| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmnmndd | Structured version Visualization version GIF version | ||
| Description: A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| cmnmndd.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| Ref | Expression |
|---|---|
| cmnmndd | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmnmndd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 2 | cmnmnd 19778 | . 2 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Mndcmnd 18712 CMndccmn 19761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-cmn 19763 |
| This theorem is referenced by: psrbagev1 22035 evlslem1 22040 psdadd 22101 evls1fpws 22307 mdetrsca 22541 cmn246135 33028 cmn145236 33029 gsummptres2 33047 gsumfs2d 33049 gsumtp 33052 gsumhashmul 33055 gsumwun 33059 elrgspnlem1 33237 elrgspnlem2 33238 elrgspnsubrunlem1 33242 elrgspnsubrunlem2 33243 elrspunidl 33443 elrspunsn 33444 rprmdvdsprod 33549 dfufd2lem 33564 fldextrspunlsplem 33714 fldextrspunlsp 33715 isprimroot2 42107 primrootsunit1 42110 primrootscoprmpow 42112 primrootscoprbij 42115 aks6d1c1p3 42123 aks6d1c1p4 42124 aks6d1c1p5 42125 aks6d1c1p7 42126 aks6d1c1p6 42127 aks6d1c1 42129 aks6d1c2lem4 42140 aks6d1c5lem0 42148 aks6d1c5lem2 42151 aks6d1c5 42152 aks5lem3a 42202 unitscyglem5 42212 pwsgprod 42567 evlsvvval 42586 selvvvval 42608 |
| Copyright terms: Public domain | W3C validator |