| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmnmndd | Structured version Visualization version GIF version | ||
| Description: A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| cmnmndd.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| Ref | Expression |
|---|---|
| cmnmndd | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmnmndd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 2 | cmnmnd 19704 | . 2 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Mndcmnd 18637 CMndccmn 19687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-cmn 19689 |
| This theorem is referenced by: psrbagev1 22007 evlslem1 22012 psdadd 22073 evls1fpws 22279 mdetrsca 22513 cmn246135 33006 cmn145236 33007 gsummptres2 33025 gsumfs2d 33027 gsumtp 33030 gsumhashmul 33033 gsumwun 33037 elrgspnlem1 33201 elrgspnlem2 33202 elrgspnsubrunlem1 33206 elrgspnsubrunlem2 33207 elrspunidl 33385 elrspunsn 33386 rprmdvdsprod 33491 dfufd2lem 33506 fldextrspunlsplem 33678 fldextrspunlsp 33679 extdgfialglem2 33698 isprimroot2 42127 primrootsunit1 42130 primrootscoprmpow 42132 primrootscoprbij 42135 aks6d1c1p3 42143 aks6d1c1p4 42144 aks6d1c1p5 42145 aks6d1c1p7 42146 aks6d1c1p6 42147 aks6d1c1 42149 aks6d1c2lem4 42160 aks6d1c5lem0 42168 aks6d1c5lem2 42171 aks6d1c5 42172 aks5lem3a 42222 unitscyglem5 42232 pwsgprod 42577 evlsvvval 42596 selvvvval 42618 |
| Copyright terms: Public domain | W3C validator |