| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmnmndd | Structured version Visualization version GIF version | ||
| Description: A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| cmnmndd.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| Ref | Expression |
|---|---|
| cmnmndd | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmnmndd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 2 | cmnmnd 19734 | . 2 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Mndcmnd 18668 CMndccmn 19717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-cmn 19719 |
| This theorem is referenced by: psrbagev1 21991 evlslem1 21996 psdadd 22057 evls1fpws 22263 mdetrsca 22497 cmn246135 32981 cmn145236 32982 gsummptres2 33000 gsumfs2d 33002 gsumtp 33005 gsumhashmul 33008 gsumwun 33012 elrgspnlem1 33200 elrgspnlem2 33201 elrgspnsubrunlem1 33205 elrgspnsubrunlem2 33206 elrspunidl 33406 elrspunsn 33407 rprmdvdsprod 33512 dfufd2lem 33527 fldextrspunlsplem 33675 fldextrspunlsp 33676 isprimroot2 42089 primrootsunit1 42092 primrootscoprmpow 42094 primrootscoprbij 42097 aks6d1c1p3 42105 aks6d1c1p4 42106 aks6d1c1p5 42107 aks6d1c1p7 42108 aks6d1c1p6 42109 aks6d1c1 42111 aks6d1c2lem4 42122 aks6d1c5lem0 42130 aks6d1c5lem2 42133 aks6d1c5 42134 aks5lem3a 42184 unitscyglem5 42194 pwsgprod 42539 evlsvvval 42558 selvvvval 42580 |
| Copyright terms: Public domain | W3C validator |