Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmgrp Structured version   Visualization version   GIF version

Theorem clmgrp 23275
 Description: A subcomplex module is an additive group. (Contributed by Mario Carneiro, 16-Oct-2015.)
Assertion
Ref Expression
clmgrp (𝑊 ∈ ℂMod → 𝑊 ∈ Grp)

Proof of Theorem clmgrp
StepHypRef Expression
1 clmlmod 23274 . 2 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
2 lmodgrp 19262 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
31, 2syl 17 1 (𝑊 ∈ ℂMod → 𝑊 ∈ Grp)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2107  Grpcgrp 17809  LModclmod 19255  ℂModcclm 23269 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-nul 5025 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-iota 6099  df-fv 6143  df-ov 6925  df-lmod 19257  df-clm 23270 This theorem is referenced by:  clmmulg  23308  clmvsrinv  23314  clmvslinv  23315  clmvz  23318  ttgcontlem1  26234
 Copyright terms: Public domain W3C validator