Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rlocaddval Structured version   Visualization version   GIF version

Theorem rlocaddval 33272
Description: Value of the addition in the ring localization, given two representatives. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
rlocaddval.1 𝐵 = (Base‘𝑅)
rlocaddval.2 · = (.r𝑅)
rlocaddval.3 + = (+g𝑅)
rlocaddval.4 𝐿 = (𝑅 RLocal 𝑆)
rlocaddval.5 = (𝑅 ~RL 𝑆)
rlocaddval.r (𝜑𝑅 ∈ CRing)
rlocaddval.s (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
rlocaddval.6 (𝜑𝐸𝐵)
rlocaddval.7 (𝜑𝐹𝐵)
rlocaddval.8 (𝜑𝐺𝑆)
rlocaddval.9 (𝜑𝐻𝑆)
rlocaddval.10 = (+g𝐿)
Assertion
Ref Expression
rlocaddval (𝜑 → ([⟨𝐸, 𝐺⟩] [⟨𝐹, 𝐻⟩] ) = [⟨((𝐸 · 𝐻) + (𝐹 · 𝐺)), (𝐺 · 𝐻)⟩] )

Proof of Theorem rlocaddval
Dummy variables 𝑝 𝑞 𝑢 𝑣 𝑎 𝑏 𝑓 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlocaddval.6 . . . 4 (𝜑𝐸𝐵)
2 rlocaddval.8 . . . 4 (𝜑𝐺𝑆)
31, 2opelxpd 5724 . . 3 (𝜑 → ⟨𝐸, 𝐺⟩ ∈ (𝐵 × 𝑆))
4 rlocaddval.7 . . . 4 (𝜑𝐹𝐵)
5 rlocaddval.9 . . . 4 (𝜑𝐻𝑆)
64, 5opelxpd 5724 . . 3 (𝜑 → ⟨𝐹, 𝐻⟩ ∈ (𝐵 × 𝑆))
7 rlocaddval.4 . . . . 5 𝐿 = (𝑅 RLocal 𝑆)
8 rlocaddval.1 . . . . . 6 𝐵 = (Base‘𝑅)
9 eqid 2737 . . . . . 6 (0g𝑅) = (0g𝑅)
10 rlocaddval.2 . . . . . 6 · = (.r𝑅)
11 eqid 2737 . . . . . 6 (-g𝑅) = (-g𝑅)
12 rlocaddval.3 . . . . . 6 + = (+g𝑅)
13 eqid 2737 . . . . . 6 (le‘𝑅) = (le‘𝑅)
14 eqid 2737 . . . . . 6 (Scalar‘𝑅) = (Scalar‘𝑅)
15 eqid 2737 . . . . . 6 (Base‘(Scalar‘𝑅)) = (Base‘(Scalar‘𝑅))
16 eqid 2737 . . . . . 6 ( ·𝑠𝑅) = ( ·𝑠𝑅)
17 eqid 2737 . . . . . 6 (𝐵 × 𝑆) = (𝐵 × 𝑆)
18 rlocaddval.5 . . . . . 6 = (𝑅 ~RL 𝑆)
19 eqid 2737 . . . . . 6 (TopSet‘𝑅) = (TopSet‘𝑅)
20 eqid 2737 . . . . . 6 (dist‘𝑅) = (dist‘𝑅)
21 eqid 2737 . . . . . 6 (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩) = (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)
22 eqid 2737 . . . . . 6 (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩) = (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)
23 eqid 2737 . . . . . 6 (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩) = (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)
24 eqid 2737 . . . . . 6 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}
25 eqid 2737 . . . . . 6 (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎)))) = (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))
26 rlocaddval.r . . . . . 6 (𝜑𝑅 ∈ CRing)
27 rlocaddval.s . . . . . . 7 (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
28 eqid 2737 . . . . . . . . 9 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2928, 8mgpbas 20142 . . . . . . . 8 𝐵 = (Base‘(mulGrp‘𝑅))
3029submss 18822 . . . . . . 7 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆𝐵)
3127, 30syl 17 . . . . . 6 (𝜑𝑆𝐵)
328, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 31rlocval 33263 . . . . 5 (𝜑 → (𝑅 RLocal 𝑆) = ((({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}) /s ))
337, 32eqtrid 2789 . . . 4 (𝜑𝐿 = ((({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}) /s ))
34 eqidd 2738 . . . . . 6 (𝜑 → (({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}) = (({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))
35 eqid 2737 . . . . . . 7 (({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}) = (({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩})
3635imasvalstr 17496 . . . . . 6 (({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}) Struct ⟨1, 12⟩
37 baseid 17250 . . . . . 6 Base = Slot (Base‘ndx)
38 snsstp1 4816 . . . . . . 7 {⟨(Base‘ndx), (𝐵 × 𝑆)⟩} ⊆ {⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩}
39 ssun1 4178 . . . . . . . 8 {⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ⊆ ({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩})
40 ssun1 4178 . . . . . . . 8 ({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ⊆ (({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩})
4139, 40sstri 3993 . . . . . . 7 {⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ⊆ (({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩})
4238, 41sstri 3993 . . . . . 6 {⟨(Base‘ndx), (𝐵 × 𝑆)⟩} ⊆ (({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩})
438fvexi 6920 . . . . . . . 8 𝐵 ∈ V
4443a1i 11 . . . . . . 7 (𝜑𝐵 ∈ V)
4544, 27xpexd 7771 . . . . . 6 (𝜑 → (𝐵 × 𝑆) ∈ V)
46 eqid 2737 . . . . . 6 (Base‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩})) = (Base‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))
4734, 36, 37, 42, 45, 46strfv3 17241 . . . . 5 (𝜑 → (Base‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩})) = (𝐵 × 𝑆))
4847eqcomd 2743 . . . 4 (𝜑 → (𝐵 × 𝑆) = (Base‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩})))
49 eqid 2737 . . . . 5 (1r𝑅) = (1r𝑅)
508, 9, 49, 10, 11, 17, 18, 26, 27erler 33269 . . . 4 (𝜑 Er (𝐵 × 𝑆))
51 tpex 7766 . . . . . . 7 {⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∈ V
52 tpex 7766 . . . . . . 7 {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩} ∈ V
5351, 52unex 7764 . . . . . 6 ({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∈ V
54 tpex 7766 . . . . . 6 {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩} ∈ V
5553, 54unex 7764 . . . . 5 (({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}) ∈ V
5655a1i 11 . . . 4 (𝜑 → (({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}) ∈ V)
5731ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) → 𝑆𝐵)
5857ad2antrr 726 . . . . . . . . . . 11 (((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) → 𝑆𝐵)
5958ad2antrr 726 . . . . . . . . . 10 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → 𝑆𝐵)
60 eqidd 2738 . . . . . . . . . 10 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ⟨(((1st𝑢) · (2nd𝑣)) + ((1st𝑣) · (2nd𝑢))), ((2nd𝑢) · (2nd𝑣))⟩ = ⟨(((1st𝑢) · (2nd𝑣)) + ((1st𝑣) · (2nd𝑢))), ((2nd𝑢) · (2nd𝑣))⟩)
61 eqidd 2738 . . . . . . . . . 10 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ⟨(((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))), ((2nd𝑝) · (2nd𝑞))⟩ = ⟨(((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))), ((2nd𝑝) · (2nd𝑞))⟩)
