Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsup Structured version   Visualization version   GIF version

Theorem smfsup 44314
Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsup.n 𝑛𝐹
smfsup.x 𝑥𝐹
smfsup.m (𝜑𝑀 ∈ ℤ)
smfsup.z 𝑍 = (ℤ𝑀)
smfsup.s (𝜑𝑆 ∈ SAlg)
smfsup.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsup.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
smfsup.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
Assertion
Ref Expression
smfsup (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑦,𝐹   𝑛,𝑍,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝑆(𝑥,𝑦,𝑛)   𝐹(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem smfsup
Dummy variables 𝑚 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfsup.m . 2 (𝜑𝑀 ∈ ℤ)
2 smfsup.z . 2 𝑍 = (ℤ𝑀)
3 smfsup.s . 2 (𝜑𝑆 ∈ SAlg)
4 smfsup.f . 2 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5 smfsup.d . . 3 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
6 nfcv 2907 . . . 4 𝑤 𝑛𝑍 dom (𝐹𝑛)
7 nfcv 2907 . . . . 5 𝑥𝑍
8 smfsup.x . . . . . . 7 𝑥𝐹
9 nfcv 2907 . . . . . . 7 𝑥𝑚
108, 9nffv 6786 . . . . . 6 𝑥(𝐹𝑚)
1110nfdm 5862 . . . . 5 𝑥dom (𝐹𝑚)
127, 11nfiin 4957 . . . 4 𝑥 𝑚𝑍 dom (𝐹𝑚)
13 nfv 1917 . . . 4 𝑤𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦
14 nfcv 2907 . . . . 5 𝑥
15 nfcv 2907 . . . . . . . 8 𝑥𝑤
1610, 15nffv 6786 . . . . . . 7 𝑥((𝐹𝑚)‘𝑤)
17 nfcv 2907 . . . . . . 7 𝑥
18 nfcv 2907 . . . . . . 7 𝑥𝑧
1916, 17, 18nfbr 5123 . . . . . 6 𝑥((𝐹𝑚)‘𝑤) ≤ 𝑧
207, 19nfralw 3151 . . . . 5 𝑥𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧
2114, 20nfrex 3241 . . . 4 𝑥𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧
22 nfcv 2907 . . . . . 6 𝑚dom (𝐹𝑛)
23 smfsup.n . . . . . . . 8 𝑛𝐹
24 nfcv 2907 . . . . . . . 8 𝑛𝑚
2523, 24nffv 6786 . . . . . . 7 𝑛(𝐹𝑚)
2625nfdm 5862 . . . . . 6 𝑛dom (𝐹𝑚)
27 fveq2 6776 . . . . . . 7 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
2827dmeqd 5816 . . . . . 6 (𝑛 = 𝑚 → dom (𝐹𝑛) = dom (𝐹𝑚))
2922, 26, 28cbviin 4969 . . . . 5 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚)
3029a1i 11 . . . 4 (𝑥 = 𝑤 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚))
31 fveq2 6776 . . . . . . . . 9 (𝑥 = 𝑤 → ((𝐹𝑛)‘𝑥) = ((𝐹𝑛)‘𝑤))
3231breq1d 5086 . . . . . . . 8 (𝑥 = 𝑤 → (((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ((𝐹𝑛)‘𝑤) ≤ 𝑦))
3332ralbidv 3119 . . . . . . 7 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦))
34 nfv 1917 . . . . . . . . 9 𝑚((𝐹𝑛)‘𝑤) ≤ 𝑦
35 nfcv 2907 . . . . . . . . . . 11 𝑛𝑤
3625, 35nffv 6786 . . . . . . . . . 10 𝑛((𝐹𝑚)‘𝑤)
37 nfcv 2907 . . . . . . . . . 10 𝑛
38 nfcv 2907 . . . . . . . . . 10 𝑛𝑦
3936, 37, 38nfbr 5123 . . . . . . . . 9 𝑛((𝐹𝑚)‘𝑤) ≤ 𝑦
4027fveq1d 6778 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝐹𝑛)‘𝑤) = ((𝐹𝑚)‘𝑤))
4140breq1d 5086 . . . . . . . . 9 (𝑛 = 𝑚 → (((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ((𝐹𝑚)‘𝑤) ≤ 𝑦))
4234, 39, 41cbvralw 3372 . . . . . . . 8 (∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦)
4342a1i 11 . . . . . . 7 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
4433, 43bitrd 278 . . . . . 6 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
4544rexbidv 3225 . . . . 5 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
46 breq2 5080 . . . . . . . 8 (𝑦 = 𝑧 → (((𝐹𝑚)‘𝑤) ≤ 𝑦 ↔ ((𝐹𝑚)‘𝑤) ≤ 𝑧))
