MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnvres Structured version   Visualization version   GIF version

Theorem cnvcnvres 6178
Description: The double converse of the restriction of a class. (Contributed by NM, 3-Jun-2007.)
Assertion
Ref Expression
cnvcnvres (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cnvcnvres
StepHypRef Expression
1 relres 5976 . . 3 Rel (𝐴𝐵)
2 dfrel2 6162 . . 3 (Rel (𝐴𝐵) ↔ (𝐴𝐵) = (𝐴𝐵))
31, 2mpbi 230 . 2 (𝐴𝐵) = (𝐴𝐵)
4 rescnvcnv 6177 . 2 (𝐴𝐵) = (𝐴𝐵)
53, 4eqtr4i 2755 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ccnv 5637  cres 5640  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-res 5650
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator