MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmnmndd Structured version   Visualization version   GIF version

Theorem cmnmndd 19724
Description: A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.)
Hypothesis
Ref Expression
cmnmndd.1 (𝜑𝐺 ∈ CMnd)
Assertion
Ref Expression
cmnmndd (𝜑𝐺 ∈ Mnd)

Proof of Theorem cmnmndd
StepHypRef Expression
1 cmnmndd.1 . 2 (𝜑𝐺 ∈ CMnd)
2 cmnmnd 19717 . 2 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
31, 2syl 17 1 (𝜑𝐺 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  Mndcmnd 18650  CMndccmn 19700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-ov 7358  df-cmn 19702
This theorem is referenced by:  pwsgprod  20256  psrbagev1  22023  evlslem1  22028  evlsvvval  22039  psdadd  22097  evls1fpws  22304  mdetrsca  22538  cmn246135  33043  cmn145236  33044  gsummptres2  33064  gsummptfzsplitra  33069  gsummptfzsplitla  33070  gsumfs2d  33072  gsumtp  33075  gsumhashmul  33078  gsumwun  33086  elrgspnlem1  33252  elrgspnlem2  33253  elrgspnsubrunlem1  33257  elrgspnsubrunlem2  33258  elrspunidl  33437  elrspunsn  33438  rprmdvdsprod  33543  dfufd2lem  33558  evlextv  33635  vietalem  33663  fldextrspunlsplem  33758  fldextrspunlsp  33759  extdgfialglem2  33778  isprimroot2  42260  primrootsunit1  42263  primrootscoprmpow  42265  primrootscoprbij  42268  aks6d1c1p3  42276  aks6d1c1p4  42277  aks6d1c1p5  42278  aks6d1c1p7  42279  aks6d1c1p6  42280  aks6d1c1  42282  aks6d1c2lem4  42293  aks6d1c5lem0  42301  aks6d1c5lem2  42304  aks6d1c5  42305  aks5lem3a  42355  unitscyglem5  42365  selvvvval  42743
  Copyright terms: Public domain W3C validator