![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmnmndd | Structured version Visualization version GIF version |
Description: A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.) |
Ref | Expression |
---|---|
cmnmndd.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
Ref | Expression |
---|---|
cmnmndd | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmnmndd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
2 | cmnmnd 19839 | . 2 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Mndcmnd 18772 CMndccmn 19822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-cmn 19824 |
This theorem is referenced by: psrbagev1 22124 evlslem1 22129 psdadd 22190 evls1fpws 22394 mdetrsca 22630 cmn246135 33019 cmn145236 33020 gsummptres2 33036 gsumtp 33039 gsumhashmul 33040 elrspunidl 33421 elrspunsn 33422 rprmdvdsprod 33527 dfufd2lem 33542 isprimroot2 42051 primrootsunit1 42054 primrootscoprmpow 42056 primrootscoprbij 42059 aks6d1c1p3 42067 aks6d1c1p4 42068 aks6d1c1p5 42069 aks6d1c1p7 42070 aks6d1c1p6 42071 aks6d1c1 42073 aks6d1c2lem4 42084 aks6d1c5lem0 42092 aks6d1c5lem2 42095 aks6d1c5 42096 aks5lem3a 42146 unitscyglem5 42156 pwsgprod 42499 evlsvvval 42518 selvvvval 42540 |
Copyright terms: Public domain | W3C validator |