|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cnvcnvres | Structured version Visualization version GIF version | ||
| Description: The double converse of the restriction of a class. (Contributed by NM, 3-Jun-2007.) | 
| Ref | Expression | 
|---|---|
| cnvcnvres | ⊢ ◡◡(𝐴 ↾ 𝐵) = (◡◡𝐴 ↾ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | relres 6022 | . . 3 ⊢ Rel (𝐴 ↾ 𝐵) | |
| 2 | dfrel2 6208 | . . 3 ⊢ (Rel (𝐴 ↾ 𝐵) ↔ ◡◡(𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵)) | |
| 3 | 1, 2 | mpbi 230 | . 2 ⊢ ◡◡(𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | 
| 4 | rescnvcnv 6223 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
| 5 | 3, 4 | eqtr4i 2767 | 1 ⊢ ◡◡(𝐴 ↾ 𝐵) = (◡◡𝐴 ↾ 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1539 ◡ccnv 5683 ↾ cres 5686 Rel wrel 5689 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-rel 5691 df-cnv 5692 df-res 5696 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |