MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnvres Structured version   Visualization version   GIF version

Theorem cnvcnvres 6154
Description: The double converse of the restriction of a class. (Contributed by NM, 3-Jun-2007.)
Assertion
Ref Expression
cnvcnvres (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cnvcnvres
StepHypRef Expression
1 relres 5956 . . 3 Rel (𝐴𝐵)
2 dfrel2 6138 . . 3 (Rel (𝐴𝐵) ↔ (𝐴𝐵) = (𝐴𝐵))
31, 2mpbi 230 . 2 (𝐴𝐵) = (𝐴𝐵)
4 rescnvcnv 6153 . 2 (𝐴𝐵) = (𝐴𝐵)
53, 4eqtr4i 2755 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ccnv 5618  cres 5621  Rel wrel 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-res 5631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator