Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sn1 Structured version   Visualization version   GIF version

Theorem cdleme31sn1 37563
 Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 26-Feb-2013.)
Hypotheses
Ref Expression
cdleme31sn1.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
cdleme31sn1.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
cdleme31sn1.c 𝐶 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺))
Assertion
Ref Expression
cdleme31sn1 ((𝑅𝐴𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝐶)
Distinct variable groups:   𝑡,𝑠,𝑦,𝐴   𝐵,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠,𝑡,𝑦   𝑊,𝑠
Allowed substitution hints:   𝐵(𝑦,𝑡)   𝐶(𝑦,𝑡,𝑠)   𝐷(𝑦,𝑡,𝑠)   𝑃(𝑦,𝑡)   𝑄(𝑦,𝑡)   𝐺(𝑦,𝑡,𝑠)   𝐼(𝑦,𝑡,𝑠)   (𝑦,𝑡)   (𝑦,𝑡)   𝑁(𝑦,𝑡,𝑠)   𝑊(𝑦,𝑡)

Proof of Theorem cdleme31sn1
StepHypRef Expression
1 cdleme31sn1.n . . . 4 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
2 eqid 2821 . . . 4 if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷)
31, 2cdleme31sn 37562 . . 3 (𝑅𝐴𝑅 / 𝑠𝑁 = if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷))
43adantr 484 . 2 ((𝑅𝐴𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷))
5 iftrue 4446 . . . . 5 (𝑅 (𝑃 𝑄) → if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = 𝑅 / 𝑠𝐼)
6 cdleme31sn1.i . . . . . 6 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
76csbeq2i 3865 . . . . 5 𝑅 / 𝑠𝐼 = 𝑅 / 𝑠(𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
85, 7syl6eq 2872 . . . 4 (𝑅 (𝑃 𝑄) → if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = 𝑅 / 𝑠(𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺)))
9 nfcv 2974 . . . . . . . 8 𝑠𝐴
10 nfv 1916 . . . . . . . . 9 𝑠𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄))
11 nfcsb1v 3881 . . . . . . . . . 10 𝑠𝑅 / 𝑠𝐺
1211nfeq2 2991 . . . . . . . . 9 𝑠 𝑦 = 𝑅 / 𝑠𝐺
1310, 12nfim 1898 . . . . . . . 8 𝑠((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)
149, 13nfralw 3213 . . . . . . 7 𝑠𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)
15 nfcv 2974 . . . . . . 7 𝑠𝐵
1614, 15nfriota 7100 . . . . . 6 𝑠(𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺))
1716a1i 11 . . . . 5 (𝑅𝐴𝑠(𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)))
18 csbeq1a 3871 . . . . . . . . 9 (𝑠 = 𝑅𝐺 = 𝑅 / 𝑠𝐺)
1918eqeq2d 2832 . . . . . . . 8 (𝑠 = 𝑅 → (𝑦 = 𝐺𝑦 = 𝑅 / 𝑠𝐺))
2019imbi2d 344 . . . . . . 7 (𝑠 = 𝑅 → (((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺) ↔ ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)))
2120ralbidv 3185 . . . . . 6 (𝑠 = 𝑅 → (∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺) ↔ ∀𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)))
2221riotabidv 7090 . . . . 5 (𝑠 = 𝑅 → (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺)) = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)))
2317, 22csbiegf 3890 . . . 4 (𝑅𝐴𝑅 / 𝑠(𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺)) = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)))
248, 23sylan9eqr 2878 . . 3 ((𝑅𝐴𝑅 (𝑃 𝑄)) → if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺)))
25 cdleme31sn1.c . . 3 𝐶 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝑅 / 𝑠𝐺))
2624, 25syl6eqr 2874 . 2 ((𝑅𝐴𝑅 (𝑃 𝑄)) → if(𝑅 (𝑃 𝑄), 𝑅 / 𝑠𝐼, 𝑅 / 𝑠𝐷) = 𝐶)
274, 26eqtrd 2856 1 ((𝑅𝐴𝑅 (𝑃 𝑄)) → 𝑅 / 𝑠𝑁 = 𝐶)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  Ⅎwnfc 2958  ∀wral 3126  ⦋csb 3857  ifcif 4440   class class class wbr 5039  ℩crio 7087  (class class class)co 7130 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-iota 6287  df-riota 7088 This theorem is referenced by:  cdleme31sn1c  37570
 Copyright terms: Public domain W3C validator