6226crnggrpd 20244 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Grp)
6362ad6antr 736 . . . . . . . . . . 11 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → 𝑅 ∈ Grp)
6426crngringd 20243 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Ring)
6564ad6antr 736 . . . . . . . . . . . 12 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → 𝑅 ∈ Ring)
66 simplr 769 . . . . . . . . . . . . . . 15 (((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) → 𝑢 𝑝)
678, 18, 57, 66erlcl1 33264 . . . . . . . . . . . . . 14 (((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) → 𝑢 ∈ (𝐵 × 𝑆))
6867ad4antr 732 . . . . . . . . . . . . 13 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → 𝑢 ∈ (𝐵 × 𝑆))
69 xp1st 8046 . . . . . . . . . . . . 13 (𝑢 ∈ (𝐵 × 𝑆) → (1st𝑢) ∈ 𝐵)
7068, 69syl 17 . . . . . . . . . . . 12 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (1st𝑢) ∈ 𝐵)
71 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) → 𝑣 𝑞)
728, 18, 57, 71erlcl1 33264 . . . . . . . . . . . . . . 15 (((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) → 𝑣 ∈ (𝐵 × 𝑆))
7372ad4antr 732 . . . . . . . . . . . . . 14 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → 𝑣 ∈ (𝐵 × 𝑆))
74 xp2nd 8047 . . . . . . . . . . . . . 14 (𝑣 ∈ (𝐵 × 𝑆) → (2nd𝑣) ∈ 𝑆)
7573, 74syl 17 . . . . . . . . . . . . 13 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (2nd𝑣) ∈ 𝑆)
7659, 75sseldd 3984 . . . . . . . . . . . 12 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (2nd𝑣) ∈ 𝐵)
778, 10, 65, 70, 76ringcld 20257 . . . . . . . . . . 11 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((1st𝑢) · (2nd𝑣)) ∈ 𝐵)
78 xp1st 8046 . . . . . . . . . . . . 13 (𝑣 ∈ (𝐵 × 𝑆) → (1st𝑣) ∈ 𝐵)
7973, 78syl 17 . . . . . . . . . . . 12 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (1st𝑣) ∈ 𝐵)
80 xp2nd 8047 . . . . . . . . . . . . . 14 (𝑢 ∈ (𝐵 × 𝑆) → (2nd𝑢) ∈ 𝑆)
8168, 80syl 17 . . . . . . . . . . . . 13 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (2nd𝑢) ∈ 𝑆)
8259, 81sseldd 3984 . . . . . . . . . . . 12 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (2nd𝑢) ∈ 𝐵)
838, 10, 65, 79, 82ringcld 20257 . . . . . . . . . . 11 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((1st𝑣) · (2nd𝑢)) ∈ 𝐵)
848, 12, 63, 77, 83grpcld 18965 . . . . . . . . . 10 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (((1st𝑢) · (2nd𝑣)) + ((1st𝑣) · (2nd𝑢))) ∈ 𝐵)
858, 18, 57, 66erlcl2 33265 . . . . . . . . . . . . . 14 (((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) → 𝑝 ∈ (𝐵 × 𝑆))
8685ad4antr 732 . . . . . . . . . . . . 13 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → 𝑝 ∈ (𝐵 × 𝑆))
87 xp1st 8046 . . . . . . . . . . . . 13 (𝑝 ∈ (𝐵 × 𝑆) → (1st𝑝) ∈ 𝐵)
8886, 87syl 17 . . . . . . . . . . . 12 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (1st𝑝) ∈ 𝐵)
898, 18, 57, 71erlcl2 33265 . . . . . . . . . . . . . . 15 (((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) → 𝑞 ∈ (𝐵 × 𝑆))
9089ad4antr 732 . . . . . . . . . . . . . 14 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → 𝑞 ∈ (𝐵 × 𝑆))
91 xp2nd 8047 . . . . . . . . . . . . . 14 (𝑞 ∈ (𝐵 × 𝑆) → (2nd𝑞) ∈ 𝑆)
9290, 91syl 17 . . . . . . . . . . . . 13 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (2nd𝑞) ∈ 𝑆)
9359, 92sseldd 3984 . . . . . . . . . . . 12 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (2nd𝑞) ∈ 𝐵)
948, 10, 65, 88, 93ringcld 20257 . . . . . . . . . . 11 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((1st𝑝) · (2nd𝑞)) ∈ 𝐵)
95 xp1st 8046 . . . . . . . . . . . . 13 (𝑞 ∈ (𝐵 × 𝑆) → (1st𝑞) ∈ 𝐵)
9690, 95syl 17 . . . . . . . . . . . 12 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (1st𝑞) ∈ 𝐵)
97 xp2nd 8047 . . . . . . . . . . . . . 14 (𝑝 ∈ (𝐵 × 𝑆) → (2nd𝑝) ∈ 𝑆)
9886, 97syl 17 . . . . . . . . . . . . 13 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (2nd𝑝) ∈ 𝑆)
9959, 98sseldd 3984 . . . . . . . . . . . 12 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (2nd𝑝) ∈ 𝐵)
1008, 10, 65, 96, 99ringcld 20257 . . . . . . . . . . 11 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((1st𝑞) · (2nd𝑝)) ∈ 𝐵)
1018, 12, 63, 94, 100grpcld 18965 . . . . . . . . . 10 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))) ∈ 𝐵)
10227ad6antr 736 . . . . . . . . . . 11 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
10328, 10mgpplusg 20141 . . . . . . . . . . . 12 · = (+g‘(mulGrp‘𝑅))
104103submcl 18825 . . . . . . . . . . 11 ((𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) ∧ (2nd𝑢) ∈ 𝑆 ∧ (2nd𝑣) ∈ 𝑆) → ((2nd𝑢) · (2nd𝑣)) ∈ 𝑆)
105102, 81, 75, 104syl3anc 1373 . . . . . . . . . 10 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((2nd𝑢) · (2nd𝑣)) ∈ 𝑆)
106103submcl 18825 . . . . . . . . . . 11 ((𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) ∧ (2nd𝑝) ∈ 𝑆 ∧ (2nd𝑞) ∈ 𝑆) → ((2nd𝑝) · (2nd𝑞)) ∈ 𝑆)
107102, 98, 92, 106syl3anc 1373 . . . . . . . . . 10 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((2nd𝑝) · (2nd𝑞)) ∈ 𝑆)
108 simp-4r 784 . . . . . . . . . . 11 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → 𝑓𝑆)
109 simplr 769 . . . . . . . . . . 11 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → 𝑔𝑆)
110103submcl 18825 . . . . . . . . . . 11 ((𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) ∧ 𝑓𝑆𝑔𝑆) → (𝑓 · 𝑔) ∈ 𝑆)
111102, 108, 109, 110syl3anc 1373 . . . . . . . . . 10 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (𝑓 · 𝑔) ∈ 𝑆)
11259, 107sseldd 3984 . . . . . . . . . . . . . 14 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((2nd𝑝) · (2nd𝑞)) ∈ 𝐵)
1138, 12, 10ringdir 20259 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (((1st𝑢) · (2nd𝑣)) ∈ 𝐵 ∧ ((1st𝑣) · (2nd𝑢)) ∈ 𝐵 ∧ ((2nd𝑝) · (2nd𝑞)) ∈ 𝐵)) → ((((1st𝑢) · (2nd𝑣)) + ((1st𝑣) · (2nd𝑢))) · ((2nd𝑝) · (2nd𝑞))) = ((((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞))) + (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞)))))
11465, 77, 83, 112, 113syl13anc 1374 . . . . . . . . . . . . 13 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((((1st𝑢) · (2nd𝑣)) + ((1st𝑣) · (2nd𝑢))) · ((2nd𝑝) · (2nd𝑞))) = ((((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞))) + (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞)))))
11559, 105sseldd 3984 . . . . . . . . . . . . . 14 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((2nd𝑢) · (2nd𝑣)) ∈ 𝐵)
1168, 12, 10ringdir 20259 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (((1st𝑝) · (2nd𝑞)) ∈ 𝐵 ∧ ((1st𝑞) · (2nd𝑝)) ∈ 𝐵 ∧ ((2nd𝑢) · (2nd𝑣)) ∈ 𝐵)) → ((((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))) · ((2nd𝑢) · (2nd𝑣))) = ((((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣))) + (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣)))))
11765, 94, 100, 115, 116syl13anc 1374 . . . . . . . . . . . . 13 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))) · ((2nd𝑢) · (2nd𝑣))) = ((((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣))) + (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣)))))
118114, 117oveq12d 7449 . . . . . . . . . . . 12 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (((((1st𝑢) · (2nd𝑣)) + ((1st𝑣) · (2nd𝑢))) · ((2nd𝑝) · (2nd𝑞)))(-g𝑅)((((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))) · ((2nd𝑢) · (2nd𝑣)))) = (((((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞))) + (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞))))(-g𝑅)((((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣))) + (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣))))))
119118oveq2d 7447 . . . . . . . . . . 11 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑓 · 𝑔) · (((((1st𝑢) · (2nd𝑣)) + ((1st𝑣) · (2nd𝑢))) · ((2nd𝑝) · (2nd𝑞)))(-g𝑅)((((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))) · ((2nd𝑢) · (2nd𝑣))))) = ((𝑓 · 𝑔) · (((((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞))) + (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞))))(-g𝑅)((((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣))) + (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣)))))))
12059, 108sseldd 3984 . . . . . . . . . . . . 13 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → 𝑓𝐵)
12159, 109sseldd 3984 . . . . . . . . . . . . 13 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → 𝑔𝐵)
1228, 10, 65, 120, 121ringcld 20257 . . . . . . . . . . . 12 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (𝑓 · 𝑔) ∈ 𝐵)
1238, 10, 65, 77, 112ringcld 20257 . . . . . . . . . . . . 13 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞))) ∈ 𝐵)
1248, 10, 65, 83, 112ringcld 20257 . . . . . . . . . . . . 13 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞))) ∈ 𝐵)
1258, 12, 63, 123, 124grpcld 18965 . . . . . . . . . . . 12 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞))) + (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞)))) ∈ 𝐵)
1268, 10, 65, 94, 115ringcld 20257 . . . . . . . . . . . . 13 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣))) ∈ 𝐵)
1278, 10, 65, 100, 115ringcld 20257 . . . . . . . . . . . . 13 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣))) ∈ 𝐵)
1288, 12, 63, 126, 127grpcld 18965 . . . . . . . . . . . 12 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣))) + (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣)))) ∈ 𝐵)
1298, 10, 11, 65, 122, 125, 128ringsubdi 20304 . . . . . . . . . . 11 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑓 · 𝑔) · (((((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞))) + (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞))))(-g𝑅)((((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣))) + (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣)))))) = (((𝑓 · 𝑔) · ((((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞))) + (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞)))))(-g𝑅)((𝑓 · 𝑔) · ((((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣))) + (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣)))))))
1308, 12, 10ringdi 20258 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ ((𝑓 · 𝑔) ∈ 𝐵 ∧ (((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞))) ∈ 𝐵 ∧ (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞))) ∈ 𝐵)) → ((𝑓 · 𝑔) · ((((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞))) + (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞))))) = (((𝑓 · 𝑔) · (((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞)))) + ((𝑓 · 𝑔) · (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞))))))
13165, 122, 123, 124, 130syl13anc 1374 . . . . . . . . . . . . 13 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑓 · 𝑔) · ((((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞))) + (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞))))) = (((𝑓 · 𝑔) · (((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞)))) + ((𝑓 · 𝑔) · (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞))))))
1328, 12, 10ringdi 20258 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ ((𝑓 · 𝑔) ∈ 𝐵 ∧ (((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣))) ∈ 𝐵 ∧ (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣))) ∈ 𝐵)) → ((𝑓 · 𝑔) · ((((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣))) + (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣))))) = (((𝑓 · 𝑔) · (((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣)))) + ((𝑓 · 𝑔) · (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣))))))
13365, 122, 126, 127, 132syl13anc 1374 . . . . . . . . . . . . 13 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑓 · 𝑔) · ((((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣))) + (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣))))) = (((𝑓 · 𝑔) · (((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣)))) + ((𝑓 · 𝑔) · (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣))))))
134131, 133oveq12d 7449 . . . . . . . . . . . 12 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (((𝑓 · 𝑔) · ((((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞))) + (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞)))))(-g𝑅)((𝑓 · 𝑔) · ((((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣))) + (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣)))))) = ((((𝑓 · 𝑔) · (((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞)))) + ((𝑓 · 𝑔) · (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞)))))(-g𝑅)(((𝑓 · 𝑔) · (((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣)))) + ((𝑓 · 𝑔) · (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣)))))))
13565ringabld 20280 . . . . . . . . . . . . 13 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → 𝑅 ∈ Abel)
1368, 10, 65, 122, 123ringcld 20257 . . . . . . . . . . . . 13 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑓 · 𝑔) · (((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞)))) ∈ 𝐵)
1378, 10, 65, 122, 124ringcld 20257 . . . . . . . . . . . . 13 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑓 · 𝑔) · (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞)))) ∈ 𝐵)
1388, 10, 65, 122, 126ringcld 20257 . . . . . . . . . . . . 13 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑓 · 𝑔) · (((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣)))) ∈ 𝐵)
1398, 10, 65, 122, 127ringcld 20257 . . . . . . . . . . . . 13 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑓 · 𝑔) · (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣)))) ∈ 𝐵)
1408, 12, 11ablsub4 19828 . . . . . . . . . . . . 13 ((𝑅 ∈ Abel ∧ (((𝑓 · 𝑔) · (((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞)))) ∈ 𝐵 ∧ ((𝑓 · 𝑔) · (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞)))) ∈ 𝐵) ∧ (((𝑓 · 𝑔) · (((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣)))) ∈ 𝐵 ∧ ((𝑓 · 𝑔) · (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣)))) ∈ 𝐵)) → ((((𝑓 · 𝑔) · (((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞)))) + ((𝑓 · 𝑔) · (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞)))))(-g𝑅)(((𝑓 · 𝑔) · (((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣)))) + ((𝑓 · 𝑔) · (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣)))))) = ((((𝑓 · 𝑔) · (((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞))))(-g𝑅)((𝑓 · 𝑔) · (((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣))))) + (((𝑓 · 𝑔) · (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞))))(-g𝑅)((𝑓 · 𝑔) · (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣)))))))
141135, 136, 137, 138, 139, 140syl122anc 1381 . . . . . . . . . . . 12 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((((𝑓 · 𝑔) · (((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞)))) + ((𝑓 · 𝑔) · (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞)))))(-g𝑅)(((𝑓 · 𝑔) · (((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣)))) + ((𝑓 · 𝑔) · (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣)))))) = ((((𝑓 · 𝑔) · (((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞))))(-g𝑅)((𝑓 · 𝑔) · (((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣))))) + (((𝑓 · 𝑔) · (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞))))(-g𝑅)((𝑓 · 𝑔) · (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣)))))))
14228crngmgp 20238 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
14326, 142syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
144143ad6antr 736 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (mulGrp‘𝑅) ∈ CMnd)
14529, 103, 144, 120, 121, 70, 76, 99, 93cmn246135 33038 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑓 · 𝑔) · (((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞)))) = ((𝑔 · ((2nd𝑣) · (2nd𝑞))) · (𝑓 · ((1st𝑢) · (2nd𝑝)))))
14629, 103, 144, 120, 121, 88, 93, 82, 76cmn246135 33038 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑓 · 𝑔) · (((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣)))) = ((𝑔 · ((2nd𝑞) · (2nd𝑣))) · (𝑓 · ((1st𝑝) · (2nd𝑢)))))
14729, 103cmncom 19816 . . . . . . . . . . . . . . . . . . . 20 (((mulGrp‘𝑅) ∈ CMnd ∧ (2nd𝑣) ∈ 𝐵 ∧ (2nd𝑞) ∈ 𝐵) → ((2nd𝑣) · (2nd𝑞)) = ((2nd𝑞) · (2nd𝑣)))
148144, 76, 93, 147syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((2nd𝑣) · (2nd𝑞)) = ((2nd𝑞) · (2nd𝑣)))
149148oveq2d 7447 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (𝑔 · ((2nd𝑣) · (2nd𝑞))) = (𝑔 · ((2nd𝑞) · (2nd𝑣))))
150149oveq1d 7446 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑔 · ((2nd𝑣) · (2nd𝑞))) · (𝑓 · ((1st𝑝) · (2nd𝑢)))) = ((𝑔 · ((2nd𝑞) · (2nd𝑣))) · (𝑓 · ((1st𝑝) · (2nd𝑢)))))
151146, 150eqtr4d 2780 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑓 · 𝑔) · (((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣)))) = ((𝑔 · ((2nd𝑣) · (2nd𝑞))) · (𝑓 · ((1st𝑝) · (2nd𝑢)))))
152145, 151oveq12d 7449 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (((𝑓 · 𝑔) · (((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞))))(-g𝑅)((𝑓 · 𝑔) · (((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣))))) = (((𝑔 · ((2nd𝑣) · (2nd𝑞))) · (𝑓 · ((1st𝑢) · (2nd𝑝))))(-g𝑅)((𝑔 · ((2nd𝑣) · (2nd𝑞))) · (𝑓 · ((1st𝑝) · (2nd𝑢))))))
1538, 10, 65, 70, 99ringcld 20257 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((1st𝑢) · (2nd𝑝)) ∈ 𝐵)
1548, 10, 65, 88, 82ringcld 20257 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((1st𝑝) · (2nd𝑢)) ∈ 𝐵)
1558, 10, 11, 65, 120, 153, 154ringsubdi 20304 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = ((𝑓 · ((1st𝑢) · (2nd𝑝)))(-g𝑅)(𝑓 · ((1st𝑝) · (2nd𝑢)))))
156 simpllr 776 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅))
157155, 156eqtr3d 2779 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑓 · ((1st𝑢) · (2nd𝑝)))(-g𝑅)(𝑓 · ((1st𝑝) · (2nd𝑢)))) = (0g𝑅))
158157oveq2d 7447 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑔 · ((2nd𝑣) · (2nd𝑞))) · ((𝑓 · ((1st𝑢) · (2nd𝑝)))(-g𝑅)(𝑓 · ((1st𝑝) · (2nd𝑢))))) = ((𝑔 · ((2nd𝑣) · (2nd𝑞))) · (0g𝑅)))
1598, 10, 65, 76, 93ringcld 20257 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((2nd𝑣) · (2nd𝑞)) ∈ 𝐵)
1608, 10, 65, 121, 159ringcld 20257 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (𝑔 · ((2nd𝑣) · (2nd𝑞))) ∈ 𝐵)
1618, 10, 65, 120, 153ringcld 20257 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (𝑓 · ((1st𝑢) · (2nd𝑝))) ∈ 𝐵)
1628, 10, 65, 120, 154ringcld 20257 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (𝑓 · ((1st𝑝) · (2nd𝑢))) ∈ 𝐵)
1638, 10, 11, 65, 160, 161, 162ringsubdi 20304 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑔 · ((2nd𝑣) · (2nd𝑞))) · ((𝑓 · ((1st𝑢) · (2nd𝑝)))(-g𝑅)(𝑓 · ((1st𝑝) · (2nd𝑢))))) = (((𝑔 · ((2nd𝑣) · (2nd𝑞))) · (𝑓 · ((1st𝑢) · (2nd𝑝))))(-g𝑅)((𝑔 · ((2nd𝑣) · (2nd𝑞))) · (𝑓 · ((1st𝑝) · (2nd𝑢))))))
1648, 10, 9, 65, 160ringrzd 20293 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑔 · ((2nd𝑣) · (2nd𝑞))) · (0g𝑅)) = (0g𝑅))
165158, 163, 1643eqtr3d 2785 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (((𝑔 · ((2nd𝑣) · (2nd𝑞))) · (𝑓 · ((1st𝑢) · (2nd𝑝))))(-g𝑅)((𝑔 · ((2nd𝑣) · (2nd𝑞))) · (𝑓 · ((1st𝑝) · (2nd𝑢))))) = (0g𝑅))
166152, 165eqtrd 2777 . . . . . . . . . . . . . 14 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (((𝑓 · 𝑔) · (((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞))))(-g𝑅)((𝑓 · 𝑔) · (((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣))))) = (0g𝑅))
16729, 103, 144, 120, 121, 79, 82, 99, 93cmn145236 33039 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑓 · 𝑔) · (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞)))) = ((𝑓 · ((2nd𝑢) · (2nd𝑝))) · (𝑔 · ((1st𝑣) · (2nd𝑞)))))
16829, 103, 144, 120, 121, 96, 99, 82, 76cmn145236 33039 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑓 · 𝑔) · (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣)))) = ((𝑓 · ((2nd𝑝) · (2nd𝑢))) · (𝑔 · ((1st𝑞) · (2nd𝑣)))))
16929, 103cmncom 19816 . . . . . . . . . . . . . . . . . . . 20 (((mulGrp‘𝑅) ∈ CMnd ∧ (2nd𝑝) ∈ 𝐵 ∧ (2nd𝑢) ∈ 𝐵) → ((2nd𝑝) · (2nd𝑢)) = ((2nd𝑢) · (2nd𝑝)))
170144, 99, 82, 169syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((2nd𝑝) · (2nd𝑢)) = ((2nd𝑢) · (2nd𝑝)))
171170oveq2d 7447 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (𝑓 · ((2nd𝑝) · (2nd𝑢))) = (𝑓 · ((2nd𝑢) · (2nd𝑝))))
172171oveq1d 7446 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑓 · ((2nd𝑝) · (2nd𝑢))) · (𝑔 · ((1st𝑞) · (2nd𝑣)))) = ((𝑓 · ((2nd𝑢) · (2nd𝑝))) · (𝑔 · ((1st𝑞) · (2nd𝑣)))))
173168, 172eqtrd 2777 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑓 · 𝑔) · (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣)))) = ((𝑓 · ((2nd𝑢) · (2nd𝑝))) · (𝑔 · ((1st𝑞) · (2nd𝑣)))))
174167, 173oveq12d 7449 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (((𝑓 · 𝑔) · (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞))))(-g𝑅)((𝑓 · 𝑔) · (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣))))) = (((𝑓 · ((2nd𝑢) · (2nd𝑝))) · (𝑔 · ((1st𝑣) · (2nd𝑞))))(-g𝑅)((𝑓 · ((2nd𝑢) · (2nd𝑝))) · (𝑔 · ((1st𝑞) · (2nd𝑣))))))
1758, 10, 65, 79, 93ringcld 20257 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((1st𝑣) · (2nd𝑞)) ∈ 𝐵)
1768, 10, 65, 96, 76ringcld 20257 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((1st𝑞) · (2nd𝑣)) ∈ 𝐵)
1778, 10, 11, 65, 121, 175, 176ringsubdi 20304 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = ((𝑔 · ((1st𝑣) · (2nd𝑞)))(-g𝑅)(𝑔 · ((1st𝑞) · (2nd𝑣)))))
178 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅))
179177, 178eqtr3d 2779 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑔 · ((1st𝑣) · (2nd𝑞)))(-g𝑅)(𝑔 · ((1st𝑞) · (2nd𝑣)))) = (0g𝑅))
180179oveq2d 7447 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑓 · ((2nd𝑢) · (2nd𝑝))) · ((𝑔 · ((1st𝑣) · (2nd𝑞)))(-g𝑅)(𝑔 · ((1st𝑞) · (2nd𝑣))))) = ((𝑓 · ((2nd𝑢) · (2nd𝑝))) · (0g𝑅)))
1818, 10, 65, 82, 99ringcld 20257 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((2nd𝑢) · (2nd𝑝)) ∈ 𝐵)
1828, 10, 65, 120, 181ringcld 20257 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (𝑓 · ((2nd𝑢) · (2nd𝑝))) ∈ 𝐵)
1838, 10, 65, 121, 175ringcld 20257 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (𝑔 · ((1st𝑣) · (2nd𝑞))) ∈ 𝐵)
1848, 10, 65, 121, 176ringcld 20257 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (𝑔 · ((1st𝑞) · (2nd𝑣))) ∈ 𝐵)
1858, 10, 11, 65, 182, 183, 184ringsubdi 20304 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑓 · ((2nd𝑢) · (2nd𝑝))) · ((𝑔 · ((1st𝑣) · (2nd𝑞)))(-g𝑅)(𝑔 · ((1st𝑞) · (2nd𝑣))))) = (((𝑓 · ((2nd𝑢) · (2nd𝑝))) · (𝑔 · ((1st𝑣) · (2nd𝑞))))(-g𝑅)((𝑓 · ((2nd𝑢) · (2nd𝑝))) · (𝑔 · ((1st𝑞) · (2nd𝑣))))))
1868, 10, 9, 65, 182ringrzd 20293 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑓 · ((2nd𝑢) · (2nd𝑝))) · (0g𝑅)) = (0g𝑅))
187180, 185, 1863eqtr3d 2785 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (((𝑓 · ((2nd𝑢) · (2nd𝑝))) · (𝑔 · ((1st𝑣) · (2nd𝑞))))(-g𝑅)((𝑓 · ((2nd𝑢) · (2nd𝑝))) · (𝑔 · ((1st𝑞) · (2nd𝑣))))) = (0g𝑅))
188174, 187eqtrd 2777 . . . . . . . . . . . . . 14 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (((𝑓 · 𝑔) · (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞))))(-g𝑅)((𝑓 · 𝑔) · (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣))))) = (0g𝑅))
189166, 188oveq12d 7449 . . . . . . . . . . . . 13 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((((𝑓 · 𝑔) · (((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞))))(-g𝑅)((𝑓 · 𝑔) · (((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣))))) + (((𝑓 · 𝑔) · (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞))))(-g𝑅)((𝑓 · 𝑔) · (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣)))))) = ((0g𝑅) + (0g𝑅)))
1908, 9grpidcl 18983 . . . . . . . . . . . . . . 15 (𝑅 ∈ Grp → (0g𝑅) ∈ 𝐵)
19163, 190syl 17 . . . . . . . . . . . . . 14 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (0g𝑅) ∈ 𝐵)
1928, 12, 9, 63, 191grplidd 18987 . . . . . . . . . . . . 13 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((0g𝑅) + (0g𝑅)) = (0g𝑅))
193189, 192eqtrd 2777 . . . . . . . . . . . 12 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((((𝑓 · 𝑔) · (((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞))))(-g𝑅)((𝑓 · 𝑔) · (((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣))))) + (((𝑓 · 𝑔) · (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞))))(-g𝑅)((𝑓 · 𝑔) · (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣)))))) = (0g𝑅))
