MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmgrp Structured version   Visualization version   GIF version

Theorem clmgrp 24975
Description: A subcomplex module is an additive group. (Contributed by Mario Carneiro, 16-Oct-2015.)
Assertion
Ref Expression
clmgrp (𝑊 ∈ ℂMod → 𝑊 ∈ Grp)

Proof of Theorem clmgrp
StepHypRef Expression
1 clmlmod 24974 . 2 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
2 lmodgrp 20780 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
31, 2syl 17 1 (𝑊 ∈ ℂMod → 𝑊 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Grpcgrp 18872  LModclmod 20773  ℂModcclm 24969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-lmod 20775  df-clm 24970
This theorem is referenced by:  clmmulg  25008  clmvsrinv  25014  clmvslinv  25015  clmvz  25018  ttgcontlem1  28819
  Copyright terms: Public domain W3C validator