| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmnmndd | Structured version Visualization version GIF version | ||
| Description: A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| cmnmndd.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| Ref | Expression |
|---|---|
| cmnmndd | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmnmndd.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 2 | cmnmnd 19727 | . 2 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Mndcmnd 18661 CMndccmn 19710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-cmn 19712 |
| This theorem is referenced by: psrbagev1 21984 evlslem1 21989 psdadd 22050 evls1fpws 22256 mdetrsca 22490 cmn246135 32974 cmn145236 32975 gsummptres2 32993 gsumfs2d 32995 gsumtp 32998 gsumhashmul 33001 gsumwun 33005 elrgspnlem1 33193 elrgspnlem2 33194 elrgspnsubrunlem1 33198 elrgspnsubrunlem2 33199 elrspunidl 33399 elrspunsn 33400 rprmdvdsprod 33505 dfufd2lem 33520 fldextrspunlsplem 33668 fldextrspunlsp 33669 isprimroot2 42082 primrootsunit1 42085 primrootscoprmpow 42087 primrootscoprbij 42090 aks6d1c1p3 42098 aks6d1c1p4 42099 aks6d1c1p5 42100 aks6d1c1p7 42101 aks6d1c1p6 42102 aks6d1c1 42104 aks6d1c2lem4 42115 aks6d1c5lem0 42123 aks6d1c5lem2 42126 aks6d1c5 42127 aks5lem3a 42177 unitscyglem5 42187 pwsgprod 42532 evlsvvval 42551 selvvvval 42573 |
| Copyright terms: Public domain | W3C validator |