| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relres | Structured version Visualization version GIF version | ||
| Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| relres | ⊢ Rel (𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5666 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | inss2 4213 | . . 3 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V) | |
| 3 | 1, 2 | eqsstri 4005 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ (𝐵 × V) |
| 4 | relxp 5672 | . 2 ⊢ Rel (𝐵 × V) | |
| 5 | relss 5760 | . 2 ⊢ ((𝐴 ↾ 𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴 ↾ 𝐵))) | |
| 6 | 3, 4, 5 | mp2 9 | 1 ⊢ Rel (𝐴 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 × cxp 5652 ↾ cres 5656 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-in 3933 df-ss 3943 df-opab 5182 df-xp 5660 df-rel 5661 df-res 5666 |
| This theorem is referenced by: relresdm1 6020 iss 6022 dfres2 6028 restidsing 6040 asymref 6105 poirr2 6113 cnvcnvres 6194 resco 6239 coeq0 6244 resssxp 6259 ressn 6274 dfpo2 6285 snres0 6287 funssres 6580 fnresdisj 6658 fnres 6665 fresaunres2 6750 fcnvres 6755 nfunsn 6918 dffv2 6974 fsnunfv 7179 eqfunresadj 7353 resfunexgALT 7946 domss2 9150 fidomdm 9346 ttrclco 9732 cottrcl 9733 dmttrcl 9735 rnttrcl 9736 frmin 9763 frrlem16 9772 frr1 9773 dmct 10538 relexp0rel 15056 setsres 17197 pospo 18355 metustid 24493 ovoliunlem1 25455 dvres 25864 dvres2 25865 dvlog 26612 efopnlem2 26618 noetasuplem2 27698 noetainflem2 27702 h2hlm 30961 hlimcaui 31217 dfrdg2 35813 funpartfun 35961 bj-idreseq 37180 bj-idreseqb 37181 brres2 38286 elecres 38295 br1cnvssrres 38523 refrelressn 38542 trrelressn 38601 dfeldisj2 38736 dfeldisj3 38737 dfeldisj4 38738 disjres 38762 antisymrelres 38781 antisymrelressn 38782 mapfzcons1 42740 diophrw 42782 eldioph2lem1 42783 eldioph2lem2 42784 undmrnresiss 43628 brfvrcld2 43716 relexpiidm 43728 limsupresuz 45732 liminfresuz 45813 funressnfv 47072 dfdfat2 47157 resinsn 48847 resinsnALT 48848 tposres0 48852 setrec2lem2 49558 |
| Copyright terms: Public domain | W3C validator |