MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnvres Structured version   Visualization version   GIF version

Theorem cnvcnvres 6096
Description: The double converse of the restriction of a class. (Contributed by NM, 3-Jun-2007.)
Assertion
Ref Expression
cnvcnvres (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cnvcnvres
StepHypRef Expression
1 relres 5908 . . 3 Rel (𝐴𝐵)
2 dfrel2 6080 . . 3 (Rel (𝐴𝐵) ↔ (𝐴𝐵) = (𝐴𝐵))
31, 2mpbi 233 . 2 (𝐴𝐵) = (𝐴𝐵)
4 rescnvcnv 6095 . 2 (𝐴𝐵) = (𝐴𝐵)
53, 4eqtr4i 2770 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  ccnv 5578  cres 5581  Rel wrel 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5585  df-rel 5586  df-cnv 5587  df-res 5591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator