MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmmulg Structured version   Visualization version   GIF version

Theorem clmmulg 24464
Description: The group multiple function matches the scalar multiplication function. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
clmmulg.1 𝑉 = (Base‘𝑊)
clmmulg.2 = (.g𝑊)
clmmulg.3 · = ( ·𝑠𝑊)
Assertion
Ref Expression
clmmulg ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ ℤ ∧ 𝐵𝑉) → (𝐴 𝐵) = (𝐴 · 𝐵))

Proof of Theorem clmmulg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7364 . . . . 5 (𝑥 = 0 → (𝑥 𝐵) = (0 𝐵))
2 oveq1 7364 . . . . 5 (𝑥 = 0 → (𝑥 · 𝐵) = (0 · 𝐵))
31, 2eqeq12d 2752 . . . 4 (𝑥 = 0 → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ (0 𝐵) = (0 · 𝐵)))
4 oveq1 7364 . . . . 5 (𝑥 = 𝑦 → (𝑥 𝐵) = (𝑦 𝐵))
5 oveq1 7364 . . . . 5 (𝑥 = 𝑦 → (𝑥 · 𝐵) = (𝑦 · 𝐵))
64, 5eqeq12d 2752 . . . 4 (𝑥 = 𝑦 → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ (𝑦 𝐵) = (𝑦 · 𝐵)))
7 oveq1 7364 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥 𝐵) = ((𝑦 + 1) 𝐵))
8 oveq1 7364 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥 · 𝐵) = ((𝑦 + 1) · 𝐵))
97, 8eqeq12d 2752 . . . 4 (𝑥 = (𝑦 + 1) → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ ((𝑦 + 1) 𝐵) = ((𝑦 + 1) · 𝐵)))
10 oveq1 7364 . . . . 5 (𝑥 = -𝑦 → (𝑥 𝐵) = (-𝑦 𝐵))
11 oveq1 7364 . . . . 5 (𝑥 = -𝑦 → (𝑥 · 𝐵) = (-𝑦 · 𝐵))
1210, 11eqeq12d 2752 . . . 4 (𝑥 = -𝑦 → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ (-𝑦 𝐵) = (-𝑦 · 𝐵)))
13 oveq1 7364 . . . . 5 (𝑥 = 𝐴 → (𝑥 𝐵) = (𝐴 𝐵))
14 oveq1 7364 . . . . 5 (𝑥 = 𝐴 → (𝑥 · 𝐵) = (𝐴 · 𝐵))
1513, 14eqeq12d 2752 . . . 4 (𝑥 = 𝐴 → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ (𝐴 𝐵) = (𝐴 · 𝐵)))
16 clmmulg.1 . . . . . . 7 𝑉 = (Base‘𝑊)
17 eqid 2736 . . . . . . 7 (0g𝑊) = (0g𝑊)
18 clmmulg.2 . . . . . . 7 = (.g𝑊)
1916, 17, 18mulg0 18879 . . . . . 6 (𝐵𝑉 → (0 𝐵) = (0g𝑊))
2019adantl 482 . . . . 5 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (0 𝐵) = (0g𝑊))
21 eqid 2736 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
22 clmmulg.3 . . . . . 6 · = ( ·𝑠𝑊)
2316, 21, 22, 17clm0vs 24458 . . . . 5 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (0 · 𝐵) = (0g𝑊))
2420, 23eqtr4d 2779 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (0 𝐵) = (0 · 𝐵))
25 oveq1 7364 . . . . . 6 ((𝑦 𝐵) = (𝑦 · 𝐵) → ((𝑦 𝐵)(+g𝑊)𝐵) = ((𝑦 · 𝐵)(+g𝑊)𝐵))
26 clmgrp 24431 . . . . . . . . . 10 (𝑊 ∈ ℂMod → 𝑊 ∈ Grp)
2726grpmndd 18760 . . . . . . . . 9 (𝑊 ∈ ℂMod → 𝑊 ∈ Mnd)
2827ad2antrr 724 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑊 ∈ Mnd)
29 simpr 485 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
30 simplr 767 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝐵𝑉)
31 eqid 2736 . . . . . . . . 9 (+g𝑊) = (+g𝑊)
3216, 18, 31mulgnn0p1 18887 . . . . . . . 8 ((𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐵𝑉) → ((𝑦 + 1) 𝐵) = ((𝑦 𝐵)(+g𝑊)𝐵))
3328, 29, 30, 32syl3anc 1371 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) 𝐵) = ((𝑦 𝐵)(+g𝑊)𝐵))
34 simpll 765 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑊 ∈ ℂMod)
35 eqid 2736 . . . . . . . . . . . 12 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3621, 35clmzss 24441 . . . . . . . . . . 11 (𝑊 ∈ ℂMod → ℤ ⊆ (Base‘(Scalar‘𝑊)))
3736ad2antrr 724 . . . . . . . . . 10 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ℤ ⊆ (Base‘(Scalar‘𝑊)))
38 nn0z 12524 . . . . . . . . . . 11 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
3938adantl 482 . . . . . . . . . 10 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℤ)
4037, 39sseldd 3945 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ (Base‘(Scalar‘𝑊)))
41 1zzd 12534 . . . . . . . . . 10 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 1 ∈ ℤ)
4237, 41sseldd 3945 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 1 ∈ (Base‘(Scalar‘𝑊)))
