![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relres | Structured version Visualization version GIF version |
Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
relres | ⊢ Rel (𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5700 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
2 | inss2 4245 | . . 3 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V) | |
3 | 1, 2 | eqsstri 4029 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ (𝐵 × V) |
4 | relxp 5706 | . 2 ⊢ Rel (𝐵 × V) | |
5 | relss 5793 | . 2 ⊢ ((𝐴 ↾ 𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴 ↾ 𝐵))) | |
6 | 3, 4, 5 | mp2 9 | 1 ⊢ Rel (𝐴 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3477 ∩ cin 3961 ⊆ wss 3962 × cxp 5686 ↾ cres 5690 Rel wrel 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-in 3969 df-ss 3979 df-opab 5210 df-xp 5694 df-rel 5695 df-res 5700 |
This theorem is referenced by: relresdm1 6052 iss 6054 dfres2 6060 restidsing 6072 asymref 6138 poirr2 6146 cnvcnvres 6226 resco 6271 coeq0 6276 resssxp 6291 ressn 6306 dfpo2 6317 snres0 6319 funssres 6611 fnresdisj 6688 fnres 6695 fresaunres2 6780 fcnvres 6785 nfunsn 6948 dffv2 7003 fsnunfv 7206 eqfunresadj 7379 resfunexgALT 7970 domss2 9174 fidomdm 9371 ttrclco 9755 cottrcl 9756 dmttrcl 9758 rnttrcl 9759 frmin 9786 frrlem16 9795 frr1 9796 dmct 10561 relexp0rel 15072 setsres 17211 pospo 18402 metustid 24582 ovoliunlem1 25550 dvres 25960 dvres2 25961 dvlog 26707 efopnlem2 26713 noetasuplem2 27793 noetainflem2 27797 h2hlm 31008 hlimcaui 31264 dfrdg2 35776 funpartfun 35924 bj-idreseq 37144 bj-idreseqb 37145 brres2 38249 elecres 38258 br1cnvssrres 38486 refrelressn 38505 trrelressn 38564 dfeldisj2 38699 dfeldisj3 38700 dfeldisj4 38701 disjres 38725 antisymrelres 38744 antisymrelressn 38745 mapfzcons1 42704 diophrw 42746 eldioph2lem1 42747 eldioph2lem2 42748 undmrnresiss 43593 brfvrcld2 43681 relexpiidm 43693 limsupresuz 45658 liminfresuz 45739 funressnfv 46992 dfdfat2 47077 setrec2lem2 48924 |
Copyright terms: Public domain | W3C validator |