Step | Hyp | Ref
| Expression |
1 | | oveq2 7456 |
. . . . . 6
⊢ (𝑣 = (◡𝐺‘ 0 ) → (𝑋 + 𝑣) = (𝑋 + (◡𝐺‘ 0 ))) |
2 | 1 | eqeq1d 2742 |
. . . . 5
⊢ (𝑣 = (◡𝐺‘ 0 ) → ((𝑋 + 𝑣) = 0 ↔ (𝑋 + (◡𝐺‘ 0 )) = 0 )) |
3 | | f1ocnv 6874 |
. . . . . . . 8
⊢ (𝐺:𝐵–1-1-onto→𝐵 → ◡𝐺:𝐵–1-1-onto→𝐵) |
4 | | f1of 6862 |
. . . . . . . 8
⊢ (◡𝐺:𝐵–1-1-onto→𝐵 → ◡𝐺:𝐵⟶𝐵) |
5 | 3, 4 | syl 17 |
. . . . . . 7
⊢ (𝐺:𝐵–1-1-onto→𝐵 → ◡𝐺:𝐵⟶𝐵) |
6 | 5 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → ◡𝐺:𝐵⟶𝐵) |
7 | | mndractf1o.e |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ Mnd) |
8 | | mndractf1o.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐸) |
9 | | mndractf1o.z |
. . . . . . . . 9
⊢ 0 =
(0g‘𝐸) |
10 | 8, 9 | mndidcl 18787 |
. . . . . . . 8
⊢ (𝐸 ∈ Mnd → 0 ∈ 𝐵) |
11 | 7, 10 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 0 ∈ 𝐵) |
12 | 11 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → 0 ∈ 𝐵) |
13 | 6, 12 | ffvelcdmd 7119 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → (◡𝐺‘ 0 ) ∈ 𝐵) |
14 | | f1of1 6861 |
. . . . . . 7
⊢ (𝐺:𝐵–1-1-onto→𝐵 → 𝐺:𝐵–1-1→𝐵) |
15 | 14 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → 𝐺:𝐵–1-1→𝐵) |
16 | | mndractf1o.p |
. . . . . . . 8
⊢ + =
(+g‘𝐸) |
17 | 7 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → 𝐸 ∈ Mnd) |
18 | | mndractf1o.x |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
19 | 18 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → 𝑋 ∈ 𝐵) |
20 | 8, 16, 17, 19, 13 | mndcld 33008 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → (𝑋 + (◡𝐺‘ 0 )) ∈ 𝐵) |
21 | 20, 12 | jca 511 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → ((𝑋 + (◡𝐺‘ 0 )) ∈ 𝐵 ∧ 0 ∈ 𝐵)) |
22 | 8, 16, 9 | mndlid 18792 |
. . . . . . . 8
⊢ ((𝐸 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
23 | 17, 19, 22 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → ( 0 + 𝑋) = 𝑋) |
24 | | mndractf1o.f |
. . . . . . . 8
⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ (𝑎 + 𝑋)) |
25 | | oveq1 7455 |
. . . . . . . 8
⊢ (𝑎 = 0 → (𝑎 + 𝑋) = ( 0 + 𝑋)) |
26 | | ovexd 7483 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → ( 0 + 𝑋) ∈ V) |
27 | 24, 25, 12, 26 | fvmptd3 7052 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → (𝐺‘ 0 ) = ( 0 + 𝑋)) |
