| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodgrp | Structured version Visualization version GIF version | ||
| Description: A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodgrp | ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2731 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 3 | eqid 2731 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 4 | eqid 2731 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 5 | eqid 2731 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 6 | eqid 2731 | . . 3 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
| 7 | eqid 2731 | . . 3 ⊢ (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)) | |
| 8 | eqid 2731 | . . 3 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20795 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ (Scalar‘𝑊) ∈ Ring ∧ ∀𝑞 ∈ (Base‘(Scalar‘𝑊))∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
| 10 | 9 | simp1bi 1145 | 1 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 .rcmulr 17159 Scalarcsca 17161 ·𝑠 cvsca 17162 Grpcgrp 18843 1rcur 20097 Ringcrg 20149 LModclmod 20791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-lmod 20793 |
| This theorem is referenced by: lmodgrpd 20801 lmodbn0 20802 lmodvacl 20806 lmodass 20807 lmodlcan 20808 lmod0vcl 20822 lmod0vlid 20823 lmod0vrid 20824 lmod0vid 20825 lmodvsmmulgdi 20828 lmodfopne 20831 lmodvnegcl 20834 lmodvnegid 20835 lmodvsubcl 20838 lmodcom 20839 lmodabl 20840 lmodvpncan 20846 lmodvnpcan 20847 lmodsubeq0 20852 lmodsubid 20853 lmodvsghm 20854 lmodprop2d 20855 lsssubg 20888 islss3 20890 lssacs 20898 prdslmodd 20900 lspsnneg 20937 lspsnsub 20938 lmodindp1 20945 lmodvsinv2 20969 islmhm2 20970 0lmhm 20972 idlmhm 20973 pwsdiaglmhm 20989 pwssplit3 20993 lspexch 21064 lspsolvlem 21077 ip0l 21571 ipsubdir 21577 ipsubdi 21578 ip2eq 21588 lsmcss 21627 dsmmlss 21679 frlm0 21689 frlmsubgval 21700 frlmplusgvalb 21704 frlmup1 21733 islindf4 21773 mplind 22003 matgrp 22343 tlmtgp 24109 clmgrp 24993 ncvspi 25081 cphtcphnm 25155 ipcau2 25159 tcphcphlem1 25160 tcphcph 25162 rrxnm 25316 rrxds 25318 pjthlem2 25363 lmodvslmhm 33025 eqgvscpbl 33310 imaslmod 33313 quslmod 33318 linds2eq 33341 lbslsat 33624 lindsunlem 33632 lbsdiflsp0 33634 dimkerim 33635 lclkrlem2m 41557 mapdpglem14 41723 baerlem3lem1 41745 baerlem5amN 41754 baerlem5bmN 41755 baerlem5abmN 41756 mapdh6bN 41775 mapdh6cN 41776 hdmap1l6b 41849 hdmap1l6c 41850 hdmap11 41886 frlmsnic 42572 kercvrlsm 43115 pwssplit4 43121 pwslnmlem2 43125 mendring 43220 zlmodzxzsub 48390 lmodvsmdi 48409 lincvalsng 48447 lincvalsc0 48452 linc0scn0 48454 linc1 48456 lcoel0 48459 lindslinindimp2lem4 48492 snlindsntor 48502 lincresunit3 48512 |
| Copyright terms: Public domain | W3C validator |