![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmnmndd | Structured version Visualization version GIF version |
Description: A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.) |
Ref | Expression |
---|---|
cmnmndd.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
Ref | Expression |
---|---|
cmnmndd | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmnmndd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
2 | cmnmnd 19830 | . 2 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Mndcmnd 18760 CMndccmn 19813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-cmn 19815 |
This theorem is referenced by: psrbagev1 22119 evlslem1 22124 psdadd 22185 evls1fpws 22389 mdetrsca 22625 cmn246135 33021 cmn145236 33022 gsummptres2 33039 gsumfs2d 33041 gsumtp 33044 gsumhashmul 33047 gsumwun 33051 elrgspnlem1 33232 elrgspnlem2 33233 elrspunidl 33436 elrspunsn 33437 rprmdvdsprod 33542 dfufd2lem 33557 isprimroot2 42076 primrootsunit1 42079 primrootscoprmpow 42081 primrootscoprbij 42084 aks6d1c1p3 42092 aks6d1c1p4 42093 aks6d1c1p5 42094 aks6d1c1p7 42095 aks6d1c1p6 42096 aks6d1c1 42098 aks6d1c2lem4 42109 aks6d1c5lem0 42117 aks6d1c5lem2 42120 aks6d1c5 42121 aks5lem3a 42171 unitscyglem5 42181 pwsgprod 42531 evlsvvval 42550 selvvvval 42572 |
Copyright terms: Public domain | W3C validator |