| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relres | Structured version Visualization version GIF version | ||
| Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| relres | ⊢ Rel (𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5631 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | inss2 4189 | . . 3 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V) | |
| 3 | 1, 2 | eqsstri 3982 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ (𝐵 × V) |
| 4 | relxp 5637 | . 2 ⊢ Rel (𝐵 × V) | |
| 5 | relss 5725 | . 2 ⊢ ((𝐴 ↾ 𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴 ↾ 𝐵))) | |
| 6 | 3, 4, 5 | mp2 9 | 1 ⊢ Rel (𝐴 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ∩ cin 3902 ⊆ wss 3903 × cxp 5617 ↾ cres 5621 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-in 3910 df-ss 3920 df-opab 5155 df-xp 5625 df-rel 5626 df-res 5631 |
| This theorem is referenced by: relresdm1 5984 iss 5986 dfres2 5992 restidsing 6004 asymref 6065 poirr2 6073 cnvcnvres 6154 resco 6199 coeq0 6204 resssxp 6218 ressn 6233 dfpo2 6244 snres0 6246 funssres 6526 fnresdisj 6602 fnres 6609 fresaunres2 6696 fcnvres 6701 nfunsn 6862 dffv2 6918 fsnunfv 7123 eqfunresadj 7297 resfunexgALT 7883 elecres 8673 domss2 9053 fidomdm 9224 ttrclco 9614 cottrcl 9615 dmttrcl 9617 rnttrcl 9618 frmin 9645 frrlem16 9654 frr1 9655 dmct 10418 relexp0rel 14944 setsres 17089 pospo 18249 metustid 24440 ovoliunlem1 25401 dvres 25810 dvres2 25811 dvlog 26558 efopnlem2 26564 noetasuplem2 27644 noetainflem2 27648 h2hlm 30924 hlimcaui 31180 dfrdg2 35773 funpartfun 35921 bj-idreseq 37140 bj-idreseqb 37141 brres2 38247 br1cnvssrres 38486 refrelressn 38505 trrelressn 38564 dfeldisj2 38700 dfeldisj3 38701 dfeldisj4 38702 disjres 38726 antisymrelres 38745 antisymrelressn 38746 mapfzcons1 42694 diophrw 42736 eldioph2lem1 42737 eldioph2lem2 42738 undmrnresiss 43581 brfvrcld2 43669 relexpiidm 43681 limsupresuz 45688 liminfresuz 45769 funressnfv 47031 dfdfat2 47116 resinsn 48860 resinsnALT 48861 tposres0 48865 setrec2lem2 49683 |
| Copyright terms: Public domain | W3C validator |