| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodgrp | Structured version Visualization version GIF version | ||
| Description: A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodgrp | ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2729 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 3 | eqid 2729 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 4 | eqid 2729 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 5 | eqid 2729 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 6 | eqid 2729 | . . 3 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
| 7 | eqid 2729 | . . 3 ⊢ (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)) | |
| 8 | eqid 2729 | . . 3 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20785 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ (Scalar‘𝑊) ∈ Ring ∧ ∀𝑞 ∈ (Base‘(Scalar‘𝑊))∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
| 10 | 9 | simp1bi 1145 | 1 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 .rcmulr 17180 Scalarcsca 17182 ·𝑠 cvsca 17183 Grpcgrp 18830 1rcur 20084 Ringcrg 20136 LModclmod 20781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-lmod 20783 |
| This theorem is referenced by: lmodgrpd 20791 lmodbn0 20792 lmodvacl 20796 lmodass 20797 lmodlcan 20798 lmod0vcl 20812 lmod0vlid 20813 lmod0vrid 20814 lmod0vid 20815 lmodvsmmulgdi 20818 lmodfopne 20821 lmodvnegcl 20824 lmodvnegid 20825 lmodvsubcl 20828 lmodcom 20829 lmodabl 20830 lmodvpncan 20836 lmodvnpcan 20837 lmodsubeq0 20842 lmodsubid 20843 lmodvsghm 20844 lmodprop2d 20845 lsssubg 20878 islss3 20880 lssacs 20888 prdslmodd 20890 lspsnneg 20927 lspsnsub 20928 lmodindp1 20935 lmodvsinv2 20959 islmhm2 20960 0lmhm 20962 idlmhm 20963 pwsdiaglmhm 20979 pwssplit3 20983 lspexch 21054 lspsolvlem 21067 ip0l 21561 ipsubdir 21567 ipsubdi 21568 ip2eq 21578 lsmcss 21617 dsmmlss 21669 frlm0 21679 frlmsubgval 21690 frlmplusgvalb 21694 frlmup1 21723 islindf4 21763 mplind 21993 matgrp 22333 tlmtgp 24099 clmgrp 24984 ncvspi 25072 cphtcphnm 25146 ipcau2 25150 tcphcphlem1 25151 tcphcph 25153 rrxnm 25307 rrxds 25309 pjthlem2 25354 lmodvslmhm 33016 eqgvscpbl 33297 imaslmod 33300 quslmod 33305 linds2eq 33328 lbslsat 33588 lindsunlem 33596 lbsdiflsp0 33598 dimkerim 33599 lclkrlem2m 41498 mapdpglem14 41664 baerlem3lem1 41686 baerlem5amN 41695 baerlem5bmN 41696 baerlem5abmN 41697 mapdh6bN 41716 mapdh6cN 41717 hdmap1l6b 41790 hdmap1l6c 41791 hdmap11 41827 frlmsnic 42513 kercvrlsm 43056 pwssplit4 43062 pwslnmlem2 43066 mendring 43161 zlmodzxzsub 48345 lmodvsmdi 48364 lincvalsng 48402 lincvalsc0 48407 linc0scn0 48409 linc1 48411 lcoel0 48414 lindslinindimp2lem4 48447 snlindsntor 48457 lincresunit3 48467 |
| Copyright terms: Public domain | W3C validator |