| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmnmndd | Structured version Visualization version GIF version | ||
| Description: A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| cmnmndd.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| Ref | Expression |
|---|---|
| cmnmndd | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmnmndd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 2 | cmnmnd 19717 | . 2 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Mndcmnd 18650 CMndccmn 19700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-cmn 19702 |
| This theorem is referenced by: pwsgprod 20256 psrbagev1 22023 evlslem1 22028 evlsvvval 22039 psdadd 22097 evls1fpws 22304 mdetrsca 22538 cmn246135 33043 cmn145236 33044 gsummptres2 33064 gsummptfzsplitra 33069 gsummptfzsplitla 33070 gsumfs2d 33072 gsumtp 33075 gsumhashmul 33078 gsumwun 33086 elrgspnlem1 33252 elrgspnlem2 33253 elrgspnsubrunlem1 33257 elrgspnsubrunlem2 33258 elrspunidl 33437 elrspunsn 33438 rprmdvdsprod 33543 dfufd2lem 33558 evlextv 33635 vietalem 33663 fldextrspunlsplem 33758 fldextrspunlsp 33759 extdgfialglem2 33778 isprimroot2 42260 primrootsunit1 42263 primrootscoprmpow 42265 primrootscoprbij 42268 aks6d1c1p3 42276 aks6d1c1p4 42277 aks6d1c1p5 42278 aks6d1c1p7 42279 aks6d1c1p6 42280 aks6d1c1 42282 aks6d1c2lem4 42293 aks6d1c5lem0 42301 aks6d1c5lem2 42304 aks6d1c5 42305 aks5lem3a 42355 unitscyglem5 42365 selvvvval 42743 |
| Copyright terms: Public domain | W3C validator |