| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodgrp | Structured version Visualization version GIF version | ||
| Description: A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodgrp | ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2733 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 3 | eqid 2733 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 4 | eqid 2733 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 5 | eqid 2733 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 6 | eqid 2733 | . . 3 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
| 7 | eqid 2733 | . . 3 ⊢ (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)) | |
| 8 | eqid 2733 | . . 3 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20799 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ (Scalar‘𝑊) ∈ Ring ∧ ∀𝑞 ∈ (Base‘(Scalar‘𝑊))∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
| 10 | 9 | simp1bi 1145 | 1 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 .rcmulr 17164 Scalarcsca 17166 ·𝑠 cvsca 17167 Grpcgrp 18848 1rcur 20101 Ringcrg 20153 LModclmod 20795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-lmod 20797 |
| This theorem is referenced by: lmodgrpd 20805 lmodbn0 20806 lmodvacl 20810 lmodass 20811 lmodlcan 20812 lmod0vcl 20826 lmod0vlid 20827 lmod0vrid 20828 lmod0vid 20829 lmodvsmmulgdi 20832 lmodfopne 20835 lmodvnegcl 20838 lmodvnegid 20839 lmodvsubcl 20842 lmodcom 20843 lmodabl 20844 lmodvpncan 20850 lmodvnpcan 20851 lmodsubeq0 20856 lmodsubid 20857 lmodvsghm 20858 lmodprop2d 20859 lsssubg 20892 islss3 20894 lssacs 20902 prdslmodd 20904 lspsnneg 20941 lspsnsub 20942 lmodindp1 20949 lmodvsinv2 20973 islmhm2 20974 0lmhm 20976 idlmhm 20977 pwsdiaglmhm 20993 pwssplit3 20997 lspexch 21068 lspsolvlem 21081 ip0l 21575 ipsubdir 21581 ipsubdi 21582 ip2eq 21592 lsmcss 21631 dsmmlss 21683 frlm0 21693 frlmsubgval 21704 frlmplusgvalb 21708 frlmup1 21737 islindf4 21777 mplind 22006 matgrp 22346 tlmtgp 24112 clmgrp 24996 ncvspi 25084 cphtcphnm 25158 ipcau2 25162 tcphcphlem1 25163 tcphcph 25165 rrxnm 25319 rrxds 25321 pjthlem2 25366 lmodvslmhm 33037 eqgvscpbl 33322 imaslmod 33325 quslmod 33330 linds2eq 33353 lbslsat 33650 lindsunlem 33658 lbsdiflsp0 33660 dimkerim 33661 lclkrlem2m 41638 mapdpglem14 41804 baerlem3lem1 41826 baerlem5amN 41835 baerlem5bmN 41836 baerlem5abmN 41837 mapdh6bN 41856 mapdh6cN 41857 hdmap1l6b 41930 hdmap1l6c 41931 hdmap11 41967 frlmsnic 42658 kercvrlsm 43200 pwssplit4 43206 pwslnmlem2 43210 mendring 43305 zlmodzxzsub 48484 lmodvsmdi 48503 lincvalsng 48541 lincvalsc0 48546 linc0scn0 48548 linc1 48550 lcoel0 48553 lindslinindimp2lem4 48586 snlindsntor 48596 lincresunit3 48606 |
| Copyright terms: Public domain | W3C validator |