![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodgrp | Structured version Visualization version GIF version |
Description: A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
Ref | Expression |
---|---|
lmodgrp | ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2772 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2772 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
3 | eqid 2772 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
4 | eqid 2772 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
5 | eqid 2772 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
6 | eqid 2772 | . . 3 ⊢ (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)) | |
7 | eqid 2772 | . . 3 ⊢ (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)) | |
8 | eqid 2772 | . . 3 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | islmod 19350 | . 2 ⊢ (𝑊 ∈ LMod ↔ (𝑊 ∈ Grp ∧ (Scalar‘𝑊) ∈ Ring ∧ ∀𝑞 ∈ (Base‘(Scalar‘𝑊))∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑤 ∈ (Base‘𝑊)(((𝑟( ·𝑠 ‘𝑊)𝑤) ∈ (Base‘𝑊) ∧ (𝑟( ·𝑠 ‘𝑊)(𝑤(+g‘𝑊)𝑥)) = ((𝑟( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = ((𝑞( ·𝑠 ‘𝑊)𝑤)(+g‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑊))𝑟)( ·𝑠 ‘𝑊)𝑤) = (𝑞( ·𝑠 ‘𝑊)(𝑟( ·𝑠 ‘𝑊)𝑤)) ∧ ((1r‘(Scalar‘𝑊))( ·𝑠 ‘𝑊)𝑤) = 𝑤)))) |
10 | 9 | simp1bi 1125 | 1 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2048 ∀wral 3082 ‘cfv 6182 (class class class)co 6970 Basecbs 16329 +gcplusg 16411 .rcmulr 16412 Scalarcsca 16414 ·𝑠 cvsca 16415 Grpcgrp 17881 1rcur 18964 Ringcrg 19010 LModclmod 19346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-ext 2745 ax-nul 5061 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3678 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-iota 6146 df-fv 6190 df-ov 6973 df-lmod 19348 |
This theorem is referenced by: lmodbn0 19356 lmodvacl 19360 lmodass 19361 lmodlcan 19362 lmod0vcl 19375 lmod0vlid 19376 lmod0vrid 19377 lmod0vid 19378 lmodvsmmulgdi 19381 lmodfopne 19384 lmodvnegcl 19387 lmodvnegid 19388 lmodvsubcl 19391 lmodcom 19392 lmodabl 19393 lmodvpncan 19399 lmodvnpcan 19400 lmodsubeq0 19405 lmodsubid 19406 lmodvsghm 19407 lmodprop2d 19408 lsssubg 19441 islss3 19443 lssacs 19451 prdslmodd 19453 lspsnneg 19490 lspsnsub 19491 lmodindp1 19498 lmodvsinv2 19521 islmhm2 19522 0lmhm 19524 idlmhm 19525 pwsdiaglmhm 19541 pwssplit3 19545 lspexch 19613 lspsolvlem 19626 mplind 19985 ip0l 20472 ipsubdir 20478 ipsubdi 20479 ip2eq 20489 lsmcss 20528 dsmmlss 20580 frlm0 20590 frlmsubgval 20601 frlmplusgvalb 20605 frlmup1 20634 islindf4 20674 matgrp 20733 tlmtgp 22497 clmgrp 23365 ncvspi 23453 cphtcphnm 23526 ipcau2 23530 tcphcphlem1 23531 tcphcph 23533 rrxnm 23687 rrxds 23689 pjthlem2 23734 lmodvslmhm 30483 eqgvscpbl 30554 imaslmod 30557 quslmod 30558 linds2eq 30568 lbslsat 30599 lindsunlem 30605 lbsdiflsp0 30607 dimkerim 30608 lclkrlem2m 38048 mapdpglem14 38214 baerlem3lem1 38236 baerlem5amN 38245 baerlem5bmN 38246 baerlem5abmN 38247 mapdh6bN 38266 mapdh6cN 38267 hdmap1l6b 38340 hdmap1l6c 38341 hdmap11 38377 lvecgrp 38528 frlmsnic 38531 kercvrlsm 39024 pwssplit4 39030 pwslnmlem2 39034 mendring 39133 zlmodzxzsub 43712 lmodvsmdi 43736 lincvalsng 43778 lincvalsc0 43783 linc0scn0 43785 linc1 43787 lcoel0 43790 lindslinindimp2lem4 43823 snlindsntor 43833 lincresunit3 43843 |
Copyright terms: Public domain | W3C validator |