| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31sn | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 26-Feb-2013.) |
| Ref | Expression |
|---|---|
| cdleme31sn.n | ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐷) |
| cdleme31sn.c | ⊢ 𝐶 = if(𝑅 ≤ (𝑃 ∨ 𝑄), ⦋𝑅 / 𝑠⦌𝐼, ⦋𝑅 / 𝑠⦌𝐷) |
| Ref | Expression |
|---|---|
| cdleme31sn | ⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌𝑁 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑠 𝑅 ≤ (𝑃 ∨ 𝑄) | |
| 2 | nfcsb1v 3898 | . . . . 5 ⊢ Ⅎ𝑠⦋𝑅 / 𝑠⦌𝐼 | |
| 3 | nfcsb1v 3898 | . . . . 5 ⊢ Ⅎ𝑠⦋𝑅 / 𝑠⦌𝐷 | |
| 4 | 1, 2, 3 | nfif 4531 | . . . 4 ⊢ Ⅎ𝑠if(𝑅 ≤ (𝑃 ∨ 𝑄), ⦋𝑅 / 𝑠⦌𝐼, ⦋𝑅 / 𝑠⦌𝐷) |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝑅 ∈ 𝐴 → Ⅎ𝑠if(𝑅 ≤ (𝑃 ∨ 𝑄), ⦋𝑅 / 𝑠⦌𝐼, ⦋𝑅 / 𝑠⦌𝐷)) |
| 6 | breq1 5122 | . . . 4 ⊢ (𝑠 = 𝑅 → (𝑠 ≤ (𝑃 ∨ 𝑄) ↔ 𝑅 ≤ (𝑃 ∨ 𝑄))) | |
| 7 | csbeq1a 3888 | . . . 4 ⊢ (𝑠 = 𝑅 → 𝐼 = ⦋𝑅 / 𝑠⦌𝐼) | |
| 8 | csbeq1a 3888 | . . . 4 ⊢ (𝑠 = 𝑅 → 𝐷 = ⦋𝑅 / 𝑠⦌𝐷) | |
| 9 | 6, 7, 8 | ifbieq12d 4529 | . . 3 ⊢ (𝑠 = 𝑅 → if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐷) = if(𝑅 ≤ (𝑃 ∨ 𝑄), ⦋𝑅 / 𝑠⦌𝐼, ⦋𝑅 / 𝑠⦌𝐷)) |
| 10 | 5, 9 | csbiegf 3907 | . 2 ⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐷) = if(𝑅 ≤ (𝑃 ∨ 𝑄), ⦋𝑅 / 𝑠⦌𝐼, ⦋𝑅 / 𝑠⦌𝐷)) |
| 11 | cdleme31sn.n | . . 3 ⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐷) | |
| 12 | 11 | csbeq2i 3882 | . 2 ⊢ ⦋𝑅 / 𝑠⦌𝑁 = ⦋𝑅 / 𝑠⦌if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐷) |
| 13 | cdleme31sn.c | . 2 ⊢ 𝐶 = if(𝑅 ≤ (𝑃 ∨ 𝑄), ⦋𝑅 / 𝑠⦌𝐼, ⦋𝑅 / 𝑠⦌𝐷) | |
| 14 | 10, 12, 13 | 3eqtr4g 2795 | 1 ⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌𝑁 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2883 ⦋csb 3874 ifcif 4500 class class class wbr 5119 (class class class)co 7405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 |
| This theorem is referenced by: cdleme31sn1 40400 cdleme31sn2 40408 |
| Copyright terms: Public domain | W3C validator |