MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmmulg Structured version   Visualization version   GIF version

Theorem clmmulg 23319
Description: The group multiple function matches the scalar multiplication function. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
clmmulg.1 𝑉 = (Base‘𝑊)
clmmulg.2 = (.g𝑊)
clmmulg.3 · = ( ·𝑠𝑊)
Assertion
Ref Expression
clmmulg ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ ℤ ∧ 𝐵𝑉) → (𝐴 𝐵) = (𝐴 · 𝐵))

Proof of Theorem clmmulg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6931 . . . . 5 (𝑥 = 0 → (𝑥 𝐵) = (0 𝐵))
2 oveq1 6931 . . . . 5 (𝑥 = 0 → (𝑥 · 𝐵) = (0 · 𝐵))
31, 2eqeq12d 2793 . . . 4 (𝑥 = 0 → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ (0 𝐵) = (0 · 𝐵)))
4 oveq1 6931 . . . . 5 (𝑥 = 𝑦 → (𝑥 𝐵) = (𝑦 𝐵))
5 oveq1 6931 . . . . 5 (𝑥 = 𝑦 → (𝑥 · 𝐵) = (𝑦 · 𝐵))
64, 5eqeq12d 2793 . . . 4 (𝑥 = 𝑦 → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ (𝑦 𝐵) = (𝑦 · 𝐵)))
7 oveq1 6931 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥 𝐵) = ((𝑦 + 1) 𝐵))
8 oveq1 6931 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥 · 𝐵) = ((𝑦 + 1) · 𝐵))
97, 8eqeq12d 2793 . . . 4 (𝑥 = (𝑦 + 1) → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ ((𝑦 + 1) 𝐵) = ((𝑦 + 1) · 𝐵)))
10 oveq1 6931 . . . . 5 (𝑥 = -𝑦 → (𝑥 𝐵) = (-𝑦 𝐵))
11 oveq1 6931 . . . . 5 (𝑥 = -𝑦 → (𝑥 · 𝐵) = (-𝑦 · 𝐵))
1210, 11eqeq12d 2793 . . . 4 (𝑥 = -𝑦 → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ (-𝑦 𝐵) = (-𝑦 · 𝐵)))
13 oveq1 6931 . . . . 5 (𝑥 = 𝐴 → (𝑥 𝐵) = (𝐴 𝐵))
14 oveq1 6931 . . . . 5 (𝑥 = 𝐴 → (𝑥 · 𝐵) = (𝐴 · 𝐵))
1513, 14eqeq12d 2793 . . . 4 (𝑥 = 𝐴 → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ (𝐴 𝐵) = (𝐴 · 𝐵)))
16 clmmulg.1 . . . . . . 7 𝑉 = (Base‘𝑊)
17 eqid 2778 . . . . . . 7 (0g𝑊) = (0g𝑊)
18 clmmulg.2 . . . . . . 7 = (.g𝑊)
1916, 17, 18mulg0 17944 . . . . . 6 (𝐵𝑉 → (0 𝐵) = (0g𝑊))
2019adantl 475 . . . . 5 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (0 𝐵) = (0g𝑊))
21 eqid 2778 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
22 clmmulg.3 . . . . . 6 · = ( ·𝑠𝑊)
2316, 21, 22, 17clm0vs 23313 . . . . 5 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (0 · 𝐵) = (0g𝑊))
2420, 23eqtr4d 2817 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (0 𝐵) = (0 · 𝐵))
25 oveq1 6931 . . . . . 6 ((𝑦 𝐵) = (𝑦 · 𝐵) → ((𝑦 𝐵)(+g𝑊)𝐵) = ((𝑦 · 𝐵)(+g𝑊)𝐵))
26 clmgrp 23286 . . . . . . . . . 10 (𝑊 ∈ ℂMod → 𝑊 ∈ Grp)
27 grpmnd 17827 . . . . . . . . . 10 (𝑊 ∈ Grp → 𝑊 ∈ Mnd)
2826, 27syl 17 . . . . . . . . 9 (𝑊 ∈ ℂMod → 𝑊 ∈ Mnd)
2928ad2antrr 716 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑊 ∈ Mnd)
30 simpr 479 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
31 simplr 759 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝐵𝑉)
32 eqid 2778 . . . . . . . . 9 (+g𝑊) = (+g𝑊)
3316, 18, 32mulgnn0p1 17950 . . . . . . . 8 ((𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐵𝑉) → ((𝑦 + 1) 𝐵) = ((𝑦 𝐵)(+g𝑊)𝐵))
3429, 30, 31, 33syl3anc 1439 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) 𝐵) = ((𝑦 𝐵)(+g𝑊)𝐵))
35 simpll 757 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑊 ∈ ℂMod)
36 eqid 2778 . . . . . . . . . . . 12 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3721, 36clmzss 23296 . . . . . . . . . . 11 (𝑊 ∈ ℂMod → ℤ ⊆ (Base‘(Scalar‘𝑊)))
3837ad2antrr 716 . . . . . . . . . 10 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ℤ ⊆ (Base‘(Scalar‘𝑊)))
39 nn0z 11757 . . . . . . . . . . 11 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
4039adantl 475 . . . . . . . . . 10 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℤ)
4138, 40sseldd 3822 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ (Base‘(Scalar‘𝑊)))
42 1zzd 11765 . . . . . . . . . 10 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 1 ∈ ℤ)
4338, 42sseldd 3822 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 1 ∈ (Base‘(Scalar‘𝑊)))
4416, 21, 22, 36, 32clmvsdir 23309 . . . . . . . . 9 ((𝑊 ∈ ℂMod ∧ (𝑦 ∈ (Base‘(Scalar‘𝑊)) ∧ 1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐵𝑉)) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵)(+g𝑊)(1 · 𝐵)))
