Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmn145236 Structured version   Visualization version   GIF version

Theorem cmn145236 33012
Description: Rearrange terms in a commutative monoid sum. Lemma for rlocaddval 33232. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
cmn135246.1 𝐵 = (Base‘𝐺)
cmn135246.2 + = (+g𝐺)
cmn135246.3 (𝜑𝐺 ∈ CMnd)
cmn135246.5 (𝜑𝑋𝐵)
cmn135246.4 (𝜑𝑌𝐵)
cmn135246.6 (𝜑𝑍𝐵)
cmn135246.7 (𝜑𝑈𝐵)
cmn135246.8 (𝜑𝑉𝐵)
cmn135246.9 (𝜑𝑊𝐵)
Assertion
Ref Expression
cmn145236 (𝜑 → ((𝑋 + 𝑌) + ((𝑍 + 𝑈) + (𝑉 + 𝑊))) = ((𝑋 + (𝑈 + 𝑉)) + (𝑌 + (𝑍 + 𝑊))))

Proof of Theorem cmn145236
StepHypRef Expression
1 cmn135246.3 . . . . . 6 (𝜑𝐺 ∈ CMnd)
2 cmn135246.6 . . . . . 6 (𝜑𝑍𝐵)
3 cmn135246.7 . . . . . 6 (𝜑𝑈𝐵)
4 cmn135246.1 . . . . . . 7 𝐵 = (Base‘𝐺)
5 cmn135246.2 . . . . . . 7 + = (+g𝐺)
64, 5cmncom 19834 . . . . . 6 ((𝐺 ∈ CMnd ∧ 𝑍𝐵𝑈𝐵) → (𝑍 + 𝑈) = (𝑈 + 𝑍))
71, 2, 3, 6syl3anc 1371 . . . . 5 (𝜑 → (𝑍 + 𝑈) = (𝑈 + 𝑍))
87oveq1d 7458 . . . 4 (𝜑 → ((𝑍 + 𝑈) + (𝑉 + 𝑊)) = ((𝑈 + 𝑍) + (𝑉 + 𝑊)))
9 cmn135246.8 . . . . 5 (𝜑𝑉𝐵)
10 cmn135246.9 . . . . 5 (𝜑𝑊𝐵)
114, 5, 1, 3, 2, 9, 10cmn4d 33010 . . . 4 (𝜑 → ((𝑈 + 𝑍) + (𝑉 + 𝑊)) = ((𝑈 + 𝑉) + (𝑍 + 𝑊)))
128, 11eqtrd 2780 . . 3 (𝜑 → ((𝑍 + 𝑈) + (𝑉 + 𝑊)) = ((𝑈 + 𝑉) + (𝑍 + 𝑊)))
1312oveq2d 7459 . 2 (𝜑 → ((𝑋 + 𝑌) + ((𝑍 + 𝑈) + (𝑉 + 𝑊))) = ((𝑋 + 𝑌) + ((𝑈 + 𝑉) + (𝑍 + 𝑊))))
14 cmn135246.5 . . 3 (𝜑𝑋𝐵)
151cmnmndd 19840 . . . 4 (𝜑𝐺 ∈ Mnd)
164, 5mndcl 18774 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑈𝐵𝑉𝐵) → (𝑈 + 𝑉) ∈ 𝐵)
1715, 3, 9, 16syl3anc 1371 . . 3 (𝜑 → (𝑈 + 𝑉) ∈ 𝐵)
18 cmn135246.4 . . 3 (𝜑𝑌𝐵)
194, 5mndcl 18774 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑍𝐵𝑊𝐵) → (𝑍 + 𝑊) ∈ 𝐵)
2015, 2, 10, 19syl3anc 1371 . . 3 (𝜑 → (𝑍 + 𝑊) ∈ 𝐵)
214, 5, 1, 14, 17, 18, 20cmn4d 33010 . 2 (𝜑 → ((𝑋 + (𝑈 + 𝑉)) + (𝑌 + (𝑍 + 𝑊))) = ((𝑋 + 𝑌) + ((𝑈 + 𝑉) + (𝑍 + 𝑊))))
2213, 21eqtr4d 2783 1 (𝜑 → ((𝑋 + 𝑌) + ((𝑍 + 𝑈) + (𝑉 + 𝑊))) = ((𝑋 + (𝑈 + 𝑉)) + (𝑌 + (𝑍 + 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6568  (class class class)co 7443  Basecbs 17252  +gcplusg 17305  Mndcmnd 18766  CMndccmn 19816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6520  df-fv 6576  df-ov 7446  df-mgm 18672  df-sgrp 18751  df-mnd 18767  df-cmn 19818
This theorem is referenced by:  rlocaddval  33232  rlocmulval  33233
  Copyright terms: Public domain W3C validator