| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cmn4d | Structured version Visualization version GIF version | ||
| Description: Commutative/associative law for commutative monoids. (Contributed by Thierry Arnoux, 4-May-2025.) |
| Ref | Expression |
|---|---|
| cmn4d.1 | ⊢ 𝐵 = (Base‘𝐺) |
| cmn4d.2 | ⊢ + = (+g‘𝐺) |
| cmn4d.3 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| cmn4d.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| cmn4d.5 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| cmn4d.6 | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| cmn4d.7 | ⊢ (𝜑 → 𝑊 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| cmn4d | ⊢ (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmn4d.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 2 | cmn4d.4 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | cmn4d.5 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | cmn4d.6 | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 5 | cmn4d.7 | . 2 ⊢ (𝜑 → 𝑊 ∈ 𝐵) | |
| 6 | cmn4d.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 7 | cmn4d.2 | . . 3 ⊢ + = (+g‘𝐺) | |
| 8 | 6, 7 | cmn4 19738 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) |
| 9 | 1, 2, 3, 4, 5, 8 | syl122anc 1381 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 CMndccmn 19717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-cmn 19719 |
| This theorem is referenced by: cmn246135 32981 cmn145236 32982 rloccring 33228 |
| Copyright terms: Public domain | W3C validator |