4535, 41, 43, 31, 44syl13anc 1440 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵)(+g𝑊)(1 · 𝐵)))
4616, 22clmvs1 23311 . . . . . . . . . 10 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (1 · 𝐵) = 𝐵)
4746adantr 474 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → (1 · 𝐵) = 𝐵)
4847oveq2d 6940 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 · 𝐵)(+g𝑊)(1 · 𝐵)) = ((𝑦 · 𝐵)(+g𝑊)𝐵))
4945, 48eqtrd 2814 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵)(+g𝑊)𝐵))
5034, 49eqeq12d 2793 . . . . . 6 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1) 𝐵) = ((𝑦 + 1) · 𝐵) ↔ ((𝑦 𝐵)(+g𝑊)𝐵) = ((𝑦 · 𝐵)(+g𝑊)𝐵)))
5125, 50syl5ibr 238 . . . . 5 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 𝐵) = (𝑦 · 𝐵) → ((𝑦 + 1) 𝐵) = ((𝑦 + 1) · 𝐵)))
5251ex 403 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (𝑦 ∈ ℕ0 → ((𝑦 𝐵) = (𝑦 · 𝐵) → ((𝑦 + 1) 𝐵) = ((𝑦 + 1) · 𝐵))))
53 fveq2 6448 . . . . . 6 ((𝑦 𝐵) = (𝑦 · 𝐵) → ((invg𝑊)‘(𝑦 𝐵)) = ((invg𝑊)‘(𝑦 · 𝐵)))
5426ad2antrr 716 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝑊 ∈ Grp)
55 nnz 11756 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
5655adantl 475 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℤ)
57 simplr 759 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝐵𝑉)
58 eqid 2778 . . . . . . . . 9 (invg𝑊) = (invg𝑊)
5916, 18, 58mulgneg 17957 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝐵𝑉) → (-𝑦 𝐵) = ((invg𝑊)‘(𝑦 𝐵)))
6054, 56, 57, 59syl3anc 1439 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → (-𝑦 𝐵) = ((invg𝑊)‘(𝑦 𝐵)))
61 simpll 757 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝑊 ∈ ℂMod)
6237ad2antrr 716 . . . . . . . . . 10 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → ℤ ⊆ (Base‘(Scalar‘𝑊)))
6362, 56sseldd 3822 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ (Base‘(Scalar‘𝑊)))
6416, 21, 22, 58, 36, 61, 57, 63clmvsneg 23318 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → ((invg𝑊)‘(𝑦 · 𝐵)) = (-𝑦 · 𝐵))
6564eqcomd 2784 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → (-𝑦 · 𝐵) = ((invg𝑊)‘(𝑦 · 𝐵)))
6660, 65eqeq12d 2793 . . . . . 6 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → ((-𝑦 𝐵) = (-𝑦 · 𝐵) ↔ ((invg𝑊)‘(𝑦 𝐵)) = ((invg𝑊)‘(𝑦 · 𝐵))))
6753, 66syl5ibr 238 . . . . 5 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → ((𝑦 𝐵) = (𝑦 · 𝐵) → (-𝑦 𝐵) = (-𝑦 · 𝐵)))
6867ex 403 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (𝑦 ∈ ℕ → ((𝑦 𝐵) = (𝑦 · 𝐵) → (-𝑦 𝐵) = (-𝑦 · 𝐵))))
693, 6, 9, 12, 15, 24, 52, 68zindd 11835 . . 3 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (𝐴 ∈ ℤ → (𝐴 𝐵) = (𝐴 · 𝐵)))
70693impia 1106 . 2 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉𝐴 ∈ ℤ) → (𝐴 𝐵) = (𝐴 · 𝐵))
71703com23 1117 1 ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ ℤ ∧ 𝐵𝑉) → (𝐴 𝐵) = (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  wss 3792  cfv 6137  (class class class)co 6924  0cc0 10274  1c1 10275   + caddc 10277  -cneg 10609  cn 11379  0cn0 11647  cz 11733  Basecbs 16266  +gcplusg 16349  Scalarcsca 16352   ·𝑠 cvsca 16353  0gc0g 16497  Mndcmnd 17691  Grpcgrp 17820  invgcminusg 17821  .gcmg 17938  ℂModcclm 23280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-addf 10353  ax-mulf 10354
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-7 11448  df-8 11449  df-9 11450  df-n0 11648  df-z 11734  df-dec 11851  df-uz 11998  df-fz 12649  df-seq 13125  df-struct 16268  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-ress 16274  df-plusg 16362  df-mulr 16363  df-starv 16364  df-tset 16368  df-ple 16369  df-ds 16371  df-unif 16372  df-0g 16499  df-mgm 17639  df-sgrp 17681  df-mnd 17692  df-grp 17823  df-minusg 17824  df-mulg 17939  df-subg 17986  df-cmn 18592  df-mgp 18888  df-ur 18900  df-ring 18947  df-cring 18948  df-subrg 19181  df-lmod 19268  df-cnfld 20154  df-clm 23281
This theorem is referenced by:  clmzlmvsca  23331  minveclem2  23643
  Copyright terms: Public domain W3C validator