![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relres | Structured version Visualization version GIF version |
Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
relres | ⊢ Rel (𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5712 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
2 | inss2 4259 | . . 3 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V) | |
3 | 1, 2 | eqsstri 4043 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ (𝐵 × V) |
4 | relxp 5718 | . 2 ⊢ Rel (𝐵 × V) | |
5 | relss 5805 | . 2 ⊢ ((𝐴 ↾ 𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴 ↾ 𝐵))) | |
6 | 3, 4, 5 | mp2 9 | 1 ⊢ Rel (𝐴 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 × cxp 5698 ↾ cres 5702 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 df-res 5712 |
This theorem is referenced by: relresdm1 6062 iss 6064 dfres2 6070 restidsing 6082 asymref 6148 poirr2 6156 cnvcnvres 6236 resco 6281 coeq0 6286 resssxp 6301 ressn 6316 dfpo2 6327 snres0 6329 funssres 6622 fnresdisj 6700 fnres 6707 fresaunres2 6793 fcnvres 6798 nfunsn 6962 dffv2 7017 fsnunfv 7221 eqfunresadj 7396 resfunexgALT 7988 domss2 9202 fidomdm 9402 ttrclco 9787 cottrcl 9788 dmttrcl 9790 rnttrcl 9791 frmin 9818 frrlem16 9827 frr1 9828 dmct 10593 relexp0rel 15086 setsres 17225 pospo 18415 metustid 24588 ovoliunlem1 25556 dvres 25966 dvres2 25967 dvlog 26711 efopnlem2 26717 noetasuplem2 27797 noetainflem2 27801 h2hlm 31012 hlimcaui 31268 dfrdg2 35759 funpartfun 35907 bj-idreseq 37128 bj-idreseqb 37129 brres2 38224 elecres 38233 br1cnvssrres 38461 refrelressn 38480 trrelressn 38539 dfeldisj2 38674 dfeldisj3 38675 dfeldisj4 38676 disjres 38700 antisymrelres 38719 antisymrelressn 38720 mapfzcons1 42673 diophrw 42715 eldioph2lem1 42716 eldioph2lem2 42717 undmrnresiss 43566 brfvrcld2 43654 relexpiidm 43666 limsupresuz 45624 liminfresuz 45705 funressnfv 46958 dfdfat2 47043 setrec2lem2 48786 |
Copyright terms: Public domain | W3C validator |