Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmn4 Structured version   Visualization version   GIF version

Theorem cmn4 18925
 Description: Commutative/associative law for Abelian groups. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablcom.b 𝐵 = (Base‘𝐺)
ablcom.p + = (+g𝐺)
Assertion
Ref Expression
cmn4 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊)))

Proof of Theorem cmn4
StepHypRef Expression
1 ablcom.b . 2 𝐵 = (Base‘𝐺)
2 ablcom.p . 2 + = (+g𝐺)
3 simp1 1132 . . 3 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐺 ∈ CMnd)
4 cmnmnd 18921 . . 3 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
53, 4syl 17 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐺 ∈ Mnd)
6 simp2l 1195 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑋𝐵)
7 simp2r 1196 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑌𝐵)
8 simp3l 1197 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑍𝐵)
9 simp3r 1198 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑊𝐵)
101, 2cmncom 18922 . . 3 ((𝐺 ∈ CMnd ∧ 𝑌𝐵𝑍𝐵) → (𝑌 + 𝑍) = (𝑍 + 𝑌))
113, 7, 8, 10syl3anc 1367 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 + 𝑍) = (𝑍 + 𝑌))
121, 2, 5, 6, 7, 8, 9, 11mnd4g 17924 1 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   ∧ w3a 1083   = wceq 1533   ∈ wcel 2110  ‘cfv 6354  (class class class)co 7155  Basecbs 16482  +gcplusg 16564  Mndcmnd 17910  CMndccmn 18905 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-nul 5209 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-iota 6313  df-fv 6362  df-ov 7158  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-cmn 18907 This theorem is referenced by:  ablsub4  18932  ghmplusg  18965  lmod4  19683  evlslem1  20294  ip2di  20784  clmsub4  23709  cringm4  30962  lfladdcl  36206
 Copyright terms: Public domain W3C validator