MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmnmndd Structured version   Visualization version   GIF version

Theorem cmnmndd 19846
Description: A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.)
Hypothesis
Ref Expression
cmnmndd.1 (𝜑𝐺 ∈ CMnd)
Assertion
Ref Expression
cmnmndd (𝜑𝐺 ∈ Mnd)

Proof of Theorem cmnmndd
StepHypRef Expression
1 cmnmndd.1 . 2 (𝜑𝐺 ∈ CMnd)
2 cmnmnd 19839 . 2 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
31, 2syl 17 1 (𝜑𝐺 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Mndcmnd 18772  CMndccmn 19822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-cmn 19824
This theorem is referenced by:  psrbagev1  22124  evlslem1  22129  psdadd  22190  evls1fpws  22394  mdetrsca  22630  cmn246135  33019  cmn145236  33020  gsummptres2  33036  gsumtp  33039  gsumhashmul  33040  elrspunidl  33421  elrspunsn  33422  rprmdvdsprod  33527  dfufd2lem  33542  isprimroot2  42051  primrootsunit1  42054  primrootscoprmpow  42056  primrootscoprbij  42059  aks6d1c1p3  42067  aks6d1c1p4  42068  aks6d1c1p5  42069  aks6d1c1p7  42070  aks6d1c1p6  42071  aks6d1c1  42073  aks6d1c2lem4  42084  aks6d1c5lem0  42092  aks6d1c5lem2  42095  aks6d1c5  42096  aks5lem3a  42146  unitscyglem5  42156  pwsgprod  42499  evlsvvval  42518  selvvvval  42540
  Copyright terms: Public domain W3C validator