![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvcnvres | Structured version Visualization version GIF version |
Description: The double converse of the restriction of a class. (Contributed by NM, 3-Jun-2007.) |
Ref | Expression |
---|---|
cnvcnvres | ⊢ ◡◡(𝐴 ↾ 𝐵) = (◡◡𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 5634 | . . 3 ⊢ Rel (𝐴 ↾ 𝐵) | |
2 | dfrel2 5798 | . . 3 ⊢ (Rel (𝐴 ↾ 𝐵) ↔ ◡◡(𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵)) | |
3 | 1, 2 | mpbi 222 | . 2 ⊢ ◡◡(𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) |
4 | rescnvcnv 5811 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
5 | 3, 4 | eqtr4i 2822 | 1 ⊢ ◡◡(𝐴 ↾ 𝐵) = (◡◡𝐴 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ◡ccnv 5309 ↾ cres 5312 Rel wrel 5315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rab 3096 df-v 3385 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-br 4842 df-opab 4904 df-xp 5316 df-rel 5317 df-cnv 5318 df-res 5322 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |