| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cmn4d | Structured version Visualization version GIF version | ||
| Description: Commutative/associative law for commutative monoids. (Contributed by Thierry Arnoux, 4-May-2025.) |
| Ref | Expression |
|---|---|
| cmn4d.1 | ⊢ 𝐵 = (Base‘𝐺) |
| cmn4d.2 | ⊢ + = (+g‘𝐺) |
| cmn4d.3 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| cmn4d.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| cmn4d.5 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| cmn4d.6 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| cmn4d.7 | ⊢ (𝜑 → 𝑊 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| cmn4d | ⊢ (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmn4d.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 2 | cmn4d.4 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | cmn4d.5 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | cmn4d.6 | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 5 | cmn4d.7 | . 2 ⊢ (𝜑 → 𝑊 ∈ 𝐵) | |
| 6 | cmn4d.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 7 | cmn4d.2 | . . 3 ⊢ + = (+g‘𝐺) | |
| 8 | 6, 7 | cmn4 19717 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) |
| 9 | 1, 2, 3, 4, 5, 8 | syl122anc 1381 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 +gcplusg 17165 CMndccmn 19696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6444 df-fv 6496 df-ov 7357 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-cmn 19698 |
| This theorem is referenced by: cmn246135 33023 cmn145236 33024 rloccring 33246 |
| Copyright terms: Public domain | W3C validator |