28 | | oveq1 7455 |
. . . . . . . . 9
⊢ (𝑎 = (𝑋 + (◡𝐺‘ 0 )) → (𝑎 + 𝑋) = ((𝑋 + (◡𝐺‘ 0 )) + 𝑋)) |
29 | | ovexd 7483 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → ((𝑋 + (◡𝐺‘ 0 )) + 𝑋) ∈ V) |
30 | 24, 28, 20, 29 | fvmptd3 7052 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → (𝐺‘(𝑋 + (◡𝐺‘ 0 ))) = ((𝑋 + (◡𝐺‘ 0 )) + 𝑋)) |
31 | 8, 16, 17, 19, 13, 19 | mndassd 33009 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → ((𝑋 + (◡𝐺‘ 0 )) + 𝑋) = (𝑋 + ((◡𝐺‘ 0 ) + 𝑋))) |
32 | | oveq1 7455 |
. . . . . . . . . . . 12
⊢ (𝑎 = (◡𝐺‘ 0 ) → (𝑎 + 𝑋) = ((◡𝐺‘ 0 ) + 𝑋)) |
33 | | ovexd 7483 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → ((◡𝐺‘ 0 ) + 𝑋) ∈ V) |
34 | 24, 32, 13, 33 | fvmptd3 7052 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → (𝐺‘(◡𝐺‘ 0 )) = ((◡𝐺‘ 0 ) + 𝑋)) |
35 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → 𝐺:𝐵–1-1-onto→𝐵) |
36 | | f1ocnvfv2 7313 |
. . . . . . . . . . . 12
⊢ ((𝐺:𝐵–1-1-onto→𝐵 ∧ 0 ∈ 𝐵) → (𝐺‘(◡𝐺‘ 0 )) = 0 ) |
37 | 35, 12, 36 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → (𝐺‘(◡𝐺‘ 0 )) = 0 ) |
38 | 34, 37 | eqtr3d 2782 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → ((◡𝐺‘ 0 ) + 𝑋) = 0 ) |
39 | 38 | oveq2d 7464 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → (𝑋 + ((◡𝐺‘ 0 ) + 𝑋)) = (𝑋 + 0 )) |
40 | 8, 16, 9 | mndrid 18793 |
. . . . . . . . . 10
⊢ ((𝐸 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
41 | 17, 19, 40 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → (𝑋 + 0 ) = 𝑋) |
42 | 31, 39, 41 | 3eqtrd 2784 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → ((𝑋 + (◡𝐺‘ 0 )) + 𝑋) = 𝑋) |
43 | 30, 42 | eqtrd 2780 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → (𝐺‘(𝑋 + (◡𝐺‘ 0 ))) = 𝑋) |
44 | 23, 27, 43 | 3eqtr4rd 2791 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → (𝐺‘(𝑋 + (◡𝐺‘ 0 ))) = (𝐺‘ 0 )) |
45 | | f1fveq 7299 |
. . . . . . 7
⊢ ((𝐺:𝐵–1-1→𝐵 ∧ ((𝑋 + (◡𝐺‘ 0 )) ∈ 𝐵 ∧ 0 ∈ 𝐵)) → ((𝐺‘(𝑋 + (◡𝐺‘ 0 ))) = (𝐺‘ 0 ) ↔ (𝑋 + (◡𝐺‘ 0 )) = 0 )) |
46 | 45 | biimpa 476 |
. . . . . 6
⊢ (((𝐺:𝐵–1-1→𝐵 ∧ ((𝑋 + (◡𝐺‘ 0 )) ∈ 𝐵 ∧ 0 ∈ 𝐵)) ∧ (𝐺‘(𝑋 + (◡𝐺‘ 0 ))) = (𝐺‘ 0 )) → (𝑋 + (◡𝐺‘ 0 )) = 0 ) |
