Proof of Theorem cdleme31sn1
Step | Hyp | Ref
| Expression |
1 | | cdleme31sn1.n |
. . . 4
⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐷) |
2 | | eqid 2738 |
. . . 4
⊢ if(𝑅 ≤ (𝑃 ∨ 𝑄), ⦋𝑅 / 𝑠⦌𝐼, ⦋𝑅 / 𝑠⦌𝐷) = if(𝑅 ≤ (𝑃 ∨ 𝑄), ⦋𝑅 / 𝑠⦌𝐼, ⦋𝑅 / 𝑠⦌𝐷) |
3 | 1, 2 | cdleme31sn 38321 |
. . 3
⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌𝑁 = if(𝑅 ≤ (𝑃 ∨ 𝑄), ⦋𝑅 / 𝑠⦌𝐼, ⦋𝑅 / 𝑠⦌𝐷)) |
4 | 3 | adantr 480 |
. 2
⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝑁 = if(𝑅 ≤ (𝑃 ∨ 𝑄), ⦋𝑅 / 𝑠⦌𝐼, ⦋𝑅 / 𝑠⦌𝐷)) |
5 | | iftrue 4462 |
. . . . 5
⊢ (𝑅 ≤ (𝑃 ∨ 𝑄) → if(𝑅 ≤ (𝑃 ∨ 𝑄), ⦋𝑅 / 𝑠⦌𝐼, ⦋𝑅 / 𝑠⦌𝐷) = ⦋𝑅 / 𝑠⦌𝐼) |
6 | | cdleme31sn1.i |
. . . . . 6
⊢ 𝐼 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐺)) |
7 | 6 | csbeq2i 3836 |
. . . . 5
⊢
⦋𝑅 /
𝑠⦌𝐼 = ⦋𝑅 / 𝑠⦌(℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐺)) |
8 | 5, 7 | eqtrdi 2795 |
. . . 4
⊢ (𝑅 ≤ (𝑃 ∨ 𝑄) → if(𝑅 ≤ (𝑃 ∨ 𝑄), ⦋𝑅 / 𝑠⦌𝐼, ⦋𝑅 / 𝑠⦌𝐷) = ⦋𝑅 / 𝑠⦌(℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐺))) |
9 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑠𝐴 |
10 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑠(¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) |
11 | | nfcsb1v 3853 |
. . . . . . . . . 10
⊢
Ⅎ𝑠⦋𝑅 / 𝑠⦌𝐺 |
12 | 11 | nfeq2 2923 |
. . . . . . . . 9
⊢
Ⅎ𝑠 𝑦 = ⦋𝑅 / 𝑠⦌𝐺 |
13 | 10, 12 | nfim 1900 |
. . . . . . . 8
⊢
Ⅎ𝑠((¬
𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺) |
14 | 9, 13 | nfralw 3149 |
. . . . . . 7
⊢
Ⅎ𝑠∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺) |
15 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑠𝐵 |
16 | 14, 15 | nfriota 7225 |
. . . . . 6
⊢
Ⅎ𝑠(℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺)) |
17 | 16 | a1i 11 |
. . . . 5
⊢ (𝑅 ∈ 𝐴 → Ⅎ𝑠(℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺))) |
18 | | csbeq1a 3842 |
. . . . . . . . 9
⊢ (𝑠 = 𝑅 → 𝐺 = ⦋𝑅 / 𝑠⦌𝐺) |
19 | 18 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑠 = 𝑅 → (𝑦 = 𝐺 ↔ 𝑦 = ⦋𝑅 / 𝑠⦌𝐺)) |
20 | 19 | imbi2d 340 |
. . . . . . 7
⊢ (𝑠 = 𝑅 → (((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐺) ↔ ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺))) |
21 | 20 | ralbidv 3120 |
. . . . . 6
⊢ (𝑠 = 𝑅 → (∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐺) ↔ ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺))) |
22 | 21 | riotabidv 7214 |
. . . . 5
⊢ (𝑠 = 𝑅 → (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐺)) = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺))) |
23 | 17, 22 | csbiegf 3862 |
. . . 4
⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌(℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐺)) = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺))) |
24 | 8, 23 | sylan9eqr 2801 |
. . 3
⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → if(𝑅 ≤ (𝑃 ∨ 𝑄), ⦋𝑅 / 𝑠⦌𝐼, ⦋𝑅 / 𝑠⦌𝐷) = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺))) |
25 | | cdleme31sn1.c |
. . 3
⊢ 𝐶 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = ⦋𝑅 / 𝑠⦌𝐺)) |
26 | 24, 25 | eqtr4di 2797 |
. 2
⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → if(𝑅 ≤ (𝑃 ∨ 𝑄), ⦋𝑅 / 𝑠⦌𝐼, ⦋𝑅 / 𝑠⦌𝐷) = 𝐶) |
27 | 4, 26 | eqtrd 2778 |
1
⊢ ((𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑠⦌𝑁 = 𝐶) |