Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmn4d Structured version   Visualization version   GIF version

Theorem cmn4d 33022
Description: Commutative/associative law for commutative monoids. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
cmn4d.1 𝐵 = (Base‘𝐺)
cmn4d.2 + = (+g𝐺)
cmn4d.3 (𝜑𝐺 ∈ CMnd)
cmn4d.4 (𝜑𝑋𝐵)
cmn4d.5 (𝜑𝑌𝐵)
cmn4d.6 (𝜑𝑍𝐵)
cmn4d.7 (𝜑𝑊𝐵)
Assertion
Ref Expression
cmn4d (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊)))

Proof of Theorem cmn4d
StepHypRef Expression
1 cmn4d.3 . 2 (𝜑𝐺 ∈ CMnd)
2 cmn4d.4 . 2 (𝜑𝑋𝐵)
3 cmn4d.5 . 2 (𝜑𝑌𝐵)
4 cmn4d.6 . 2 (𝜑𝑍𝐵)
5 cmn4d.7 . 2 (𝜑𝑊𝐵)
6 cmn4d.1 . . 3 𝐵 = (Base‘𝐺)
7 cmn4d.2 . . 3 + = (+g𝐺)
86, 7cmn4 19717 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊)))
91, 2, 3, 4, 5, 8syl122anc 1381 1 (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cfv 6488  (class class class)co 7354  Basecbs 17124  +gcplusg 17165  CMndccmn 19696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-12 2182  ax-ext 2705  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6444  df-fv 6496  df-ov 7357  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-cmn 19698
This theorem is referenced by:  cmn246135  33023  cmn145236  33024  rloccring  33246
  Copyright terms: Public domain W3C validator