194134, 141, 1933eqtrd 2781 . . . . . . . . . . 11 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → (((𝑓 · 𝑔) · ((((1st𝑢) · (2nd𝑣)) · ((2nd𝑝) · (2nd𝑞))) + (((1st𝑣) · (2nd𝑢)) · ((2nd𝑝) · (2nd𝑞)))))(-g𝑅)((𝑓 · 𝑔) · ((((1st𝑝) · (2nd𝑞)) · ((2nd𝑢) · (2nd𝑣))) + (((1st𝑞) · (2nd𝑝)) · ((2nd𝑢) · (2nd𝑣)))))) = (0g𝑅))
195119, 129, 1943eqtrd 2781 . . . . . . . . . 10 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ((𝑓 · 𝑔) · (((((1st𝑢) · (2nd𝑣)) + ((1st𝑣) · (2nd𝑢))) · ((2nd𝑝) · (2nd𝑞)))(-g𝑅)((((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))) · ((2nd𝑢) · (2nd𝑣))))) = (0g𝑅))
1968, 18, 59, 9, 10, 11, 60, 61, 84, 101, 105, 107, 111, 195erlbrd 33267 . . . . . . . . 9 (((((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) ∧ 𝑔𝑆) ∧ (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅)) → ⟨(((1st𝑢) · (2nd𝑣)) + ((1st𝑣) · (2nd𝑢))), ((2nd𝑢) · (2nd𝑣))⟩ ⟨(((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))), ((2nd𝑝) · (2nd𝑞))⟩)
19771ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) → 𝑣 𝑞)
1988, 18, 58, 9, 10, 11, 197erldi 33266 . . . . . . . . 9 (((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) → ∃𝑔𝑆 (𝑔 · (((1st𝑣) · (2nd𝑞))(-g𝑅)((1st𝑞) · (2nd𝑣)))) = (0g𝑅))
199196, 198r19.29a 3162 . . . . . . . 8 (((((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) ∧ 𝑓𝑆) ∧ (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅)) → ⟨(((1st𝑢) · (2nd𝑣)) + ((1st𝑣) · (2nd𝑢))), ((2nd𝑢) · (2nd𝑣))⟩ ⟨(((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))), ((2nd𝑝) · (2nd𝑞))⟩)
2008, 18, 57, 9, 10, 11, 66erldi 33266 . . . . . . . 8 (((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) → ∃𝑓𝑆 (𝑓 · (((1st𝑢) · (2nd𝑝))(-g𝑅)((1st𝑝) · (2nd𝑢)))) = (0g𝑅))
201199, 200r19.29a 3162 . . . . . . 7 (((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) → ⟨(((1st𝑢) · (2nd𝑣)) + ((1st𝑣) · (2nd𝑢))), ((2nd𝑢) · (2nd𝑣))⟩ ⟨(((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))), ((2nd𝑝) · (2nd𝑞))⟩)
202 plusgid 17324 . . . . . . . . . . . 12 +g = Slot (+g‘ndx)
203 snsstp2 4817 . . . . . . . . . . . . 13 {⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ⊆ {⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩}
204203, 41sstri 3993 . . . . . . . . . . . 12 {⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ⊆ (({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩})
20521mpoexg 8101 . . . . . . . . . . . . 13 (((𝐵 × 𝑆) ∈ V ∧ (𝐵 × 𝑆) ∈ V) → (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩) ∈ V)
20645, 45, 205syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩) ∈ V)
207 eqid 2737 . . . . . . . . . . . 12 (+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩})) = (+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))
20834, 36, 202, 204, 206, 207strfv3 17241 . . . . . . . . . . 11 (𝜑 → (+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩})) = (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩))
209208ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) → (+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩})) = (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩))
210209oveqd 7448 . . . . . . . . 9 (((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) → (𝑢(+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))𝑣) = (𝑢(𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)𝑣))
211 opex 5469 . . . . . . . . . . 11 ⟨(((1st𝑢) · (2nd𝑣)) + ((1st𝑣) · (2nd𝑢))), ((2nd𝑢) · (2nd𝑣))⟩ ∈ V
212211a1i 11 . . . . . . . . . 10 (((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) → ⟨(((1st𝑢) · (2nd𝑣)) + ((1st𝑣) · (2nd𝑢))), ((2nd𝑢) · (2nd𝑣))⟩ ∈ V)
213 simpl 482 . . . . . . . . . . . . . . 15 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑎 = 𝑢)
214213fveq2d 6910 . . . . . . . . . . . . . 14 ((𝑎 = 𝑢𝑏 = 𝑣) → (1st𝑎) = (1st𝑢))
215 simpr 484 . . . . . . . . . . . . . . 15 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑏 = 𝑣)
216215fveq2d 6910 . . . . . . . . . . . . . 14 ((𝑎 = 𝑢𝑏 = 𝑣) → (2nd𝑏) = (2nd𝑣))
217214, 216oveq12d 7449 . . . . . . . . . . . . 13 ((𝑎 = 𝑢𝑏 = 𝑣) → ((1st𝑎) · (2nd𝑏)) = ((1st𝑢) · (2nd𝑣)))
218215fveq2d 6910 . . . . . . . . . . . . . 14 ((𝑎 = 𝑢𝑏 = 𝑣) → (1st𝑏) = (1st𝑣))
219213fveq2d 6910 . . . . . . . . . . . . . 14 ((𝑎 = 𝑢𝑏 = 𝑣) → (2nd𝑎) = (2nd𝑢))
220218, 219oveq12d 7449 . . . . . . . . . . . . 13 ((𝑎 = 𝑢𝑏 = 𝑣) → ((1st𝑏) · (2nd𝑎)) = ((1st𝑣) · (2nd𝑢)))
221217, 220oveq12d 7449 . . . . . . . . . . . 12 ((𝑎 = 𝑢𝑏 = 𝑣) → (((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))) = (((1st𝑢) · (2nd𝑣)) + ((1st𝑣) · (2nd𝑢))))
222219, 216oveq12d 7449 . . . . . . . . . . . 12 ((𝑎 = 𝑢𝑏 = 𝑣) → ((2nd𝑎) · (2nd𝑏)) = ((2nd𝑢) · (2nd𝑣)))
223221, 222opeq12d 4881 . . . . . . . . . . 11 ((𝑎 = 𝑢𝑏 = 𝑣) → ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩ = ⟨(((1st𝑢) · (2nd𝑣)) + ((1st𝑣) · (2nd𝑢))), ((2nd𝑢) · (2nd𝑣))⟩)
224223, 21ovmpoga 7587 . . . . . . . . . 10 ((𝑢 ∈ (𝐵 × 𝑆) ∧ 𝑣 ∈ (𝐵 × 𝑆) ∧ ⟨(((1st𝑢) · (2nd𝑣)) + ((1st𝑣) · (2nd𝑢))), ((2nd𝑢) · (2nd𝑣))⟩ ∈ V) → (𝑢(𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)𝑣) = ⟨(((1st𝑢) · (2nd𝑣)) + ((1st𝑣) · (2nd𝑢))), ((2nd𝑢) · (2nd𝑣))⟩)
22567, 72, 212, 224syl3anc 1373 . . . . . . . . 9 (((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) → (𝑢(𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)𝑣) = ⟨(((1st𝑢) · (2nd𝑣)) + ((1st𝑣) · (2nd𝑢))), ((2nd𝑢) · (2nd𝑣))⟩)
226210, 225eqtrd 2777 . . . . . . . 8 (((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) → (𝑢(+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))𝑣) = ⟨(((1st𝑢) · (2nd𝑣)) + ((1st𝑣) · (2nd𝑢))), ((2nd𝑢) · (2nd𝑣))⟩)
227209oveqd 7448 . . . . . . . . 9 (((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) → (𝑝(+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))𝑞) = (𝑝(𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)𝑞))
