![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clmvz | Structured version Visualization version GIF version |
Description: Two ways to express the negative of a vector. (Contributed by NM, 29-Feb-2008.) (Revised by AV, 7-Oct-2021.) |
Ref | Expression |
---|---|
clmvz.v | β’ π = (Baseβπ) |
clmvz.m | β’ β = (-gβπ) |
clmvz.s | β’ Β· = ( Β·π βπ) |
clmvz.0 | β’ 0 = (0gβπ) |
Ref | Expression |
---|---|
clmvz | β’ ((π β βMod β§ π΄ β π) β ( 0 β π΄) = (-1 Β· π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 β’ ((π β βMod β§ π΄ β π) β π β βMod) | |
2 | clmgrp 24994 | . . . . 5 β’ (π β βMod β π β Grp) | |
3 | clmvz.v | . . . . . 6 β’ π = (Baseβπ) | |
4 | clmvz.0 | . . . . . 6 β’ 0 = (0gβπ) | |
5 | 3, 4 | grpidcl 18921 | . . . . 5 β’ (π β Grp β 0 β π) |
6 | 2, 5 | syl 17 | . . . 4 β’ (π β βMod β 0 β π) |
7 | 6 | adantr 480 | . . 3 β’ ((π β βMod β§ π΄ β π) β 0 β π) |
8 | simpr 484 | . . 3 β’ ((π β βMod β§ π΄ β π) β π΄ β π) | |
9 | eqid 2728 | . . . 4 β’ (+gβπ) = (+gβπ) | |
10 | clmvz.m | . . . 4 β’ β = (-gβπ) | |
11 | eqid 2728 | . . . 4 β’ (Scalarβπ) = (Scalarβπ) | |
12 | clmvz.s | . . . 4 β’ Β· = ( Β·π βπ) | |
13 | 3, 9, 10, 11, 12 | clmvsubval2 25036 | . . 3 β’ ((π β βMod β§ 0 β π β§ π΄ β π) β ( 0 β π΄) = ((-1 Β· π΄)(+gβπ) 0 )) |
14 | 1, 7, 8, 13 | syl3anc 1369 | . 2 β’ ((π β βMod β§ π΄ β π) β ( 0 β π΄) = ((-1 Β· π΄)(+gβπ) 0 )) |
15 | eqid 2728 | . . . . . 6 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
16 | 11, 15 | clmneg1 25008 | . . . . 5 β’ (π β βMod β -1 β (Baseβ(Scalarβπ))) |
17 | 16 | adantr 480 | . . . 4 β’ ((π β βMod β§ π΄ β π) β -1 β (Baseβ(Scalarβπ))) |
18 | 3, 11, 12, 15 | clmvscl 25014 | . . . 4 β’ ((π β βMod β§ -1 β (Baseβ(Scalarβπ)) β§ π΄ β π) β (-1 Β· π΄) β π) |
19 | 1, 17, 8, 18 | syl3anc 1369 | . . 3 β’ ((π β βMod β§ π΄ β π) β (-1 Β· π΄) β π) |
20 | 3, 9, 4 | grprid 18924 | . . 3 β’ ((π β Grp β§ (-1 Β· π΄) β π) β ((-1 Β· π΄)(+gβπ) 0 ) = (-1 Β· π΄)) |
21 | 2, 19, 20 | syl2an2r 684 | . 2 β’ ((π β βMod β§ π΄ β π) β ((-1 Β· π΄)(+gβπ) 0 ) = (-1 Β· π΄)) |
22 | 14, 21 | eqtrd 2768 | 1 β’ ((π β βMod β§ π΄ β π) β ( 0 β π΄) = (-1 Β· π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 βcfv 6548 (class class class)co 7420 1c1 11139 -cneg 11475 Basecbs 17179 +gcplusg 17232 Scalarcsca 17235 Β·π cvsca 17236 0gc0g 17420 Grpcgrp 18889 -gcsg 18891 βModcclm 24988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-addf 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-fz 13517 df-seq 13999 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-starv 17247 df-tset 17251 df-ple 17252 df-ds 17254 df-unif 17255 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18892 df-minusg 18893 df-sbg 18894 df-mulg 19023 df-subg 19077 df-cmn 19736 df-abl 19737 df-mgp 20074 df-ur 20121 df-ring 20174 df-cring 20175 df-subrg 20507 df-lmod 20744 df-cnfld 21279 df-clm 24989 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |