MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmmulg Structured version   Visualization version   GIF version

Theorem clmmulg 25148
Description: The group multiple function matches the scalar multiplication function. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
clmmulg.1 𝑉 = (Base‘𝑊)
clmmulg.2 = (.g𝑊)
clmmulg.3 · = ( ·𝑠𝑊)
Assertion
Ref Expression
clmmulg ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ ℤ ∧ 𝐵𝑉) → (𝐴 𝐵) = (𝐴 · 𝐵))

Proof of Theorem clmmulg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7438 . . . . 5 (𝑥 = 0 → (𝑥 𝐵) = (0 𝐵))
2 oveq1 7438 . . . . 5 (𝑥 = 0 → (𝑥 · 𝐵) = (0 · 𝐵))
31, 2eqeq12d 2751 . . . 4 (𝑥 = 0 → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ (0 𝐵) = (0 · 𝐵)))
4 oveq1 7438 . . . . 5 (𝑥 = 𝑦 → (𝑥 𝐵) = (𝑦 𝐵))
5 oveq1 7438 . . . . 5 (𝑥 = 𝑦 → (𝑥 · 𝐵) = (𝑦 · 𝐵))
64, 5eqeq12d 2751 . . . 4 (𝑥 = 𝑦 → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ (𝑦 𝐵) = (𝑦 · 𝐵)))
7 oveq1 7438 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥 𝐵) = ((𝑦 + 1) 𝐵))
8 oveq1 7438 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥 · 𝐵) = ((𝑦 + 1) · 𝐵))
97, 8eqeq12d 2751 . . . 4 (𝑥 = (𝑦 + 1) → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ ((𝑦 + 1) 𝐵) = ((𝑦 + 1) · 𝐵)))
10 oveq1 7438 . . . . 5 (𝑥 = -𝑦 → (𝑥 𝐵) = (-𝑦 𝐵))
11 oveq1 7438 . . . . 5 (𝑥 = -𝑦 → (𝑥 · 𝐵) = (-𝑦 · 𝐵))
1210, 11eqeq12d 2751 . . . 4 (𝑥 = -𝑦 → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ (-𝑦 𝐵) = (-𝑦 · 𝐵)))
13 oveq1 7438 . . . . 5 (𝑥 = 𝐴 → (𝑥 𝐵) = (𝐴 𝐵))
14 oveq1 7438 . . . . 5 (𝑥 = 𝐴 → (𝑥 · 𝐵) = (𝐴 · 𝐵))
1513, 14eqeq12d 2751 . . . 4 (𝑥 = 𝐴 → ((𝑥 𝐵) = (𝑥 · 𝐵) ↔ (𝐴 𝐵) = (𝐴 · 𝐵)))
16 clmmulg.1 . . . . . . 7 𝑉 = (Base‘𝑊)
17 eqid 2735 . . . . . . 7 (0g𝑊) = (0g𝑊)
18 clmmulg.2 . . . . . . 7 = (.g𝑊)
1916, 17, 18mulg0 19105 . . . . . 6 (𝐵𝑉 → (0 𝐵) = (0g𝑊))
2019adantl 481 . . . . 5 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (0 𝐵) = (0g𝑊))
21 eqid 2735 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
22 clmmulg.3 . . . . . 6 · = ( ·𝑠𝑊)
2316, 21, 22, 17clm0vs 25142 . . . . 5 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (0 · 𝐵) = (0g𝑊))
2420, 23eqtr4d 2778 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (0 𝐵) = (0 · 𝐵))
25 oveq1 7438 . . . . . 6 ((𝑦 𝐵) = (𝑦 · 𝐵) → ((𝑦 𝐵)(+g𝑊)𝐵) = ((𝑦 · 𝐵)(+g𝑊)𝐵))
26 clmgrp 25115 . . . . . . . . . 10 (𝑊 ∈ ℂMod → 𝑊 ∈ Grp)
2726grpmndd 18977 . . . . . . . . 9 (𝑊 ∈ ℂMod → 𝑊 ∈ Mnd)
2827ad2antrr 726 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑊 ∈ Mnd)
29 simpr 484 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
30 simplr 769 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝐵𝑉)
31 eqid 2735 . . . . . . . . 9 (+g𝑊) = (+g𝑊)
3216, 18, 31mulgnn0p1 19116 . . . . . . . 8 ((𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐵𝑉) → ((𝑦 + 1) 𝐵) = ((𝑦 𝐵)(+g𝑊)𝐵))
3328, 29, 30, 32syl3anc 1370 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) 𝐵) = ((𝑦 𝐵)(+g𝑊)𝐵))
34 simpll 767 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑊 ∈ ℂMod)
35 eqid 2735 . . . . . . . . . . . 12 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
3621, 35clmzss 25125 . . . . . . . . . . 11 (𝑊 ∈ ℂMod → ℤ ⊆ (Base‘(Scalar‘𝑊)))
3736ad2antrr 726 . . . . . . . . . 10 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ℤ ⊆ (Base‘(Scalar‘𝑊)))
38 nn0z 12636 . . . . . . . . . . 11 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
3938adantl 481 . . . . . . . . . 10 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℤ)
4037, 39sseldd 3996 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ (Base‘(Scalar‘𝑊)))
41 1zzd 12646 . . . . . . . . . 10 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 1 ∈ ℤ)
4237, 41sseldd 3996 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → 1 ∈ (Base‘(Scalar‘𝑊)))