228 opex 5469 . . . . . . . . . . 11 ⟨(((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))), ((2nd𝑝) · (2nd𝑞))⟩ ∈ V
229228a1i 11 . . . . . . . . . 10 (((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) → ⟨(((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))), ((2nd𝑝) · (2nd𝑞))⟩ ∈ V)
230 simpl 482 . . . . . . . . . . . . . . 15 ((𝑎 = 𝑝𝑏 = 𝑞) → 𝑎 = 𝑝)
231230fveq2d 6910 . . . . . . . . . . . . . 14 ((𝑎 = 𝑝𝑏 = 𝑞) → (1st𝑎) = (1st𝑝))
232 simpr 484 . . . . . . . . . . . . . . 15 ((𝑎 = 𝑝𝑏 = 𝑞) → 𝑏 = 𝑞)
233232fveq2d 6910 . . . . . . . . . . . . . 14 ((𝑎 = 𝑝𝑏 = 𝑞) → (2nd𝑏) = (2nd𝑞))
234231, 233oveq12d 7449 . . . . . . . . . . . . 13 ((𝑎 = 𝑝𝑏 = 𝑞) → ((1st𝑎) · (2nd𝑏)) = ((1st𝑝) · (2nd𝑞)))
235232fveq2d 6910 . . . . . . . . . . . . . 14 ((𝑎 = 𝑝𝑏 = 𝑞) → (1st𝑏) = (1st𝑞))
236230fveq2d 6910 . . . . . . . . . . . . . 14 ((𝑎 = 𝑝𝑏 = 𝑞) → (2nd𝑎) = (2nd𝑝))
237235, 236oveq12d 7449 . . . . . . . . . . . . 13 ((𝑎 = 𝑝𝑏 = 𝑞) → ((1st𝑏) · (2nd𝑎)) = ((1st𝑞) · (2nd𝑝)))
238234, 237oveq12d 7449 . . . . . . . . . . . 12 ((𝑎 = 𝑝𝑏 = 𝑞) → (((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))) = (((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))))
239236, 233oveq12d 7449 . . . . . . . . . . . 12 ((𝑎 = 𝑝𝑏 = 𝑞) → ((2nd𝑎) · (2nd𝑏)) = ((2nd𝑝) · (2nd𝑞)))
240238, 239opeq12d 4881 . . . . . . . . . . 11 ((𝑎 = 𝑝𝑏 = 𝑞) → ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩ = ⟨(((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))), ((2nd𝑝) · (2nd𝑞))⟩)
241240, 21ovmpoga 7587 . . . . . . . . . 10 ((𝑝 ∈ (𝐵 × 𝑆) ∧ 𝑞 ∈ (𝐵 × 𝑆) ∧ ⟨(((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))), ((2nd𝑝) · (2nd𝑞))⟩ ∈ V) → (𝑝(𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)𝑞) = ⟨(((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))), ((2nd𝑝) · (2nd𝑞))⟩)
24285, 89, 229, 241syl3anc 1373 . . . . . . . . 9 (((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) → (𝑝(𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)𝑞) = ⟨(((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))), ((2nd𝑝) · (2nd𝑞))⟩)
243227, 242eqtrd 2777 . . . . . . . 8 (((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) → (𝑝(+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))𝑞) = ⟨(((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))), ((2nd𝑝) · (2nd𝑞))⟩)
244226, 243breq12d 5156 . . . . . . 7 (((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) → ((𝑢(+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))𝑣) (𝑝(+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))𝑞) ↔ ⟨(((1st𝑢) · (2nd𝑣)) + ((1st𝑣) · (2nd𝑢))), ((2nd𝑢) · (2nd𝑣))⟩ ⟨(((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))), ((2nd𝑝) · (2nd𝑞))⟩))
245201, 244mpbird 257 . . . . . 6 (((𝜑𝑢 𝑝) ∧ 𝑣 𝑞) → (𝑢(+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))𝑣) (𝑝(+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))𝑞))
246245anasss 466 . . . . 5 ((𝜑 ∧ (𝑢 𝑝𝑣 𝑞)) → (𝑢(+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))𝑣) (𝑝(+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))𝑞))
247246ex 412 . . . 4 (𝜑 → ((𝑢 𝑝𝑣 𝑞) → (𝑢(+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))𝑣) (𝑝(+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))𝑞)))
248208oveqd 7448 . . . . . . 7 (𝜑 → (𝑝(+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))𝑞) = (𝑝(𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)𝑞))
249248ad2antrr 726 . . . . . 6 (((𝜑𝑝 ∈ (𝐵 × 𝑆)) ∧ 𝑞 ∈ (𝐵 × 𝑆)) → (𝑝(+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))𝑞) = (𝑝(𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)𝑞))
250 simplr 769 . . . . . . . 8 (((𝜑𝑝 ∈ (𝐵 × 𝑆)) ∧ 𝑞 ∈ (𝐵 × 𝑆)) → 𝑝 ∈ (𝐵 × 𝑆))
251 simpr 484 . . . . . . . 8 (((𝜑𝑝 ∈ (𝐵 × 𝑆)) ∧ 𝑞 ∈ (𝐵 × 𝑆)) → 𝑞 ∈ (𝐵 × 𝑆))
252228a1i 11 . . . . . . . 8 (((𝜑𝑝 ∈ (𝐵 × 𝑆)) ∧ 𝑞 ∈ (𝐵 × 𝑆)) → ⟨(((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))), ((2nd𝑝) · (2nd𝑞))⟩ ∈ V)
253250, 251, 252, 241syl3anc 1373 . . . . . . 7 (((𝜑𝑝 ∈ (𝐵 × 𝑆)) ∧ 𝑞 ∈ (𝐵 × 𝑆)) → (𝑝(𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)𝑞) = ⟨(((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))), ((2nd𝑝) · (2nd𝑞))⟩)
25462ad2antrr 726 . . . . . . . . 9 (((𝜑𝑝 ∈ (𝐵 × 𝑆)) ∧ 𝑞 ∈ (𝐵 × 𝑆)) → 𝑅 ∈ Grp)
25564ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑝 ∈ (𝐵 × 𝑆)) ∧ 𝑞 ∈ (𝐵 × 𝑆)) → 𝑅 ∈ Ring)
256250, 87syl 17 . . . . . . . . . 10 (((𝜑𝑝 ∈ (𝐵 × 𝑆)) ∧ 𝑞 ∈ (𝐵 × 𝑆)) → (1st𝑝) ∈ 𝐵)
25731ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (𝐵 × 𝑆)) ∧ 𝑞 ∈ (𝐵 × 𝑆)) → 𝑆𝐵)
258251, 91syl 17 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (𝐵 × 𝑆)) ∧ 𝑞 ∈ (𝐵 × 𝑆)) → (2nd𝑞) ∈ 𝑆)
259257, 258sseldd 3984 . . . . . . . . . 10 (((𝜑𝑝 ∈ (𝐵 × 𝑆)) ∧ 𝑞 ∈ (𝐵 × 𝑆)) → (2nd𝑞) ∈ 𝐵)
2608, 10, 255, 256, 259ringcld 20257 . . . . . . . . 9 (((𝜑𝑝 ∈ (𝐵 × 𝑆)) ∧ 𝑞 ∈ (𝐵 × 𝑆)) → ((1st𝑝) · (2nd𝑞)) ∈ 𝐵)
261251, 95syl 17 . . . . . . . . . 10 (((𝜑𝑝 ∈ (𝐵 × 𝑆)) ∧ 𝑞 ∈ (𝐵 × 𝑆)) → (1st𝑞) ∈ 𝐵)
262250, 97syl 17 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (𝐵 × 𝑆)) ∧ 𝑞 ∈ (𝐵 × 𝑆)) → (2nd𝑝) ∈ 𝑆)
263257, 262sseldd 3984 . . . . . . . . . 10 (((𝜑𝑝 ∈ (𝐵 × 𝑆)) ∧ 𝑞 ∈ (𝐵 × 𝑆)) → (2nd𝑝) ∈ 𝐵)
2648, 10, 255, 261, 263ringcld 20257 . . . . . . . . 9 (((𝜑𝑝 ∈ (𝐵 × 𝑆)) ∧ 𝑞 ∈ (𝐵 × 𝑆)) → ((1st𝑞) · (2nd𝑝)) ∈ 𝐵)
2658, 12, 254, 260, 264grpcld 18965 . . . . . . . 8 (((𝜑𝑝 ∈ (𝐵 × 𝑆)) ∧ 𝑞 ∈ (𝐵 × 𝑆)) → (((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))) ∈ 𝐵)
26627ad2antrr 726 . . . . . . . . 9 (((𝜑𝑝 ∈ (𝐵 × 𝑆)) ∧ 𝑞 ∈ (𝐵 × 𝑆)) → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
267266, 262, 258, 106syl3anc 1373 . . . . . . . 8 (((𝜑𝑝 ∈ (𝐵 × 𝑆)) ∧ 𝑞 ∈ (𝐵 × 𝑆)) → ((2nd𝑝) · (2nd𝑞)) ∈ 𝑆)
268265, 267opelxpd 5724 . . . . . . 7 (((𝜑𝑝 ∈ (𝐵 × 𝑆)) ∧ 𝑞 ∈ (𝐵 × 𝑆)) → ⟨(((1st𝑝) · (2nd𝑞)) + ((1st𝑞) · (2nd𝑝))), ((2nd𝑝) · (2nd𝑞))⟩ ∈ (𝐵 × 𝑆))
269253, 268eqeltrd 2841 . . . . . 6 (((𝜑𝑝 ∈ (𝐵 × 𝑆)) ∧ 𝑞 ∈ (𝐵 × 𝑆)) → (𝑝(𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)𝑞) ∈ (𝐵 × 𝑆))
270249, 269eqeltrd 2841 . . . . 5 (((𝜑𝑝 ∈ (𝐵 × 𝑆)) ∧ 𝑞 ∈ (𝐵 × 𝑆)) → (𝑝(+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))𝑞) ∈ (𝐵 × 𝑆))
