Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clmvsrinv | Structured version Visualization version GIF version |
Description: A vector minus itself. (Contributed by NM, 4-Dec-2006.) (Revised by AV, 28-Sep-2021.) |
Ref | Expression |
---|---|
clmpm1dir.v | ⊢ 𝑉 = (Base‘𝑊) |
clmpm1dir.s | ⊢ · = ( ·𝑠 ‘𝑊) |
clmpm1dir.a | ⊢ + = (+g‘𝑊) |
clmvsrinv.0 | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
clmvsrinv | ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → (𝐴 + (-1 · 𝐴)) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmpm1dir.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | eqid 2758 | . . . 4 ⊢ (invg‘𝑊) = (invg‘𝑊) | |
3 | eqid 2758 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
4 | clmpm1dir.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
5 | 1, 2, 3, 4 | clmvneg1 23800 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → (-1 · 𝐴) = ((invg‘𝑊)‘𝐴)) |
6 | 5 | oveq2d 7166 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → (𝐴 + (-1 · 𝐴)) = (𝐴 + ((invg‘𝑊)‘𝐴))) |
7 | clmgrp 23769 | . . 3 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ Grp) | |
8 | clmpm1dir.a | . . . 4 ⊢ + = (+g‘𝑊) | |
9 | clmvsrinv.0 | . . . 4 ⊢ 0 = (0g‘𝑊) | |
10 | 1, 8, 9, 2 | grprinv 18220 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑉) → (𝐴 + ((invg‘𝑊)‘𝐴)) = 0 ) |
11 | 7, 10 | sylan 583 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → (𝐴 + ((invg‘𝑊)‘𝐴)) = 0 ) |
12 | 6, 11 | eqtrd 2793 | 1 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉) → (𝐴 + (-1 · 𝐴)) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ‘cfv 6335 (class class class)co 7150 1c1 10576 -cneg 10909 Basecbs 16541 +gcplusg 16623 Scalarcsca 16626 ·𝑠 cvsca 16627 0gc0g 16771 Grpcgrp 18169 invgcminusg 18170 ℂModcclm 23763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-addf 10654 ax-mulf 10655 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-fz 12940 df-seq 13419 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-starv 16638 df-tset 16642 df-ple 16643 df-ds 16645 df-unif 16646 df-0g 16773 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-grp 18172 df-minusg 18173 df-mulg 18292 df-subg 18343 df-cmn 18975 df-mgp 19308 df-ur 19320 df-ring 19367 df-cring 19368 df-subrg 19601 df-lmod 19704 df-cnfld 20167 df-clm 23764 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |