![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodgrp | Structured version Visualization version GIF version |
Description: A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
Ref | Expression |
---|---|
lmodgrp | ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2734 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
3 | eqid 2734 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
4 | eqid 2734 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
5 | eqid 2734 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
6 | eqid 2734 | . . 3 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
7 | eqid 2734 | . . 3 ⊢ (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)) | |
8 | eqid 2734 | . . 3 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20878 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ (Scalar‘𝑊) ∈ Ring ∧ ∀𝑞 ∈ (Base‘(Scalar‘𝑊))∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
10 | 9 | simp1bi 1144 | 1 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 +gcplusg 17297 .rcmulr 17298 Scalarcsca 17300 ·𝑠 cvsca 17301 Grpcgrp 18963 1rcur 20198 Ringcrg 20250 LModclmod 20874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-nul 5311 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-lmod 20876 |
This theorem is referenced by: lmodgrpd 20884 lmodbn0 20885 lmodvacl 20889 lmodass 20890 lmodlcan 20891 lmod0vcl 20905 lmod0vlid 20906 lmod0vrid 20907 lmod0vid 20908 lmodvsmmulgdi 20911 lmodfopne 20914 lmodvnegcl 20917 lmodvnegid 20918 lmodvsubcl 20921 lmodcom 20922 lmodabl 20923 lmodvpncan 20929 lmodvnpcan 20930 lmodsubeq0 20935 lmodsubid 20936 lmodvsghm 20937 lmodprop2d 20938 lsssubg 20972 islss3 20974 lssacs 20982 prdslmodd 20984 lspsnneg 21021 lspsnsub 21022 lmodindp1 21029 lmodvsinv2 21053 islmhm2 21054 0lmhm 21056 idlmhm 21057 pwsdiaglmhm 21073 pwssplit3 21077 lspexch 21148 lspsolvlem 21161 ip0l 21671 ipsubdir 21677 ipsubdi 21678 ip2eq 21688 lsmcss 21727 dsmmlss 21781 frlm0 21791 frlmsubgval 21802 frlmplusgvalb 21806 frlmup1 21835 islindf4 21875 mplind 22111 matgrp 22451 tlmtgp 24219 clmgrp 25114 ncvspi 25203 cphtcphnm 25277 ipcau2 25281 tcphcphlem1 25282 tcphcph 25284 rrxnm 25438 rrxds 25440 pjthlem2 25485 lmodvslmhm 33035 eqgvscpbl 33357 imaslmod 33360 quslmod 33365 linds2eq 33388 lbslsat 33643 lindsunlem 33651 lbsdiflsp0 33653 dimkerim 33654 lclkrlem2m 41501 mapdpglem14 41667 baerlem3lem1 41689 baerlem5amN 41698 baerlem5bmN 41699 baerlem5abmN 41700 mapdh6bN 41719 mapdh6cN 41720 hdmap1l6b 41793 hdmap1l6c 41794 hdmap11 41830 frlmsnic 42526 kercvrlsm 43071 pwssplit4 43077 pwslnmlem2 43081 mendring 43176 zlmodzxzsub 48204 lmodvsmdi 48223 lincvalsng 48261 lincvalsc0 48266 linc0scn0 48268 linc1 48270 lcoel0 48273 lindslinindimp2lem4 48306 snlindsntor 48316 lincresunit3 48326 |
Copyright terms: Public domain | W3C validator |