4316, 21, 22, 35, 31clmvsdir 24454 . . . . . . . . 9 ((𝑊 ∈ ℂMod ∧ (𝑦 ∈ (Base‘(Scalar‘𝑊)) ∧ 1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐵𝑉)) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵)(+g𝑊)(1 · 𝐵)))
4434, 40, 42, 30, 43syl13anc 1372 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵)(+g𝑊)(1 · 𝐵)))
4516, 22clmvs1 24456 . . . . . . . . . 10 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (1 · 𝐵) = 𝐵)
4645adantr 481 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → (1 · 𝐵) = 𝐵)
4746oveq2d 7373 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 · 𝐵)(+g𝑊)(1 · 𝐵)) = ((𝑦 · 𝐵)(+g𝑊)𝐵))
4844, 47eqtrd 2776 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵)(+g𝑊)𝐵))
4933, 48eqeq12d 2752 . . . . . 6 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1) 𝐵) = ((𝑦 + 1) · 𝐵) ↔ ((𝑦 𝐵)(+g𝑊)𝐵) = ((𝑦 · 𝐵)(+g𝑊)𝐵)))
5025, 49syl5ibr 245 . . . . 5 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 𝐵) = (𝑦 · 𝐵) → ((𝑦 + 1) 𝐵) = ((𝑦 + 1) · 𝐵)))
5150ex 413 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (𝑦 ∈ ℕ0 → ((𝑦 𝐵) = (𝑦 · 𝐵) → ((𝑦 + 1) 𝐵) = ((𝑦 + 1) · 𝐵))))
52 fveq2 6842 . . . . . 6 ((𝑦 𝐵) = (𝑦 · 𝐵) → ((invg𝑊)‘(𝑦 𝐵)) = ((invg𝑊)‘(𝑦 · 𝐵)))
5326ad2antrr 724 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝑊 ∈ Grp)
54 nnz 12520 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
5554adantl 482 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℤ)
56 simplr 767 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝐵𝑉)
57 eqid 2736 . . . . . . . . 9 (invg𝑊) = (invg𝑊)
5816, 18, 57mulgneg 18894 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝐵𝑉) → (-𝑦 𝐵) = ((invg𝑊)‘(𝑦 𝐵)))
5953, 55, 56, 58syl3anc 1371 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → (-𝑦 𝐵) = ((invg𝑊)‘(𝑦 𝐵)))
60 simpll 765 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝑊 ∈ ℂMod)
6136ad2antrr 724 . . . . . . . . . 10 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → ℤ ⊆ (Base‘(Scalar‘𝑊)))
6261, 55sseldd 3945 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ (Base‘(Scalar‘𝑊)))
6316, 21, 22, 57, 35, 60, 56, 62clmvsneg 24463 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → ((invg𝑊)‘(𝑦 · 𝐵)) = (-𝑦 · 𝐵))
6463eqcomd 2742 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → (-𝑦 · 𝐵) = ((invg𝑊)‘(𝑦 · 𝐵)))
6559, 64eqeq12d 2752 . . . . . 6 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → ((-𝑦 𝐵) = (-𝑦 · 𝐵) ↔ ((invg𝑊)‘(𝑦 𝐵)) = ((invg𝑊)‘(𝑦 · 𝐵))))
6652, 65syl5ibr 245 . . . . 5 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → ((𝑦 𝐵) = (𝑦 · 𝐵) → (-𝑦 𝐵) = (-𝑦 · 𝐵)))
6766ex 413 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (𝑦 ∈ ℕ → ((𝑦 𝐵) = (𝑦 · 𝐵) → (-𝑦 𝐵) = (-𝑦 · 𝐵))))
683, 6, 9, 12, 15, 24, 51, 67zindd 12604 . . 3 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (𝐴 ∈ ℤ → (𝐴 𝐵) = (𝐴 · 𝐵)))
69683impia 1117 . 2 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉𝐴 ∈ ℤ) → (𝐴 𝐵) = (𝐴 · 𝐵))
70693com23 1126 1 ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ ℤ ∧ 𝐵𝑉) → (𝐴 𝐵) = (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wss 3910  cfv 6496  (class class class)co 7357  0cc0 11051  1c1 11052   + caddc 11054  -cneg 11386  cn 12153  0cn0 12413  cz 12499  Basecbs 17083  +gcplusg 17133  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321  Mndcmnd 18556  Grpcgrp 18748  invgcminusg 18749  .gcmg 18872  ℂModcclm 24425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-seq 13907  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-mulg 18873  df-subg 18925  df-cmn 19564  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-subrg 20220  df-lmod 20324  df-cnfld 20797  df-clm 24426
This theorem is referenced by:  clmzlmvsca  24476  minveclem2  24790
  Copyright terms: Public domain W3C validator