![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmnmndd | Structured version Visualization version GIF version |
Description: A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.) |
Ref | Expression |
---|---|
cmnmndd.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
Ref | Expression |
---|---|
cmnmndd | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmnmndd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
2 | cmnmnd 19791 | . 2 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 Mndcmnd 18722 CMndccmn 19774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-iota 6498 df-fv 6554 df-ov 7419 df-cmn 19776 |
This theorem is referenced by: psrbagev1 22086 psrbagev1OLD 22087 evlslem1 22093 psdadd 22153 evls1fpws 22357 mdetrsca 22593 cmn246135 32909 cmn145236 32910 gsummptres2 32925 gsumtp 32928 gsumhashmul 32929 elrspunidl 33309 elrspunsn 33310 rprmdvdsprod 33415 dfufd2lem 33430 isprimroot2 41806 primrootsunit1 41809 primrootscoprmpow 41811 primrootscoprbij 41814 aks6d1c1p3 41822 aks6d1c1p4 41823 aks6d1c1p5 41824 aks6d1c1p7 41825 aks6d1c1p6 41826 aks6d1c1 41828 aks6d1c2lem4 41839 aks6d1c5lem0 41847 aks6d1c5lem2 41850 aks6d1c5 41851 aks5lem3a 41901 pwsgprod 42234 evlsvvval 42253 selvvvval 42275 |
Copyright terms: Public domain | W3C validator |