| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cmn145236 | Structured version Visualization version GIF version | ||
| Description: Rearrange terms in a commutative monoid sum. Lemma for rlocaddval 33235. (Contributed by Thierry Arnoux, 4-May-2025.) |
| Ref | Expression |
|---|---|
| cmn135246.1 | ⊢ 𝐵 = (Base‘𝐺) |
| cmn135246.2 | ⊢ + = (+g‘𝐺) |
| cmn135246.3 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| cmn135246.5 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| cmn135246.4 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| cmn135246.6 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| cmn135246.7 | ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
| cmn135246.8 | ⊢ (𝜑 → 𝑉 ∈ 𝐵) |
| cmn135246.9 | ⊢ (𝜑 → 𝑊 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| cmn145236 | ⊢ (𝜑 → ((𝑋 + 𝑌) + ((𝑍 + 𝑈) + (𝑉 + 𝑊))) = ((𝑋 + (𝑈 + 𝑉)) + (𝑌 + (𝑍 + 𝑊)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmn135246.3 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 2 | cmn135246.6 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 3 | cmn135246.7 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝐵) | |
| 4 | cmn135246.1 | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | cmn135246.2 | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
| 6 | 4, 5 | cmncom 19710 | . . . . . 6 ⊢ ((𝐺 ∈ CMnd ∧ 𝑍 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵) → (𝑍 + 𝑈) = (𝑈 + 𝑍)) |
| 7 | 1, 2, 3, 6 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑍 + 𝑈) = (𝑈 + 𝑍)) |
| 8 | 7 | oveq1d 7361 | . . . 4 ⊢ (𝜑 → ((𝑍 + 𝑈) + (𝑉 + 𝑊)) = ((𝑈 + 𝑍) + (𝑉 + 𝑊))) |
| 9 | cmn135246.8 | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ 𝐵) | |
| 10 | cmn135246.9 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ 𝐵) | |
| 11 | 4, 5, 1, 3, 2, 9, 10 | cmn4d 33013 | . . . 4 ⊢ (𝜑 → ((𝑈 + 𝑍) + (𝑉 + 𝑊)) = ((𝑈 + 𝑉) + (𝑍 + 𝑊))) |
| 12 | 8, 11 | eqtrd 2766 | . . 3 ⊢ (𝜑 → ((𝑍 + 𝑈) + (𝑉 + 𝑊)) = ((𝑈 + 𝑉) + (𝑍 + 𝑊))) |
| 13 | 12 | oveq2d 7362 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) + ((𝑍 + 𝑈) + (𝑉 + 𝑊))) = ((𝑋 + 𝑌) + ((𝑈 + 𝑉) + (𝑍 + 𝑊)))) |
| 14 | cmn135246.5 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 15 | 1 | cmnmndd 19716 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 16 | 4, 5 | mndcl 18650 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵) → (𝑈 + 𝑉) ∈ 𝐵) |
| 17 | 15, 3, 9, 16 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑈 + 𝑉) ∈ 𝐵) |
| 18 | cmn135246.4 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 19 | 4, 5 | mndcl 18650 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑍 + 𝑊) ∈ 𝐵) |
| 20 | 15, 2, 10, 19 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑍 + 𝑊) ∈ 𝐵) |
| 21 | 4, 5, 1, 14, 17, 18, 20 | cmn4d 33013 | . 2 ⊢ (𝜑 → ((𝑋 + (𝑈 + 𝑉)) + (𝑌 + (𝑍 + 𝑊))) = ((𝑋 + 𝑌) + ((𝑈 + 𝑉) + (𝑍 + 𝑊)))) |
| 22 | 13, 21 | eqtr4d 2769 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) + ((𝑍 + 𝑈) + (𝑉 + 𝑊))) = ((𝑋 + (𝑈 + 𝑉)) + (𝑌 + (𝑍 + 𝑊)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 Mndcmnd 18642 CMndccmn 19692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-cmn 19694 |
| This theorem is referenced by: rlocaddval 33235 rlocmulval 33236 |
| Copyright terms: Public domain | W3C validator |