Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cmn4 | Structured version Visualization version GIF version |
Description: Commutative/associative law for Abelian groups. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
ablcom.b | ⊢ 𝐵 = (Base‘𝐺) |
ablcom.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
cmn4 | ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablcom.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | ablcom.p | . 2 ⊢ + = (+g‘𝐺) | |
3 | simp1 1135 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝐺 ∈ CMnd) | |
4 | cmnmnd 19402 | . . 3 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝐺 ∈ Mnd) |
6 | simp2l 1198 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
7 | simp2r 1199 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
8 | simp3l 1200 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
9 | simp3r 1201 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑊 ∈ 𝐵) | |
10 | 1, 2 | cmncom 19403 | . . 3 ⊢ ((𝐺 ∈ CMnd ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 + 𝑍) = (𝑍 + 𝑌)) |
11 | 3, 7, 8, 10 | syl3anc 1370 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑌 + 𝑍) = (𝑍 + 𝑌)) |
12 | 1, 2, 5, 6, 7, 8, 9, 11 | mnd4g 18399 | 1 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Mndcmnd 18385 CMndccmn 19386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-cmn 19388 |
This theorem is referenced by: ablsub4 19414 ghmplusg 19447 lmod4 20173 ip2di 20846 evlslem1 21292 clmsub4 24269 cringm4 31622 lfladdcl 37085 |
Copyright terms: Public domain | W3C validator |