| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodgrp | Structured version Visualization version GIF version | ||
| Description: A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodgrp | ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2730 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 3 | eqid 2730 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 4 | eqid 2730 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 5 | eqid 2730 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 6 | eqid 2730 | . . 3 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
| 7 | eqid 2730 | . . 3 ⊢ (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)) | |
| 8 | eqid 2730 | . . 3 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20777 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ (Scalar‘𝑊) ∈ Ring ∧ ∀𝑞 ∈ (Base‘(Scalar‘𝑊))∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
| 10 | 9 | simp1bi 1145 | 1 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 .rcmulr 17228 Scalarcsca 17230 ·𝑠 cvsca 17231 Grpcgrp 18872 1rcur 20097 Ringcrg 20149 LModclmod 20773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-lmod 20775 |
| This theorem is referenced by: lmodgrpd 20783 lmodbn0 20784 lmodvacl 20788 lmodass 20789 lmodlcan 20790 lmod0vcl 20804 lmod0vlid 20805 lmod0vrid 20806 lmod0vid 20807 lmodvsmmulgdi 20810 lmodfopne 20813 lmodvnegcl 20816 lmodvnegid 20817 lmodvsubcl 20820 lmodcom 20821 lmodabl 20822 lmodvpncan 20828 lmodvnpcan 20829 lmodsubeq0 20834 lmodsubid 20835 lmodvsghm 20836 lmodprop2d 20837 lsssubg 20870 islss3 20872 lssacs 20880 prdslmodd 20882 lspsnneg 20919 lspsnsub 20920 lmodindp1 20927 lmodvsinv2 20951 islmhm2 20952 0lmhm 20954 idlmhm 20955 pwsdiaglmhm 20971 pwssplit3 20975 lspexch 21046 lspsolvlem 21059 ip0l 21552 ipsubdir 21558 ipsubdi 21559 ip2eq 21569 lsmcss 21608 dsmmlss 21660 frlm0 21670 frlmsubgval 21681 frlmplusgvalb 21685 frlmup1 21714 islindf4 21754 mplind 21984 matgrp 22324 tlmtgp 24090 clmgrp 24975 ncvspi 25063 cphtcphnm 25137 ipcau2 25141 tcphcphlem1 25142 tcphcph 25144 rrxnm 25298 rrxds 25300 pjthlem2 25345 lmodvslmhm 32997 eqgvscpbl 33328 imaslmod 33331 quslmod 33336 linds2eq 33359 lbslsat 33619 lindsunlem 33627 lbsdiflsp0 33629 dimkerim 33630 lclkrlem2m 41520 mapdpglem14 41686 baerlem3lem1 41708 baerlem5amN 41717 baerlem5bmN 41718 baerlem5abmN 41719 mapdh6bN 41738 mapdh6cN 41739 hdmap1l6b 41812 hdmap1l6c 41813 hdmap11 41849 frlmsnic 42535 kercvrlsm 43079 pwssplit4 43085 pwslnmlem2 43089 mendring 43184 zlmodzxzsub 48352 lmodvsmdi 48371 lincvalsng 48409 lincvalsc0 48414 linc0scn0 48416 linc1 48418 lcoel0 48421 lindslinindimp2lem4 48454 snlindsntor 48464 lincresunit3 48474 |
| Copyright terms: Public domain | W3C validator |