ 𝑧))
4746ralbidv 3152 . . . . . . 7 (𝑦 = 𝑧 → (∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧))
4847cbvrexvw 3208 . . . . . 6 (∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦 ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧)
4948a1i 11 . . . . 5 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦 ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧))
5045, 49bitrd 279 . . . 4 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧))
516, 12, 13, 21, 30, 50cbvrabcsfw 3894 . . 3 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧}
525, 51eqtri 2752 . 2 𝐷 = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧}
53 smfsup.g . . 3 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
54 nfrab1 3417 . . . . 5 𝑥{𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
555, 54nfcxfr 2889 . . . 4 𝑥𝐷
56 nfcv 2891 . . . 4 𝑤𝐷
57 nfcv 2891 . . . 4 𝑤sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )
587, 16nfmpt 5193 . . . . . 6 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
5958nfrn 5898 . . . . 5 𝑥ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
60 nfcv 2891 . . . . 5 𝑥 <
6159, 14, 60nfsup 9360 . . . 4 𝑥sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < )
6231mpteq2dv 5189 . . . . . . 7 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)))
63 nfcv 2891 . . . . . . . . 9 𝑚((𝐹𝑛)‘𝑤)
6463, 36, 40cbvmpt 5197 . . . . . . . 8 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
6564a1i 11 . . . . . . 7 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6662, 65eqtrd 2764 . . . . . 6 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6766rneqd 5884 . . . . 5 (𝑥 = 𝑤 → ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6867supeq1d 9355 . . . 4 (𝑥 = 𝑤 → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
6955, 56, 57, 61, 68cbvmptf 5195 . . 3 (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑤𝐷 ↦ sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
7053, 69eqtri 2752 . 2 𝐺 = (𝑤𝐷 ↦ sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
711, 2, 3, 4, 52, 70smfsuplem3 46798 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  wrex 3053  {crab 3396   ciin 4945   class class class wbr 5095  cmpt 5176  dom cdm 5623  ran crn 5624  wf 6482  cfv 6486  supcsup 9349  cr 11027   < clt 11168  cle 11169  cz 12489  cuz 12753  SAlgcsalg 46293  SMblFncsmblfn 46680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-ioo 13270  df-ioc 13271  df-ico 13272  df-fl 13714  df-rest 17344  df-topgen 17365  df-top 22797  df-bases 22849  df-salg 46294  df-salgen 46298  df-smblfn 46681
This theorem is referenced by:  smfsupmpt  46800  smfsupxr  46801
  Copyright terms: Public domain W3C validator