| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relres | Structured version Visualization version GIF version | ||
| Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| relres | ⊢ Rel (𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5650 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | inss2 4201 | . . 3 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V) | |
| 3 | 1, 2 | eqsstri 3993 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ (𝐵 × V) |
| 4 | relxp 5656 | . 2 ⊢ Rel (𝐵 × V) | |
| 5 | relss 5744 | . 2 ⊢ ((𝐴 ↾ 𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴 ↾ 𝐵))) | |
| 6 | 3, 4, 5 | mp2 9 | 1 ⊢ Rel (𝐴 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 × cxp 5636 ↾ cres 5640 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 df-opab 5170 df-xp 5644 df-rel 5645 df-res 5650 |
| This theorem is referenced by: relresdm1 6004 iss 6006 dfres2 6012 restidsing 6024 asymref 6089 poirr2 6097 cnvcnvres 6178 resco 6223 coeq0 6228 resssxp 6243 ressn 6258 dfpo2 6269 snres0 6271 funssres 6560 fnresdisj 6638 fnres 6645 fresaunres2 6732 fcnvres 6737 nfunsn 6900 dffv2 6956 fsnunfv 7161 eqfunresadj 7335 resfunexgALT 7926 elecres 8719 domss2 9100 fidomdm 9285 ttrclco 9671 cottrcl 9672 dmttrcl 9674 rnttrcl 9675 frmin 9702 frrlem16 9711 frr1 9712 dmct 10477 relexp0rel 15003 setsres 17148 pospo 18304 metustid 24442 ovoliunlem1 25403 dvres 25812 dvres2 25813 dvlog 26560 efopnlem2 26566 noetasuplem2 27646 noetainflem2 27650 h2hlm 30909 hlimcaui 31165 dfrdg2 35783 funpartfun 35931 bj-idreseq 37150 bj-idreseqb 37151 brres2 38257 br1cnvssrres 38496 refrelressn 38515 trrelressn 38574 dfeldisj2 38710 dfeldisj3 38711 dfeldisj4 38712 disjres 38736 antisymrelres 38755 antisymrelressn 38756 mapfzcons1 42705 diophrw 42747 eldioph2lem1 42748 eldioph2lem2 42749 undmrnresiss 43593 brfvrcld2 43681 relexpiidm 43693 limsupresuz 45701 liminfresuz 45782 funressnfv 47044 dfdfat2 47129 resinsn 48860 resinsnALT 48861 tposres0 48865 setrec2lem2 49683 |
| Copyright terms: Public domain | W3C validator |