| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodgrp | Structured version Visualization version GIF version | ||
| Description: A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodgrp | ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2729 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 3 | eqid 2729 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 4 | eqid 2729 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 5 | eqid 2729 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 6 | eqid 2729 | . . 3 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
| 7 | eqid 2729 | . . 3 ⊢ (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)) | |
| 8 | eqid 2729 | . . 3 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20770 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ (Scalar‘𝑊) ∈ Ring ∧ ∀𝑞 ∈ (Base‘(Scalar‘𝑊))∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
| 10 | 9 | simp1bi 1145 | 1 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 Scalarcsca 17223 ·𝑠 cvsca 17224 Grpcgrp 18865 1rcur 20090 Ringcrg 20142 LModclmod 20766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-lmod 20768 |
| This theorem is referenced by: lmodgrpd 20776 lmodbn0 20777 lmodvacl 20781 lmodass 20782 lmodlcan 20783 lmod0vcl 20797 lmod0vlid 20798 lmod0vrid 20799 lmod0vid 20800 lmodvsmmulgdi 20803 lmodfopne 20806 lmodvnegcl 20809 lmodvnegid 20810 lmodvsubcl 20813 lmodcom 20814 lmodabl 20815 lmodvpncan 20821 lmodvnpcan 20822 lmodsubeq0 20827 lmodsubid 20828 lmodvsghm 20829 lmodprop2d 20830 lsssubg 20863 islss3 20865 lssacs 20873 prdslmodd 20875 lspsnneg 20912 lspsnsub 20913 lmodindp1 20920 lmodvsinv2 20944 islmhm2 20945 0lmhm 20947 idlmhm 20948 pwsdiaglmhm 20964 pwssplit3 20968 lspexch 21039 lspsolvlem 21052 ip0l 21545 ipsubdir 21551 ipsubdi 21552 ip2eq 21562 lsmcss 21601 dsmmlss 21653 frlm0 21663 frlmsubgval 21674 frlmplusgvalb 21678 frlmup1 21707 islindf4 21747 mplind 21977 matgrp 22317 tlmtgp 24083 clmgrp 24968 ncvspi 25056 cphtcphnm 25130 ipcau2 25134 tcphcphlem1 25135 tcphcph 25137 rrxnm 25291 rrxds 25293 pjthlem2 25338 lmodvslmhm 32990 eqgvscpbl 33321 imaslmod 33324 quslmod 33329 linds2eq 33352 lbslsat 33612 lindsunlem 33620 lbsdiflsp0 33622 dimkerim 33623 lclkrlem2m 41513 mapdpglem14 41679 baerlem3lem1 41701 baerlem5amN 41710 baerlem5bmN 41711 baerlem5abmN 41712 mapdh6bN 41731 mapdh6cN 41732 hdmap1l6b 41805 hdmap1l6c 41806 hdmap11 41842 frlmsnic 42528 kercvrlsm 43072 pwssplit4 43078 pwslnmlem2 43082 mendring 43177 zlmodzxzsub 48348 lmodvsmdi 48367 lincvalsng 48405 lincvalsc0 48410 linc0scn0 48412 linc1 48414 lcoel0 48417 lindslinindimp2lem4 48450 snlindsntor 48460 lincresunit3 48470 |
| Copyright terms: Public domain | W3C validator |