| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relres | Structured version Visualization version GIF version | ||
| Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| relres | ⊢ Rel (𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5653 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | inss2 4204 | . . 3 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V) | |
| 3 | 1, 2 | eqsstri 3996 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ (𝐵 × V) |
| 4 | relxp 5659 | . 2 ⊢ Rel (𝐵 × V) | |
| 5 | relss 5747 | . 2 ⊢ ((𝐴 ↾ 𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴 ↾ 𝐵))) | |
| 6 | 3, 4, 5 | mp2 9 | 1 ⊢ Rel (𝐴 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 × cxp 5639 ↾ cres 5643 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 df-opab 5173 df-xp 5647 df-rel 5648 df-res 5653 |
| This theorem is referenced by: relresdm1 6007 iss 6009 dfres2 6015 restidsing 6027 asymref 6092 poirr2 6100 cnvcnvres 6181 resco 6226 coeq0 6231 resssxp 6246 ressn 6261 dfpo2 6272 snres0 6274 funssres 6563 fnresdisj 6641 fnres 6648 fresaunres2 6735 fcnvres 6740 nfunsn 6903 dffv2 6959 fsnunfv 7164 eqfunresadj 7338 resfunexgALT 7929 elecres 8722 domss2 9106 fidomdm 9292 ttrclco 9678 cottrcl 9679 dmttrcl 9681 rnttrcl 9682 frmin 9709 frrlem16 9718 frr1 9719 dmct 10484 relexp0rel 15010 setsres 17155 pospo 18311 metustid 24449 ovoliunlem1 25410 dvres 25819 dvres2 25820 dvlog 26567 efopnlem2 26573 noetasuplem2 27653 noetainflem2 27657 h2hlm 30916 hlimcaui 31172 dfrdg2 35790 funpartfun 35938 bj-idreseq 37157 bj-idreseqb 37158 brres2 38264 br1cnvssrres 38503 refrelressn 38522 trrelressn 38581 dfeldisj2 38717 dfeldisj3 38718 dfeldisj4 38719 disjres 38743 antisymrelres 38762 antisymrelressn 38763 mapfzcons1 42712 diophrw 42754 eldioph2lem1 42755 eldioph2lem2 42756 undmrnresiss 43600 brfvrcld2 43688 relexpiidm 43700 limsupresuz 45708 liminfresuz 45789 funressnfv 47048 dfdfat2 47133 resinsn 48864 resinsnALT 48865 tposres0 48869 setrec2lem2 49687 |
| Copyright terms: Public domain | W3C validator |