271270anasss 466 . . . 4 ((𝜑 ∧ (𝑝 ∈ (𝐵 × 𝑆) ∧ 𝑞 ∈ (𝐵 × 𝑆))) → (𝑝(+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))𝑞) ∈ (𝐵 × 𝑆))
272 rlocaddval.10 . . . 4 = (+g𝐿)
27333, 48, 50, 56, 247, 271, 207, 272qusaddval 17598 . . 3 ((𝜑 ∧ ⟨𝐸, 𝐺⟩ ∈ (𝐵 × 𝑆) ∧ ⟨𝐹, 𝐻⟩ ∈ (𝐵 × 𝑆)) → ([⟨𝐸, 𝐺⟩] [⟨𝐹, 𝐻⟩] ) = [(⟨𝐸, 𝐺⟩(+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))⟨𝐹, 𝐻⟩)] )
2743, 6, 273mpd3an23 1465 . 2 (𝜑 → ([⟨𝐸, 𝐺⟩] [⟨𝐹, 𝐻⟩] ) = [(⟨𝐸, 𝐺⟩(+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))⟨𝐹, 𝐻⟩)] )
275208oveqd 7448 . . . 4 (𝜑 → (⟨𝐸, 𝐺⟩(+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))⟨𝐹, 𝐻⟩) = (⟨𝐸, 𝐺⟩(𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟨𝐹, 𝐻⟩))
27621a1i 11 . . . . 5 (𝜑 → (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩) = (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩))
277 simprl 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐺⟩ ∧ 𝑏 = ⟨𝐹, 𝐻⟩)) → 𝑎 = ⟨𝐸, 𝐺⟩)
278277fveq2d 6910 . . . . . . . . 9 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐺⟩ ∧ 𝑏 = ⟨𝐹, 𝐻⟩)) → (1st𝑎) = (1st ‘⟨𝐸, 𝐺⟩))
2791adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐺⟩ ∧ 𝑏 = ⟨𝐹, 𝐻⟩)) → 𝐸𝐵)
2802adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐺⟩ ∧ 𝑏 = ⟨𝐹, 𝐻⟩)) → 𝐺𝑆)
281 op1stg 8026 . . . . . . . . . 10 ((𝐸𝐵𝐺𝑆) → (1st ‘⟨𝐸, 𝐺⟩) = 𝐸)
282279, 280, 281syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐺⟩ ∧ 𝑏 = ⟨𝐹, 𝐻⟩)) → (1st ‘⟨𝐸, 𝐺⟩) = 𝐸)
283278, 282eqtrd 2777 . . . . . . . 8 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐺⟩ ∧ 𝑏 = ⟨𝐹, 𝐻⟩)) → (1st𝑎) = 𝐸)
284 simprr 773 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐺⟩ ∧ 𝑏 = ⟨𝐹, 𝐻⟩)) → 𝑏 = ⟨𝐹, 𝐻⟩)
285284fveq2d 6910 . . . . . . . . 9 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐺⟩ ∧ 𝑏 = ⟨𝐹, 𝐻⟩)) → (2nd𝑏) = (2nd ‘⟨𝐹, 𝐻⟩))
2864adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐺⟩ ∧ 𝑏 = ⟨𝐹, 𝐻⟩)) → 𝐹𝐵)
2875adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐺⟩ ∧ 𝑏 = ⟨𝐹, 𝐻⟩)) → 𝐻𝑆)
288 op2ndg 8027 . . . . . . . . . 10 ((𝐹𝐵𝐻𝑆) → (2nd ‘⟨𝐹, 𝐻⟩) = 𝐻)
289286, 287, 288syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐺⟩ ∧ 𝑏 = ⟨𝐹, 𝐻⟩)) → (2nd ‘⟨𝐹, 𝐻⟩) = 𝐻)
290285, 289eqtrd 2777 . . . . . . . 8 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐺⟩ ∧ 𝑏 = ⟨𝐹, 𝐻⟩)) → (2nd𝑏) = 𝐻)
291283, 290oveq12d 7449 . . . . . . 7 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐺⟩ ∧ 𝑏 = ⟨𝐹, 𝐻⟩)) → ((1st𝑎) · (2nd𝑏)) = (𝐸 · 𝐻))
292284fveq2d 6910 . . . . . . . . 9 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐺⟩ ∧ 𝑏 = ⟨𝐹, 𝐻⟩)) → (1st𝑏) = (1st ‘⟨𝐹, 𝐻⟩))
293 op1stg 8026 . . . . . . . . . 10 ((𝐹𝐵𝐻𝑆) → (1st ‘⟨𝐹, 𝐻⟩) = 𝐹)
294286, 287, 293syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐺⟩ ∧ 𝑏 = ⟨𝐹, 𝐻⟩)) → (1st ‘⟨𝐹, 𝐻⟩) = 𝐹)
295292, 294eqtrd 2777 . . . . . . . 8 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐺⟩ ∧ 𝑏 = ⟨𝐹, 𝐻⟩)) → (1st𝑏) = 𝐹)
296277fveq2d 6910 . . . . . . . . 9 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐺⟩ ∧ 𝑏 = ⟨𝐹, 𝐻⟩)) → (2nd𝑎) = (2nd ‘⟨𝐸, 𝐺⟩))
297 op2ndg 8027 . . . . . . . . . 10 ((𝐸𝐵𝐺𝑆) → (2nd ‘⟨𝐸, 𝐺⟩) = 𝐺)
298279, 280, 297syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐺⟩ ∧ 𝑏 = ⟨𝐹, 𝐻⟩)) → (2nd ‘⟨𝐸, 𝐺⟩) = 𝐺)
299296, 298eqtrd 2777 . . . . . . . 8 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐺⟩ ∧ 𝑏 = ⟨𝐹, 𝐻⟩)) → (2nd𝑎) = 𝐺)
300295, 299oveq12d 7449 . . . . . . 7 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐺⟩ ∧ 𝑏 = ⟨𝐹, 𝐻⟩)) → ((1st𝑏) · (2nd𝑎)) = (𝐹 · 𝐺))
301291, 300oveq12d 7449 . . . . . 6 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐺⟩ ∧ 𝑏 = ⟨𝐹, 𝐻⟩)) → (((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))) = ((𝐸 · 𝐻) + (𝐹 · 𝐺)))
302299, 290oveq12d 7449 . . . . . 6 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐺⟩ ∧ 𝑏 = ⟨𝐹, 𝐻⟩)) → ((2nd𝑎) · (2nd𝑏)) = (𝐺 · 𝐻))
303301, 302opeq12d 4881 . . . . 5 ((𝜑 ∧ (𝑎 = ⟨𝐸, 𝐺⟩ ∧ 𝑏 = ⟨𝐹, 𝐻⟩)) → ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩ = ⟨((𝐸 · 𝐻) + (𝐹 · 𝐺)), (𝐺 · 𝐻)⟩)
304 opex 5469 . . . . . 6 ⟨((𝐸 · 𝐻) + (𝐹 · 𝐺)), (𝐺 · 𝐻)⟩ ∈ V
305304a1i 11 . . . . 5 (𝜑 → ⟨((𝐸 · 𝐻) + (𝐹 · 𝐺)), (𝐺 · 𝐻)⟩ ∈ V)
306276, 303, 3, 6, 305ovmpod 7585 . . . 4 (𝜑 → (⟨𝐸, 𝐺⟩(𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟨𝐹, 𝐻⟩) = ⟨((𝐸 · 𝐻) + (𝐹 · 𝐺)), (𝐺 · 𝐻)⟩)
307275, 306eqtrd 2777 . . 3 (𝜑 → (⟨𝐸, 𝐺⟩(+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))⟨𝐹, 𝐻⟩) = ⟨((𝐸 · 𝐻) + (𝐹 · 𝐺)), (𝐺 · 𝐻)⟩)
308307eceq1d 8785 . 2 (𝜑 → [(⟨𝐸, 𝐺⟩(+g‘(({⟨(Base‘ndx), (𝐵 × 𝑆)⟩, ⟨(+g‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨(((1st𝑎) · (2nd𝑏)) + ((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎 ∈ (𝐵 × 𝑆) ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝐵 × 𝑆) ∧ 𝑏 ∈ (𝐵 × 𝑆)) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎 ∈ (𝐵 × 𝑆), 𝑏 ∈ (𝐵 × 𝑆) ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))⟨𝐹, 𝐻⟩)] = [⟨((𝐸 · 𝐻) + (𝐹 · 𝐺)), (𝐺 · 𝐻)⟩] )
309274, 308eqtrd 2777 1 (𝜑 → ([⟨𝐸, 𝐺⟩] [⟨𝐹, 𝐻⟩] ) = [⟨((𝐸 · 𝐻) + (𝐹 · 𝐺)), (𝐺 · 𝐻)⟩] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  cun 3949  wss 3951  c0 4333  {csn 4626  {ctp 4630  cop 4632   class class class wbr 5143  {copab 5205   × cxp 5683  cfv 6561  (class class class)co 7431  cmpo 7433  1st c1st 8012  2nd c2nd 8013  [cec 8743  1c1 11156  2c2 12321  cdc 12733  ndxcnx 17230  Basecbs 17247  +gcplusg 17297  .rcmulr 17298  Scalarcsca 17300   ·𝑠 cvsca 17301  ·𝑖cip 17302  TopSetcts 17303  lecple 17304  distcds 17306  t crest 17465  0gc0g 17484   /s cqus 17550  SubMndcsubmnd 18795  Grpcgrp 18951  -gcsg 18953  CMndccmn 19798  Abelcabl 19799  mulGrpcmgp 20137  1rcur 20178  Ringcrg 20230  CRingccrg 20231   ×t ctx 23568   ~RL cerl 33257   RLocal crloc 33258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-ec 8747  df-qs 8751  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-0g 17486  df-imas 17553  df-qus 17554  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-erl 33259  df-rloc 33260
This theorem is referenced by:  rloccring  33274  rloc0g  33275  rlocf1  33277  zringfrac  33582
  Copyright terms: Public domain W3C validator