Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sn1 Structured version   Visualization version   GIF version

Theorem cdleme31sn1 38395
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 26-Feb-2013.)
Hypotheses
Ref Expression
cdleme31sn1.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
cdleme31sn1.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
cdleme31sn1.c 𝐶 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺))
Assertion
Ref Expression
cdleme31sn1 ((𝑅𝐴𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝐶)
Distinct variable groups:   𝑡,𝑠,𝑦,𝐴   𝐵,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠,𝑡,𝑦   𝑊,𝑠
Allowed substitution hints:   𝐵(𝑦,𝑡)   𝐶(𝑦,𝑡,𝑠)   𝐷(𝑦,𝑡,𝑠)   𝑃(𝑦,𝑡)   𝑄(𝑦,𝑡)   𝐺(𝑦,𝑡,𝑠)   𝐼(𝑦,𝑡,𝑠)   (𝑦,𝑡)   (𝑦,𝑡)   𝑁(𝑦,𝑡,𝑠)   𝑊(𝑦,𝑡)

Proof of Theorem cdleme31sn1
StepHypRef Expression
1 cdleme31sn1.n . . . 4 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
2 eqid 2738 . . . 4 if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷)
31, 2cdleme31sn 38394 . . 3 (𝑅𝐴𝑅 / 𝑠𝑁 = if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷))
43adantr 481 . 2 ((𝑅𝐴𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷))
5 iftrue 4465 . . . . 5 (𝑅 (𝑃 𝑄) → if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = 𝑅 / 𝑠𝐼)
6 cdleme31sn1.i . . . . . 6 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
76csbeq2i 3840 . . . . 5 𝑅 / 𝑠𝐼 = 𝑅 / 𝑠(𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
85, 7eqtrdi 2794 . . . 4 (𝑅 (𝑃 𝑄) → if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = 𝑅 / 𝑠(𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺)))
9 nfcv 2907 . . . . . . . 8 𝑠𝐴
10 nfv 1917 . . . . . . . . 9 𝑠𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄))
11 nfcsb1v 3857 . . . . . . . . . 10 𝑠𝑅 / 𝑠𝐺
1211nfeq2 2924 . . . . . . . . 9 𝑠 𝑦 = 𝑅 / 𝑠𝐺
1310, 12nfim 1899 . . . . . . . 8 𝑠((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)
149, 13nfralw 3151 . . . . . . 7 𝑠𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)
15 nfcv 2907 . . . . . . 7 𝑠𝐵
1614, 15nfriota 7245 . . . . . 6 𝑠(𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺))
1716a1i 11 . . . . 5 (𝑅𝐴𝑠(𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)))
18 csbeq1a 3846 . . . . . . . . 9 (𝑠 = 𝑅𝐺 = 𝑅 / 𝑠𝐺)
1918eqeq2d 2749 . . . . . . . 8 (𝑠 = 𝑅 → (𝑦 = 𝐺𝑦 = 𝑅 / 𝑠𝐺))
2019imbi2d 341 . . . . . . 7 (𝑠 = 𝑅 → (((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺) ↔ ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)))
2120ralbidv 3112 . . . . . 6 (𝑠 = 𝑅 → (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺) ↔ ∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)))
2221riotabidv 7234 . . . . 5 (𝑠 = 𝑅 → (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺)) = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)))
2317, 22csbiegf 3866 . . . 4 (𝑅𝐴𝑅 / 𝑠(𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺)) = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)))
248, 23sylan9eqr 2800 . . 3 ((𝑅𝐴𝑅 (𝑃 𝑄)) → if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)))
25 cdleme31sn1.c . . 3 𝐶 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺))
2624, 25eqtr4di 2796 . 2 ((𝑅𝐴𝑅 (𝑃 𝑄)) → if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = 𝐶)
274, 26eqtrd 2778 1 ((𝑅𝐴𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wnfc 2887  wral 3064  csb 3832  ifcif 4459   class class class wbr 5074  crio 7231  (class class class)co 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-riota 7232
This theorem is referenced by:  cdleme31sn1c  38402
  Copyright terms: Public domain W3C validator