4316, 21, 22, 35, 31clmvsdir 25138 . . . . . . . . 9 ((𝑊 ∈ ℂMod ∧ (𝑦 ∈ (Base‘(Scalar‘𝑊)) ∧ 1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐵𝑉)) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵)(+g𝑊)(1 · 𝐵)))
4434, 40, 42, 30, 43syl13anc 1371 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵)(+g𝑊)(1 · 𝐵)))
4516, 22clmvs1 25140 . . . . . . . . . 10 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (1 · 𝐵) = 𝐵)
4645adantr 480 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → (1 · 𝐵) = 𝐵)
4746oveq2d 7447 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 · 𝐵)(+g𝑊)(1 · 𝐵)) = ((𝑦 · 𝐵)(+g𝑊)𝐵))
4844, 47eqtrd 2775 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵)(+g𝑊)𝐵))
4933, 48eqeq12d 2751 . . . . . 6 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1) 𝐵) = ((𝑦 + 1) · 𝐵) ↔ ((𝑦 𝐵)(+g𝑊)𝐵) = ((𝑦 · 𝐵)(+g𝑊)𝐵)))
5025, 49imbitrrid 246 . . . . 5 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ0) → ((𝑦 𝐵) = (𝑦 · 𝐵) → ((𝑦 + 1) 𝐵) = ((𝑦 + 1) · 𝐵)))
5150ex 412 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (𝑦 ∈ ℕ0 → ((𝑦 𝐵) = (𝑦 · 𝐵) → ((𝑦 + 1) 𝐵) = ((𝑦 + 1) · 𝐵))))
52 fveq2 6907 . . . . . 6 ((𝑦 𝐵) = (𝑦 · 𝐵) → ((invg𝑊)‘(𝑦 𝐵)) = ((invg𝑊)‘(𝑦 · 𝐵)))
5326ad2antrr 726 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝑊 ∈ Grp)
54 nnz 12632 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
5554adantl 481 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℤ)
56 simplr 769 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝐵𝑉)
57 eqid 2735 . . . . . . . . 9 (invg𝑊) = (invg𝑊)
5816, 18, 57mulgneg 19123 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝐵𝑉) → (-𝑦 𝐵) = ((invg𝑊)‘(𝑦 𝐵)))
5953, 55, 56, 58syl3anc 1370 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → (-𝑦 𝐵) = ((invg𝑊)‘(𝑦 𝐵)))
60 simpll 767 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝑊 ∈ ℂMod)
6136ad2antrr 726 . . . . . . . . . 10 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → ℤ ⊆ (Base‘(Scalar‘𝑊)))
6261, 55sseldd 3996 . . . . . . . . 9 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ (Base‘(Scalar‘𝑊)))
6316, 21, 22, 57, 35, 60, 56, 62clmvsneg 25147 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → ((invg𝑊)‘(𝑦 · 𝐵)) = (-𝑦 · 𝐵))
6463eqcomd 2741 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → (-𝑦 · 𝐵) = ((invg𝑊)‘(𝑦 · 𝐵)))
6559, 64eqeq12d 2751 . . . . . 6 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → ((-𝑦 𝐵) = (-𝑦 · 𝐵) ↔ ((invg𝑊)‘(𝑦 𝐵)) = ((invg𝑊)‘(𝑦 · 𝐵))))
6652, 65imbitrrid 246 . . . . 5 (((𝑊 ∈ ℂMod ∧ 𝐵𝑉) ∧ 𝑦 ∈ ℕ) → ((𝑦 𝐵) = (𝑦 · 𝐵) → (-𝑦 𝐵) = (-𝑦 · 𝐵)))
6766ex 412 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (𝑦 ∈ ℕ → ((𝑦 𝐵) = (𝑦 · 𝐵) → (-𝑦 𝐵) = (-𝑦 · 𝐵))))
683, 6, 9, 12, 15, 24, 51, 67zindd 12717 . . 3 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (𝐴 ∈ ℤ → (𝐴 𝐵) = (𝐴 · 𝐵)))
69683impia 1116 . 2 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉𝐴 ∈ ℤ) → (𝐴 𝐵) = (𝐴 · 𝐵))
70693com23 1125 1 ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ ℤ ∧ 𝐵𝑉) → (𝐴 𝐵) = (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wss 3963  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156  -cneg 11491  cn 12264  0cn0 12524  cz 12611  Basecbs 17245  +gcplusg 17298  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17486  Mndcmnd 18760  Grpcgrp 18964  invgcminusg 18965  .gcmg 19098  ℂModcclm 25109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-seq 14040  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-mulg 19099  df-subg 19154  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-subrg 20587  df-lmod 20877  df-cnfld 21383  df-clm 25110
This theorem is referenced by:  clmzlmvsca  25160  minveclem2  25474
  Copyright terms: Public domain W3C validator