Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmodgrp | Structured version Visualization version GIF version |
Description: A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
Ref | Expression |
---|---|
lmodgrp | ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2738 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
3 | eqid 2738 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
4 | eqid 2738 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
5 | eqid 2738 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
6 | eqid 2738 | . . 3 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
7 | eqid 2738 | . . 3 ⊢ (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)) | |
8 | eqid 2738 | . . 3 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20042 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ (Scalar‘𝑊) ∈ Ring ∧ ∀𝑞 ∈ (Base‘(Scalar‘𝑊))∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
10 | 9 | simp1bi 1143 | 1 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 Scalarcsca 16891 ·𝑠 cvsca 16892 Grpcgrp 18492 1rcur 19652 Ringcrg 19698 LModclmod 20038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-lmod 20040 |
This theorem is referenced by: lmodbn0 20048 lmodvacl 20052 lmodass 20053 lmodlcan 20054 lmod0vcl 20067 lmod0vlid 20068 lmod0vrid 20069 lmod0vid 20070 lmodvsmmulgdi 20073 lmodfopne 20076 lmodvnegcl 20079 lmodvnegid 20080 lmodvsubcl 20083 lmodcom 20084 lmodabl 20085 lmodvpncan 20091 lmodvnpcan 20092 lmodsubeq0 20097 lmodsubid 20098 lmodvsghm 20099 lmodprop2d 20100 lsssubg 20134 islss3 20136 lssacs 20144 prdslmodd 20146 lspsnneg 20183 lspsnsub 20184 lmodindp1 20191 lmodvsinv2 20214 islmhm2 20215 0lmhm 20217 idlmhm 20218 pwsdiaglmhm 20234 pwssplit3 20238 lspexch 20306 lspsolvlem 20319 ip0l 20753 ipsubdir 20759 ipsubdi 20760 ip2eq 20770 lsmcss 20809 dsmmlss 20861 frlm0 20871 frlmsubgval 20882 frlmplusgvalb 20886 frlmup1 20915 islindf4 20955 mplind 21188 matgrp 21487 tlmtgp 23255 clmgrp 24137 ncvspi 24225 cphtcphnm 24299 ipcau2 24303 tcphcphlem1 24304 tcphcph 24306 rrxnm 24460 rrxds 24462 pjthlem2 24507 lmodvslmhm 31212 eqgvscpbl 31452 imaslmod 31455 quslmod 31456 linds2eq 31477 lbslsat 31601 lindsunlem 31607 lbsdiflsp0 31609 dimkerim 31610 lclkrlem2m 39460 mapdpglem14 39626 baerlem3lem1 39648 baerlem5amN 39657 baerlem5bmN 39658 baerlem5abmN 39659 mapdh6bN 39678 mapdh6cN 39679 hdmap1l6b 39752 hdmap1l6c 39753 hdmap11 39789 lmodgrpd 40181 lvecgrp 40182 frlmsnic 40188 kercvrlsm 40824 pwssplit4 40830 pwslnmlem2 40834 mendring 40933 zlmodzxzsub 45584 lmodvsmdi 45606 lincvalsng 45645 lincvalsc0 45650 linc0scn0 45652 linc1 45654 lcoel0 45657 lindslinindimp2lem4 45690 snlindsntor 45700 lincresunit3 45710 |
Copyright terms: Public domain | W3C validator |