MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmgrp Structured version   Visualization version   GIF version

Theorem clmgrp 23823
Description: A subcomplex module is an additive group. (Contributed by Mario Carneiro, 16-Oct-2015.)
Assertion
Ref Expression
clmgrp (𝑊 ∈ ℂMod → 𝑊 ∈ Grp)

Proof of Theorem clmgrp
StepHypRef Expression
1 clmlmod 23822 . 2 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
2 lmodgrp 19763 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
31, 2syl 17 1 (𝑊 ∈ ℂMod → 𝑊 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2114  Grpcgrp 18222  LModclmod 19756  ℂModcclm 23817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-nul 5175
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3401  df-sbc 3682  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-br 5032  df-iota 6298  df-fv 6348  df-ov 7176  df-lmod 19758  df-clm 23818
This theorem is referenced by:  clmmulg  23856  clmvsrinv  23862  clmvslinv  23863  clmvz  23866  ttgcontlem1  26834
  Copyright terms: Public domain W3C validator