47 | 15, 21, 44, 46 | syl21anc 837 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → (𝑋 + (◡𝐺‘ 0 )) = 0 ) |
48 | 2, 13, 47 | rspcedvdw 3638 |
. . . 4
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → ∃𝑣 ∈ 𝐵 (𝑋 + 𝑣) = 0 ) |
49 | | f1ofo 6869 |
. . . . 5
⊢ (𝐺:𝐵–1-1-onto→𝐵 → 𝐺:𝐵–onto→𝐵) |
50 | 8, 9, 16, 24, 7, 18 | mndractfo 33015 |
. . . . . 6
⊢ (𝜑 → (𝐺:𝐵–onto→𝐵 ↔ ∃𝑤 ∈ 𝐵 (𝑤 + 𝑋) = 0 )) |
51 | 50 | biimpa 476 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺:𝐵–onto→𝐵) → ∃𝑤 ∈ 𝐵 (𝑤 + 𝑋) = 0 ) |
52 | 49, 51 | sylan2 592 |
. . . 4
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → ∃𝑤 ∈ 𝐵 (𝑤 + 𝑋) = 0 ) |
53 | 48, 52 | jca 511 |
. . 3
⊢ ((𝜑 ∧ 𝐺:𝐵–1-1-onto→𝐵) → (∃𝑣 ∈ 𝐵 (𝑋 + 𝑣) = 0 ∧ ∃𝑤 ∈ 𝐵 (𝑤 + 𝑋) = 0 )) |
54 | 7 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑣 ∈ 𝐵) ∧ (𝑋 + 𝑣) = 0 ) → 𝐸 ∈ Mnd) |
55 | 18 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑣 ∈ 𝐵) ∧ (𝑋 + 𝑣) = 0 ) → 𝑋 ∈ 𝐵) |
56 | | simplr 768 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑣 ∈ 𝐵) ∧ (𝑋 + 𝑣) = 0 ) → 𝑣 ∈ 𝐵) |
57 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑣 ∈ 𝐵) ∧ (𝑋 + 𝑣) = 0 ) → (𝑋 + 𝑣) = 0 ) |
58 | 8, 9, 16, 24, 54, 55, 56, 57 | mndractf1 33014 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑣 ∈ 𝐵) ∧ (𝑋 + 𝑣) = 0 ) → 𝐺:𝐵–1-1→𝐵) |
59 | 58 | r19.29an 3164 |
. . . . 5
⊢ ((𝜑 ∧ ∃𝑣 ∈ 𝐵 (𝑋 + 𝑣) = 0 ) → 𝐺:𝐵–1-1→𝐵) |
60 | 50 | biimpar 477 |
. . . . 5
⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝐵 (𝑤 + 𝑋) = 0 ) → 𝐺:𝐵–onto→𝐵) |
61 | 59, 60 | anim12dan 618 |
. . . 4
⊢ ((𝜑 ∧ (∃𝑣 ∈ 𝐵 (𝑋 + 𝑣) = 0 ∧ ∃𝑤 ∈ 𝐵 (𝑤 + 𝑋) = 0 )) → (𝐺:𝐵–1-1→𝐵 ∧ 𝐺:𝐵–onto→𝐵)) |
62 | | df-f1o 6580 |
. . . 4
⊢ (𝐺:𝐵–1-1-onto→𝐵 ↔ (𝐺:𝐵–1-1→𝐵 ∧ 𝐺:𝐵–onto→𝐵)) |
63 | 61, 62 | sylibr 234 |
. . 3
⊢ ((𝜑 ∧ (∃𝑣 ∈ 𝐵 (𝑋 + 𝑣) = 0 ∧ ∃𝑤 ∈ 𝐵 (𝑤 + 𝑋) = 0 )) → 𝐺:𝐵–1-1-onto→𝐵) |
64 | 53, 63 | impbida 800 |
. 2
⊢ (𝜑 → (𝐺:𝐵–1-1-onto→𝐵 ↔ (∃𝑣 ∈ 𝐵 (𝑋 + 𝑣) = 0 ∧ ∃𝑤 ∈ 𝐵 (𝑤 + 𝑋) = 0 ))) |
65 | 8, 9, 16, 7, 18 | mndlrinvb 33011 |
. 2
⊢ (𝜑 → ((∃𝑣 ∈ 𝐵 (𝑋 + 𝑣) = 0 ∧ ∃𝑤 ∈ 𝐵 (𝑤 + 𝑋) = 0 ) ↔ ∃𝑦 ∈ 𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ))) |
66 | 64, 65 | bitrd 279 |
1
⊢ (𝜑 → (𝐺:𝐵–1-1-onto→𝐵 ↔ ∃𝑦 ∈ 𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ))) |