4746ralbidv 3119 . . . . . . 7 (𝑦 = 𝑧 → (∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧))
4847cbvrexvw 3383 . . . . . 6 (∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦 ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧)
4948a1i 11 . . . . 5 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦 ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧))
5045, 49bitrd 278 . . . 4 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧))
516, 12, 13, 21, 30, 50cbvrabcsfw 3877 . . 3 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧}
525, 51eqtri 2766 . 2 𝐷 = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑧}
53 smfsup.g . . 3 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
54 nfrab1 3316 . . . . 5 𝑥{𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
555, 54nfcxfr 2905 . . . 4 𝑥𝐷
56 nfcv 2907 . . . 4 𝑤𝐷
57 nfcv 2907 . . . 4 𝑤sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )
587, 16nfmpt 5183 . . . . . 6 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
5958nfrn 5863 . . . . 5 𝑥ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
60 nfcv 2907 . . . . 5 𝑥 <
6159, 14, 60nfsup 9208 . . . 4 𝑥sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < )
6231mpteq2dv 5178 . . . . . . 7 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)))
63 nfcv 2907 . . . . . . . . 9 𝑚((𝐹𝑛)‘𝑤)
6463, 36, 40cbvmpt 5187 . . . . . . . 8 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
6564a1i 11 . . . . . . 7 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6662, 65eqtrd 2778 . . . . . 6 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6766rneqd 5849 . . . . 5 (𝑥 = 𝑤 → ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
6867supeq1d 9203 . . . 4 (𝑥 = 𝑤 → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
6955, 56, 57, 61, 68cbvmptf 5185 . . 3 (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑤𝐷 ↦ sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
7053, 69eqtri 2766 . 2 𝐺 = (𝑤𝐷 ↦ sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
711, 2, 3, 4, 52, 70smfsuplem3 44313 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wnfc 2887  wral 3064  wrex 3065  {crab 3068   ciin 4927   class class class wbr 5076  cmpt 5159  dom cdm 5591  ran crn 5592  wf 6431  cfv 6435  supcsup 9197  cr 10868   < clt 11007  cle 11008  cz 12317  cuz 12580  SAlgcsalg 43819  SMblFncsmblfn 44203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-inf2 9397  ax-cc 10189  ax-ac2 10217  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946  ax-pre-sup 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-iin 4929  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-isom 6444  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-1o 8295  df-oadd 8299  df-omul 8300  df-er 8496  df-map 8615  df-pm 8616  df-en 8732  df-dom 8733  df-sdom 8734  df-fin 8735  df-sup 9199  df-inf 9200  df-oi 9267  df-card 9695  df-acn 9698  df-ac 9870  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-n0 12232  df-z 12318  df-uz 12581  df-q 12687  df-rp 12729  df-ioo 13081  df-ioc 13082  df-ico 13083  df-fl 13510  df-rest 17131  df-topgen 17152  df-top 22041  df-bases 22094  df-salg 43820  df-salgen 43824  df-smblfn 44204
This theorem is referenced by:  smfsupmpt  44315  smfsupxr  44316
  Copyright terms: Public domain W3C validator