Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relres | Structured version Visualization version GIF version |
Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
relres | ⊢ Rel (𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5592 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
2 | inss2 4160 | . . 3 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V) | |
3 | 1, 2 | eqsstri 3951 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ (𝐵 × V) |
4 | relxp 5598 | . 2 ⊢ Rel (𝐵 × V) | |
5 | relss 5682 | . 2 ⊢ ((𝐴 ↾ 𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴 ↾ 𝐵))) | |
6 | 3, 4, 5 | mp2 9 | 1 ⊢ Rel (𝐴 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 × cxp 5578 ↾ cres 5582 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 df-res 5592 |
This theorem is referenced by: iss 5932 dfres2 5938 restidsing 5951 asymref 6010 poirr2 6018 cnvcnvres 6097 resco 6143 coeq0 6148 resssxp 6162 ressn 6177 dfpo2 6188 funssres 6462 fnresdisj 6536 fnres 6543 fresaunres2 6630 fcnvres 6635 nfunsn 6793 dffv2 6845 fsnunfv 7041 resfunexgALT 7764 domss2 8872 fidomdm 9026 dmct 10211 relexp0rel 14676 setsres 16807 pospo 17978 metustid 23616 ovoliunlem1 24571 dvres 24980 dvres2 24981 dvlog 25711 efopnlem2 25717 h2hlm 29243 hlimcaui 29499 funresdm1 30845 snres0 33577 eqfunresadj 33641 dfrdg2 33677 ttrclco 33704 cottrcl 33705 dmttrcl 33707 rnttrcl 33708 noetasuplem2 33864 noetainflem2 33868 funpartfun 34172 bj-idreseq 35260 bj-idreseqb 35261 brres2 36334 elecres 36339 br1cnvssrres 36550 dfeldisj2 36756 dfeldisj3 36757 dfeldisj4 36758 mapfzcons1 40455 diophrw 40497 eldioph2lem1 40498 eldioph2lem2 40499 undmrnresiss 41101 brfvrcld2 41189 relexpiidm 41201 limsupresuz 43134 liminfresuz 43215 funressnfv 44424 dfdfat2 44507 setrec2lem2 46286 |
Copyright terms: Public domain | W3C validator |