| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmnmndd | Structured version Visualization version GIF version | ||
| Description: A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| cmnmndd.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| Ref | Expression |
|---|---|
| cmnmndd | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmnmndd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 2 | cmnmnd 19703 | . 2 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Mndcmnd 18637 CMndccmn 19686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-cmn 19688 |
| This theorem is referenced by: psrbagev1 21960 evlslem1 21965 psdadd 22026 evls1fpws 22232 mdetrsca 22466 cmn246135 32947 cmn145236 32948 gsummptres2 32966 gsumfs2d 32968 gsumtp 32971 gsumhashmul 32974 gsumwun 32978 elrgspnlem1 33166 elrgspnlem2 33167 elrgspnsubrunlem1 33171 elrgspnsubrunlem2 33172 elrspunidl 33372 elrspunsn 33373 rprmdvdsprod 33478 dfufd2lem 33493 fldextrspunlsplem 33641 fldextrspunlsp 33642 isprimroot2 42055 primrootsunit1 42058 primrootscoprmpow 42060 primrootscoprbij 42063 aks6d1c1p3 42071 aks6d1c1p4 42072 aks6d1c1p5 42073 aks6d1c1p7 42074 aks6d1c1p6 42075 aks6d1c1 42077 aks6d1c2lem4 42088 aks6d1c5lem0 42096 aks6d1c5lem2 42099 aks6d1c5 42100 aks5lem3a 42150 unitscyglem5 42160 pwsgprod 42505 evlsvvval 42524 selvvvval 42546 |
| Copyright terms: Public domain | W3C validator |