| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodgrp | Structured version Visualization version GIF version | ||
| Description: A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodgrp | ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2735 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 3 | eqid 2735 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 4 | eqid 2735 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 5 | eqid 2735 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 6 | eqid 2735 | . . 3 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
| 7 | eqid 2735 | . . 3 ⊢ (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)) | |
| 8 | eqid 2735 | . . 3 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 20819 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ (Scalar‘𝑊) ∈ Ring ∧ ∀𝑞 ∈ (Base‘(Scalar‘𝑊))∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
| 10 | 9 | simp1bi 1145 | 1 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 +gcplusg 17269 .rcmulr 17270 Scalarcsca 17272 ·𝑠 cvsca 17273 Grpcgrp 18914 1rcur 20139 Ringcrg 20191 LModclmod 20815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-lmod 20817 |
| This theorem is referenced by: lmodgrpd 20825 lmodbn0 20826 lmodvacl 20830 lmodass 20831 lmodlcan 20832 lmod0vcl 20846 lmod0vlid 20847 lmod0vrid 20848 lmod0vid 20849 lmodvsmmulgdi 20852 lmodfopne 20855 lmodvnegcl 20858 lmodvnegid 20859 lmodvsubcl 20862 lmodcom 20863 lmodabl 20864 lmodvpncan 20870 lmodvnpcan 20871 lmodsubeq0 20876 lmodsubid 20877 lmodvsghm 20878 lmodprop2d 20879 lsssubg 20912 islss3 20914 lssacs 20922 prdslmodd 20924 lspsnneg 20961 lspsnsub 20962 lmodindp1 20969 lmodvsinv2 20993 islmhm2 20994 0lmhm 20996 idlmhm 20997 pwsdiaglmhm 21013 pwssplit3 21017 lspexch 21088 lspsolvlem 21101 ip0l 21594 ipsubdir 21600 ipsubdi 21601 ip2eq 21611 lsmcss 21650 dsmmlss 21702 frlm0 21712 frlmsubgval 21723 frlmplusgvalb 21727 frlmup1 21756 islindf4 21796 mplind 22026 matgrp 22366 tlmtgp 24132 clmgrp 25017 ncvspi 25106 cphtcphnm 25180 ipcau2 25184 tcphcphlem1 25185 tcphcph 25187 rrxnm 25341 rrxds 25343 pjthlem2 25388 lmodvslmhm 32990 eqgvscpbl 33311 imaslmod 33314 quslmod 33319 linds2eq 33342 lbslsat 33602 lindsunlem 33610 lbsdiflsp0 33612 dimkerim 33613 lclkrlem2m 41484 mapdpglem14 41650 baerlem3lem1 41672 baerlem5amN 41681 baerlem5bmN 41682 baerlem5abmN 41683 mapdh6bN 41702 mapdh6cN 41703 hdmap1l6b 41776 hdmap1l6c 41777 hdmap11 41813 frlmsnic 42510 kercvrlsm 43054 pwssplit4 43060 pwslnmlem2 43064 mendring 43159 zlmodzxzsub 48283 lmodvsmdi 48302 lincvalsng 48340 lincvalsc0 48345 linc0scn0 48347 linc1 48349 lcoel0 48352 lindslinindimp2lem4 48385 snlindsntor 48395 lincresunit3 48405 |
| Copyright terms: Public domain | W3C validator |