| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvcnvres | Structured version Visualization version GIF version | ||
| Description: The double converse of the restriction of a class. (Contributed by NM, 3-Jun-2007.) |
| Ref | Expression |
|---|---|
| cnvcnvres | ⊢ ◡◡(𝐴 ↾ 𝐵) = (◡◡𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5997 | . . 3 ⊢ Rel (𝐴 ↾ 𝐵) | |
| 2 | dfrel2 6183 | . . 3 ⊢ (Rel (𝐴 ↾ 𝐵) ↔ ◡◡(𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵)) | |
| 3 | 1, 2 | mpbi 230 | . 2 ⊢ ◡◡(𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) |
| 4 | rescnvcnv 6198 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
| 5 | 3, 4 | eqtr4i 2762 | 1 ⊢ ◡◡(𝐴 ↾ 𝐵) = (◡◡𝐴 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ◡ccnv 5658 ↾ cres 5661 Rel wrel 5664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-res 5671 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |