Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmn4d Structured version   Visualization version   GIF version

Theorem cmn4d 33010
Description: Commutative/associative law for commutative monoids. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
cmn4d.1 𝐵 = (Base‘𝐺)
cmn4d.2 + = (+g𝐺)
cmn4d.3 (𝜑𝐺 ∈ CMnd)
cmn4d.4 (𝜑𝑋𝐵)
cmn4d.5 (𝜑𝑌𝐵)
cmn4d.6 (𝜑𝑍𝐵)
cmn4d.7 (𝜑𝑊𝐵)
Assertion
Ref Expression
cmn4d (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊)))

Proof of Theorem cmn4d
StepHypRef Expression
1 cmn4d.3 . 2 (𝜑𝐺 ∈ CMnd)
2 cmn4d.4 . 2 (𝜑𝑋𝐵)
3 cmn4d.5 . 2 (𝜑𝑌𝐵)
4 cmn4d.6 . 2 (𝜑𝑍𝐵)
5 cmn4d.7 . 2 (𝜑𝑊𝐵)
6 cmn4d.1 . . 3 𝐵 = (Base‘𝐺)
7 cmn4d.2 . . 3 + = (+g𝐺)
86, 7cmn4 19837 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊)))
91, 2, 3, 4, 5, 8syl122anc 1379 1 (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6568  (class class class)co 7443  Basecbs 17252  +gcplusg 17305  CMndccmn 19816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6520  df-fv 6576  df-ov 7446  df-mgm 18672  df-sgrp 18751  df-mnd 18767  df-cmn 19818
This theorem is referenced by:  cmn246135  33011  cmn145236  33012  rloccring  33234
  Copyright terms: Public domain W3C validator