MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmgrp Structured version   Visualization version   GIF version

Theorem clmgrp 24993
Description: A subcomplex module is an additive group. (Contributed by Mario Carneiro, 16-Oct-2015.)
Assertion
Ref Expression
clmgrp (𝑊 ∈ ℂMod → 𝑊 ∈ Grp)

Proof of Theorem clmgrp
StepHypRef Expression
1 clmlmod 24992 . 2 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
2 lmodgrp 20798 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
31, 2syl 17 1 (𝑊 ∈ ℂMod → 𝑊 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Grpcgrp 18843  LModclmod 20791  ℂModcclm 24987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-lmod 20793  df-clm 24988
This theorem is referenced by:  clmmulg  25026  clmvsrinv  25032  clmvslinv  25033  clmvz  25036  ttgcontlem1  28861
  Copyright terms: Public domain W3C validator