| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relres | Structured version Visualization version GIF version | ||
| Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| relres | ⊢ Rel (𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5626 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | inss2 4185 | . . 3 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V) | |
| 3 | 1, 2 | eqsstri 3976 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ (𝐵 × V) |
| 4 | relxp 5632 | . 2 ⊢ Rel (𝐵 × V) | |
| 5 | relss 5721 | . 2 ⊢ ((𝐴 ↾ 𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴 ↾ 𝐵))) | |
| 6 | 3, 4, 5 | mp2 9 | 1 ⊢ Rel (𝐴 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 × cxp 5612 ↾ cres 5616 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 df-ss 3914 df-opab 5152 df-xp 5620 df-rel 5621 df-res 5626 |
| This theorem is referenced by: relresdm1 5981 iss 5983 dfres2 5989 restidsing 6001 asymref 6062 poirr2 6070 cnvcnvres 6152 resco 6197 coeq0 6203 resssxp 6217 ressn 6232 dfpo2 6243 snres0 6245 funssres 6525 fnresdisj 6601 fnres 6608 fresaunres2 6695 fcnvres 6700 nfunsn 6861 dffv2 6917 fsnunfv 7121 eqfunresadj 7294 resfunexgALT 7880 elecres 8670 domss2 9049 fidomdm 9218 ttrclco 9608 cottrcl 9609 dmttrcl 9611 rnttrcl 9612 frmin 9642 frrlem16 9651 frr1 9652 dmct 10415 relexp0rel 14944 setsres 17089 pospo 18249 metustid 24469 ovoliunlem1 25430 dvres 25839 dvres2 25840 dvlog 26587 efopnlem2 26593 noetasuplem2 27673 noetainflem2 27677 h2hlm 30960 hlimcaui 31216 dfrdg2 35837 funpartfun 35987 bj-idreseq 37206 bj-idreseqb 37207 brres2 38315 br1cnvssrres 38607 refrelressn 38626 trrelressn 38689 dfeldisj2 38826 dfeldisj3 38827 dfeldisj4 38828 disjres 38852 antisymrelres 38871 antisymrelressn 38872 mapfzcons1 42820 diophrw 42862 eldioph2lem1 42863 eldioph2lem2 42864 undmrnresiss 43707 brfvrcld2 43795 relexpiidm 43807 limsupresuz 45811 liminfresuz 45892 funressnfv 47153 dfdfat2 47238 resinsn 48982 resinsnALT 48983 tposres0 48987 setrec2lem2 49805 |
| Copyright terms: Public domain | W3C validator |