![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodgrp | Structured version Visualization version GIF version |
Description: A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
Ref | Expression |
---|---|
lmodgrp | ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2740 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
3 | eqid 2740 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
4 | eqid 2740 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
5 | eqid 2740 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
6 | eqid 2740 | . . 3 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
7 | eqid 2740 | . . 3 ⊢ (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)) | |
8 | eqid 2740 | . . 3 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20884 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ (Scalar‘𝑊) ∈ Ring ∧ ∀𝑞 ∈ (Base‘(Scalar‘𝑊))∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
10 | 9 | simp1bi 1145 | 1 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 .rcmulr 17312 Scalarcsca 17314 ·𝑠 cvsca 17315 Grpcgrp 18973 1rcur 20208 Ringcrg 20260 LModclmod 20880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-lmod 20882 |
This theorem is referenced by: lmodgrpd 20890 lmodbn0 20891 lmodvacl 20895 lmodass 20896 lmodlcan 20897 lmod0vcl 20911 lmod0vlid 20912 lmod0vrid 20913 lmod0vid 20914 lmodvsmmulgdi 20917 lmodfopne 20920 lmodvnegcl 20923 lmodvnegid 20924 lmodvsubcl 20927 lmodcom 20928 lmodabl 20929 lmodvpncan 20935 lmodvnpcan 20936 lmodsubeq0 20941 lmodsubid 20942 lmodvsghm 20943 lmodprop2d 20944 lsssubg 20978 islss3 20980 lssacs 20988 prdslmodd 20990 lspsnneg 21027 lspsnsub 21028 lmodindp1 21035 lmodvsinv2 21059 islmhm2 21060 0lmhm 21062 idlmhm 21063 pwsdiaglmhm 21079 pwssplit3 21083 lspexch 21154 lspsolvlem 21167 ip0l 21677 ipsubdir 21683 ipsubdi 21684 ip2eq 21694 lsmcss 21733 dsmmlss 21787 frlm0 21797 frlmsubgval 21808 frlmplusgvalb 21812 frlmup1 21841 islindf4 21881 mplind 22117 matgrp 22457 tlmtgp 24225 clmgrp 25120 ncvspi 25209 cphtcphnm 25283 ipcau2 25287 tcphcphlem1 25288 tcphcph 25290 rrxnm 25444 rrxds 25446 pjthlem2 25491 lmodvslmhm 33033 eqgvscpbl 33343 imaslmod 33346 quslmod 33351 linds2eq 33374 lbslsat 33629 lindsunlem 33637 lbsdiflsp0 33639 dimkerim 33640 lclkrlem2m 41476 mapdpglem14 41642 baerlem3lem1 41664 baerlem5amN 41673 baerlem5bmN 41674 baerlem5abmN 41675 mapdh6bN 41694 mapdh6cN 41695 hdmap1l6b 41768 hdmap1l6c 41769 hdmap11 41805 frlmsnic 42495 kercvrlsm 43040 pwssplit4 43046 pwslnmlem2 43050 mendring 43149 zlmodzxzsub 48085 lmodvsmdi 48107 lincvalsng 48145 lincvalsc0 48150 linc0scn0 48152 linc1 48154 lcoel0 48157 lindslinindimp2lem4 48190 snlindsntor 48200 lincresunit3 48210 |
Copyright terms: Public domain | W3C validator |