![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodgrp | Structured version Visualization version GIF version |
Description: A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
Ref | Expression |
---|---|
lmodgrp | β’ (π β LMod β π β Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
2 | eqid 2730 | . . 3 β’ (+gβπ) = (+gβπ) | |
3 | eqid 2730 | . . 3 β’ ( Β·π βπ) = ( Β·π βπ) | |
4 | eqid 2730 | . . 3 β’ (Scalarβπ) = (Scalarβπ) | |
5 | eqid 2730 | . . 3 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
6 | eqid 2730 | . . 3 β’ (+gβ(Scalarβπ)) = (+gβ(Scalarβπ)) | |
7 | eqid 2730 | . . 3 β’ (.rβ(Scalarβπ)) = (.rβ(Scalarβπ)) | |
8 | eqid 2730 | . . 3 β’ (1rβ(Scalarβπ)) = (1rβ(Scalarβπ)) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20618 | . 2 β’ (π β LMod β (π β Grp β§ (Scalarβπ) β Ring β§ βπ β (Baseβ(Scalarβπ))βπ β (Baseβ(Scalarβπ))βπ₯ β (Baseβπ)βπ€ β (Baseβπ)(((π( Β·π βπ)π€) β (Baseβπ) β§ (π( Β·π βπ)(π€(+gβπ)π₯)) = ((π( Β·π βπ)π€)(+gβπ)(π( Β·π βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π βπ)π€) = ((π( Β·π βπ)π€)(+gβπ)(π( Β·π βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π βπ)π€) = (π( Β·π βπ)(π( Β·π βπ)π€)) β§ ((1rβ(Scalarβπ))( Β·π βπ)π€) = π€)))) |
10 | 9 | simp1bi 1143 | 1 β’ (π β LMod β π β Grp) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 βwral 3059 βcfv 6542 (class class class)co 7411 Basecbs 17148 +gcplusg 17201 .rcmulr 17202 Scalarcsca 17204 Β·π cvsca 17205 Grpcgrp 18855 1rcur 20075 Ringcrg 20127 LModclmod 20614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6494 df-fv 6550 df-ov 7414 df-lmod 20616 |
This theorem is referenced by: lmodgrpd 20624 lmodbn0 20625 lmodvacl 20629 lmodass 20630 lmodlcan 20631 lmod0vcl 20645 lmod0vlid 20646 lmod0vrid 20647 lmod0vid 20648 lmodvsmmulgdi 20651 lmodfopne 20654 lmodvnegcl 20657 lmodvnegid 20658 lmodvsubcl 20661 lmodcom 20662 lmodabl 20663 lmodvpncan 20669 lmodvnpcan 20670 lmodsubeq0 20675 lmodsubid 20676 lmodvsghm 20677 lmodprop2d 20678 lsssubg 20712 islss3 20714 lssacs 20722 prdslmodd 20724 lspsnneg 20761 lspsnsub 20762 lmodindp1 20769 lmodvsinv2 20792 islmhm2 20793 0lmhm 20795 idlmhm 20796 pwsdiaglmhm 20812 pwssplit3 20816 lspexch 20887 lspsolvlem 20900 ip0l 21408 ipsubdir 21414 ipsubdi 21415 ip2eq 21425 lsmcss 21464 dsmmlss 21518 frlm0 21528 frlmsubgval 21539 frlmplusgvalb 21543 frlmup1 21572 islindf4 21612 mplind 21850 matgrp 22152 tlmtgp 23920 clmgrp 24815 ncvspi 24904 cphtcphnm 24978 ipcau2 24982 tcphcphlem1 24983 tcphcph 24985 rrxnm 25139 rrxds 25141 pjthlem2 25186 lmodvslmhm 32472 eqgvscpbl 32735 imaslmod 32738 quslmod 32743 linds2eq 32771 lbslsat 32989 lindsunlem 32997 lbsdiflsp0 32999 dimkerim 33000 lclkrlem2m 40693 mapdpglem14 40859 baerlem3lem1 40881 baerlem5amN 40890 baerlem5bmN 40891 baerlem5abmN 40892 mapdh6bN 40911 mapdh6cN 40912 hdmap1l6b 40985 hdmap1l6c 40986 hdmap11 41022 frlmsnic 41412 kercvrlsm 42127 pwssplit4 42133 pwslnmlem2 42137 mendring 42236 zlmodzxzsub 47124 lmodvsmdi 47146 lincvalsng 47184 lincvalsc0 47189 linc0scn0 47191 linc1 47193 lcoel0 47196 lindslinindimp2lem4 47229 snlindsntor 47239 lincresunit3 47249 |
Copyright terms: Public domain | W3C validator |