| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relres | Structured version Visualization version GIF version | ||
| Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| relres | ⊢ Rel (𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5643 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | inss2 4197 | . . 3 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V) | |
| 3 | 1, 2 | eqsstri 3990 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ (𝐵 × V) |
| 4 | relxp 5649 | . 2 ⊢ Rel (𝐵 × V) | |
| 5 | relss 5736 | . 2 ⊢ ((𝐴 ↾ 𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴 ↾ 𝐵))) | |
| 6 | 3, 4, 5 | mp2 9 | 1 ⊢ Rel (𝐴 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 × cxp 5629 ↾ cres 5633 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-in 3918 df-ss 3928 df-opab 5165 df-xp 5637 df-rel 5638 df-res 5643 |
| This theorem is referenced by: relresdm1 5993 iss 5995 dfres2 6001 restidsing 6013 asymref 6077 poirr2 6085 cnvcnvres 6166 resco 6211 coeq0 6216 resssxp 6231 ressn 6246 dfpo2 6257 snres0 6259 funssres 6544 fnresdisj 6620 fnres 6627 fresaunres2 6714 fcnvres 6719 nfunsn 6882 dffv2 6938 fsnunfv 7143 eqfunresadj 7317 resfunexgALT 7906 elecres 8696 domss2 9077 fidomdm 9261 ttrclco 9647 cottrcl 9648 dmttrcl 9650 rnttrcl 9651 frmin 9678 frrlem16 9687 frr1 9688 dmct 10453 relexp0rel 14979 setsres 17124 pospo 18284 metustid 24475 ovoliunlem1 25436 dvres 25845 dvres2 25846 dvlog 26593 efopnlem2 26599 noetasuplem2 27679 noetainflem2 27683 h2hlm 30959 hlimcaui 31215 dfrdg2 35776 funpartfun 35924 bj-idreseq 37143 bj-idreseqb 37144 brres2 38250 br1cnvssrres 38489 refrelressn 38508 trrelressn 38567 dfeldisj2 38703 dfeldisj3 38704 dfeldisj4 38705 disjres 38729 antisymrelres 38748 antisymrelressn 38749 mapfzcons1 42698 diophrw 42740 eldioph2lem1 42741 eldioph2lem2 42742 undmrnresiss 43586 brfvrcld2 43674 relexpiidm 43686 limsupresuz 45694 liminfresuz 45775 funressnfv 47037 dfdfat2 47122 resinsn 48853 resinsnALT 48854 tposres0 48858 setrec2lem2 49676 |
| Copyright terms: Public domain | W3C validator |