Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sn Structured version   Visualization version   GIF version

Theorem cdleme31sn 39554
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 26-Feb-2013.)
Hypotheses
Ref Expression
cdleme31sn.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
cdleme31sn.c 𝐶 = if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷)
Assertion
Ref Expression
cdleme31sn (𝑅𝐴𝑅 / 𝑠𝑁 = 𝐶)
Distinct variable groups:   𝐴,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠
Allowed substitution hints:   𝐶(𝑠)   𝐷(𝑠)   𝐼(𝑠)   𝑁(𝑠)

Proof of Theorem cdleme31sn
StepHypRef Expression
1 nfv 1915 . . . . 5 𝑠 𝑅 (𝑃 𝑄)
2 nfcsb1v 3917 . . . . 5 𝑠𝑅 / 𝑠𝐼
3 nfcsb1v 3917 . . . . 5 𝑠𝑅 / 𝑠𝐷
41, 2, 3nfif 4557 . . . 4 𝑠if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷)
54a1i 11 . . 3 (𝑅𝐴𝑠if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷))
6 breq1 5150 . . . 4 (𝑠 = 𝑅 → (𝑠 (𝑃 𝑄) ↔ 𝑅 (𝑃 𝑄)))
7 csbeq1a 3906 . . . 4 (𝑠 = 𝑅𝐼 = 𝑅 / 𝑠𝐼)
8 csbeq1a 3906 . . . 4 (𝑠 = 𝑅𝐷 = 𝑅 / 𝑠𝐷)
96, 7, 8ifbieq12d 4555 . . 3 (𝑠 = 𝑅 → if(𝑠 (𝑃 𝑄), 𝐼, 𝐷) = if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷))
105, 9csbiegf 3926 . 2 (𝑅𝐴𝑅 / 𝑠if(𝑠 (𝑃 𝑄), 𝐼, 𝐷) = if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷))
11 cdleme31sn.n . . 3 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
1211csbeq2i 3900 . 2 𝑅 / 𝑠𝑁 = 𝑅 / 𝑠if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
13 cdleme31sn.c . 2 𝐶 = if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷)
1410, 12, 133eqtr4g 2795 1 (𝑅𝐴𝑅 / 𝑠𝑁 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  wnfc 2881  csb 3892  ifcif 4527   class class class wbr 5147  (class class class)co 7411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148
This theorem is referenced by:  cdleme31sn1  39555  cdleme31sn2  39563
  Copyright terms: Public domain W3C validator