Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sn1 Structured version   Visualization version   GIF version

Theorem cdleme31sn1 40329
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 26-Feb-2013.)
Hypotheses
Ref Expression
cdleme31sn1.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
cdleme31sn1.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
cdleme31sn1.c 𝐶 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺))
Assertion
Ref Expression
cdleme31sn1 ((𝑅𝐴𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝐶)
Distinct variable groups:   𝑡,𝑠,𝑦,𝐴   𝐵,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠,𝑡,𝑦   𝑊,𝑠
Allowed substitution hints:   𝐵(𝑦,𝑡)   𝐶(𝑦,𝑡,𝑠)   𝐷(𝑦,𝑡,𝑠)   𝑃(𝑦,𝑡)   𝑄(𝑦,𝑡)   𝐺(𝑦,𝑡,𝑠)   𝐼(𝑦,𝑡,𝑠)   (𝑦,𝑡)   (𝑦,𝑡)   𝑁(𝑦,𝑡,𝑠)   𝑊(𝑦,𝑡)

Proof of Theorem cdleme31sn1
StepHypRef Expression
1 cdleme31sn1.n . . . 4 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
2 eqid 2734 . . . 4 if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷)
31, 2cdleme31sn 40328 . . 3 (𝑅𝐴𝑅 / 𝑠𝑁 = if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷))
43adantr 480 . 2 ((𝑅𝐴𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷))
5 iftrue 4504 . . . . 5 (𝑅 (𝑃 𝑄) → if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = 𝑅 / 𝑠𝐼)
6 cdleme31sn1.i . . . . . 6 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
76csbeq2i 3880 . . . . 5 𝑅 / 𝑠𝐼 = 𝑅 / 𝑠(𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
85, 7eqtrdi 2785 . . . 4 (𝑅 (𝑃 𝑄) → if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = 𝑅 / 𝑠(𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺)))
9 nfcv 2897 . . . . . . . 8 𝑠𝐴
10 nfv 1913 . . . . . . . . 9 𝑠𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄))
11 nfcsb1v 3896 . . . . . . . . . 10 𝑠𝑅 / 𝑠𝐺
1211nfeq2 2915 . . . . . . . . 9 𝑠 𝑦 = 𝑅 / 𝑠𝐺
1310, 12nfim 1895 . . . . . . . 8 𝑠((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)
149, 13nfralw 3289 . . . . . . 7 𝑠𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)
15 nfcv 2897 . . . . . . 7 𝑠𝐵
1614, 15nfriota 7369 . . . . . 6 𝑠(𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺))
1716a1i 11 . . . . 5 (𝑅𝐴𝑠(𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)))
18 csbeq1a 3886 . . . . . . . . 9 (𝑠 = 𝑅𝐺 = 𝑅 / 𝑠𝐺)
1918eqeq2d 2745 . . . . . . . 8 (𝑠 = 𝑅 → (𝑦 = 𝐺𝑦 = 𝑅 / 𝑠𝐺))
2019imbi2d 340 . . . . . . 7 (𝑠 = 𝑅 → (((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺) ↔ ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)))
2120ralbidv 3161 . . . . . 6 (𝑠 = 𝑅 → (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺) ↔ ∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)))
2221riotabidv 7359 . . . . 5 (𝑠 = 𝑅 → (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺)) = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)))
2317, 22csbiegf 3905 . . . 4 (𝑅𝐴𝑅 / 𝑠(𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺)) = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)))
248, 23sylan9eqr 2791 . . 3 ((𝑅𝐴𝑅 (𝑃 𝑄)) → if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)))
25 cdleme31sn1.c . . 3 𝐶 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺))
2624, 25eqtr4di 2787 . 2 ((𝑅𝐴𝑅 (𝑃 𝑄)) → if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = 𝐶)
274, 26eqtrd 2769 1 ((𝑅𝐴𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wnfc 2882  wral 3050  csb 3872  ifcif 4498   class class class wbr 5117  crio 7356  (class class class)co 7400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-iota 6481  df-riota 7357
This theorem is referenced by:  cdleme31sn1c  40336
  Copyright terms: Public domain W3C validator