Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmodgrp | Structured version Visualization version GIF version |
Description: A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
Ref | Expression |
---|---|
lmodgrp | ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2737 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
3 | eqid 2737 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
4 | eqid 2737 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
5 | eqid 2737 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
6 | eqid 2737 | . . 3 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
7 | eqid 2737 | . . 3 ⊢ (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)) | |
8 | eqid 2737 | . . 3 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20199 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ (Scalar‘𝑊) ∈ Ring ∧ ∀𝑞 ∈ (Base‘(Scalar‘𝑊))∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
10 | 9 | simp1bi 1144 | 1 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3062 ‘cfv 6465 (class class class)co 7315 Basecbs 16982 +gcplusg 17032 .rcmulr 17033 Scalarcsca 17035 ·𝑠 cvsca 17036 Grpcgrp 18646 1rcur 19805 Ringcrg 19851 LModclmod 20195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-nul 5245 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rab 3405 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-iota 6417 df-fv 6473 df-ov 7318 df-lmod 20197 |
This theorem is referenced by: lmodbn0 20205 lmodvacl 20209 lmodass 20210 lmodlcan 20211 lmod0vcl 20224 lmod0vlid 20225 lmod0vrid 20226 lmod0vid 20227 lmodvsmmulgdi 20230 lmodfopne 20233 lmodvnegcl 20236 lmodvnegid 20237 lmodvsubcl 20240 lmodcom 20241 lmodabl 20242 lmodvpncan 20248 lmodvnpcan 20249 lmodsubeq0 20254 lmodsubid 20255 lmodvsghm 20256 lmodprop2d 20257 lsssubg 20291 islss3 20293 lssacs 20301 prdslmodd 20303 lspsnneg 20340 lspsnsub 20341 lmodindp1 20348 lmodvsinv2 20371 islmhm2 20372 0lmhm 20374 idlmhm 20375 pwsdiaglmhm 20391 pwssplit3 20395 lspexch 20463 lspsolvlem 20476 ip0l 20913 ipsubdir 20919 ipsubdi 20920 ip2eq 20930 lsmcss 20969 dsmmlss 21023 frlm0 21033 frlmsubgval 21044 frlmplusgvalb 21048 frlmup1 21077 islindf4 21117 mplind 21350 matgrp 21651 tlmtgp 23419 clmgrp 24303 ncvspi 24392 cphtcphnm 24466 ipcau2 24470 tcphcphlem1 24471 tcphcph 24473 rrxnm 24627 rrxds 24629 pjthlem2 24674 lmodvslmhm 31418 eqgvscpbl 31654 imaslmod 31657 quslmod 31658 linds2eq 31680 lbslsat 31805 lindsunlem 31811 lbsdiflsp0 31813 dimkerim 31814 lclkrlem2m 39738 mapdpglem14 39904 baerlem3lem1 39926 baerlem5amN 39935 baerlem5bmN 39936 baerlem5abmN 39937 mapdh6bN 39956 mapdh6cN 39957 hdmap1l6b 40030 hdmap1l6c 40031 hdmap11 40067 lmodgrpd 40459 lvecgrp 40460 frlmsnic 40466 kercvrlsm 41112 pwssplit4 41118 pwslnmlem2 41122 mendring 41221 zlmodzxzsub 45948 lmodvsmdi 45970 lincvalsng 46009 lincvalsc0 46014 linc0scn0 46016 linc1 46018 lcoel0 46021 lindslinindimp2lem4 46054 snlindsntor 46064 lincresunit3 46074 |
Copyright terms: Public domain | W3C validator |