![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cmn246135 | Structured version Visualization version GIF version |
Description: Rearrange terms in a commutative monoid sum. Lemma for rlocaddval 33232. (Contributed by Thierry Arnoux, 4-May-2025.) |
Ref | Expression |
---|---|
cmn135246.1 | ⊢ 𝐵 = (Base‘𝐺) |
cmn135246.2 | ⊢ + = (+g‘𝐺) |
cmn135246.3 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
cmn135246.5 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
cmn135246.4 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
cmn135246.6 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
cmn135246.7 | ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
cmn135246.8 | ⊢ (𝜑 → 𝑉 ∈ 𝐵) |
cmn135246.9 | ⊢ (𝜑 → 𝑊 ∈ 𝐵) |
Ref | Expression |
---|---|
cmn246135 | ⊢ (𝜑 → ((𝑋 + 𝑌) + ((𝑍 + 𝑈) + (𝑉 + 𝑊))) = ((𝑌 + (𝑈 + 𝑊)) + (𝑋 + (𝑍 + 𝑉)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmn135246.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
2 | cmn135246.5 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | cmn135246.4 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | cmn135246.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
5 | cmn135246.2 | . . . . 5 ⊢ + = (+g‘𝐺) | |
6 | 4, 5 | cmncom 19834 | . . . 4 ⊢ ((𝐺 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
7 | 1, 2, 3, 6 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
8 | cmn135246.6 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
9 | cmn135246.7 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝐵) | |
10 | cmn135246.8 | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ 𝐵) | |
11 | cmn135246.9 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ 𝐵) | |
12 | 4, 5, 1, 8, 9, 10, 11 | cmn4d 33010 | . . . 4 ⊢ (𝜑 → ((𝑍 + 𝑈) + (𝑉 + 𝑊)) = ((𝑍 + 𝑉) + (𝑈 + 𝑊))) |
13 | 1 | cmnmndd 19840 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
14 | 4, 5 | mndcl 18774 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑍 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵) → (𝑍 + 𝑉) ∈ 𝐵) |
15 | 13, 8, 10, 14 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → (𝑍 + 𝑉) ∈ 𝐵) |
16 | 4, 5 | mndcl 18774 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑈 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑈 + 𝑊) ∈ 𝐵) |
17 | 13, 9, 11, 16 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → (𝑈 + 𝑊) ∈ 𝐵) |
18 | 4, 5 | cmncom 19834 | . . . . 5 ⊢ ((𝐺 ∈ CMnd ∧ (𝑍 + 𝑉) ∈ 𝐵 ∧ (𝑈 + 𝑊) ∈ 𝐵) → ((𝑍 + 𝑉) + (𝑈 + 𝑊)) = ((𝑈 + 𝑊) + (𝑍 + 𝑉))) |
19 | 1, 15, 17, 18 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → ((𝑍 + 𝑉) + (𝑈 + 𝑊)) = ((𝑈 + 𝑊) + (𝑍 + 𝑉))) |
20 | 12, 19 | eqtrd 2780 | . . 3 ⊢ (𝜑 → ((𝑍 + 𝑈) + (𝑉 + 𝑊)) = ((𝑈 + 𝑊) + (𝑍 + 𝑉))) |
21 | 7, 20 | oveq12d 7461 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) + ((𝑍 + 𝑈) + (𝑉 + 𝑊))) = ((𝑌 + 𝑋) + ((𝑈 + 𝑊) + (𝑍 + 𝑉)))) |
22 | 4, 5, 1, 3, 2, 17, 15 | cmn4d 33010 | . 2 ⊢ (𝜑 → ((𝑌 + 𝑋) + ((𝑈 + 𝑊) + (𝑍 + 𝑉))) = ((𝑌 + (𝑈 + 𝑊)) + (𝑋 + (𝑍 + 𝑉)))) |
23 | 21, 22 | eqtrd 2780 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) + ((𝑍 + 𝑈) + (𝑉 + 𝑊))) = ((𝑌 + (𝑈 + 𝑊)) + (𝑋 + (𝑍 + 𝑉)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6568 (class class class)co 7443 Basecbs 17252 +gcplusg 17305 Mndcmnd 18766 CMndccmn 19816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6520 df-fv 6576 df-ov 7446 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-cmn 19818 |
This theorem is referenced by: rlocaddval 33232 rlocmulval 33233 |
Copyright terms: Public domain | W3C validator |