![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relres | Structured version Visualization version GIF version |
Description: A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
relres | ⊢ Rel (𝐴 ↾ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5689 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
2 | inss2 4230 | . . 3 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ (𝐵 × V) | |
3 | 1, 2 | eqsstri 4017 | . 2 ⊢ (𝐴 ↾ 𝐵) ⊆ (𝐵 × V) |
4 | relxp 5695 | . 2 ⊢ Rel (𝐵 × V) | |
5 | relss 5782 | . 2 ⊢ ((𝐴 ↾ 𝐵) ⊆ (𝐵 × V) → (Rel (𝐵 × V) → Rel (𝐴 ↾ 𝐵))) | |
6 | 3, 4, 5 | mp2 9 | 1 ⊢ Rel (𝐴 ↾ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3472 ∩ cin 3948 ⊆ wss 3949 × cxp 5675 ↾ cres 5679 Rel wrel 5682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-in 3956 df-ss 3966 df-opab 5212 df-xp 5683 df-rel 5684 df-res 5689 |
This theorem is referenced by: relresdm1 6034 iss 6036 dfres2 6042 restidsing 6053 asymref 6118 poirr2 6126 cnvcnvres 6205 resco 6250 coeq0 6255 resssxp 6270 ressn 6285 dfpo2 6296 snres0 6298 funssres 6593 fnresdisj 6671 fnres 6678 fresaunres2 6764 fcnvres 6769 nfunsn 6934 dffv2 6987 fsnunfv 7188 eqfunresadj 7361 resfunexgALT 7938 domss2 9140 fidomdm 9333 ttrclco 9717 cottrcl 9718 dmttrcl 9720 rnttrcl 9721 frmin 9748 frrlem16 9757 frr1 9758 dmct 10523 relexp0rel 14990 setsres 17117 pospo 18304 metustid 24285 ovoliunlem1 25253 dvres 25662 dvres2 25663 dvlog 26393 efopnlem2 26399 noetasuplem2 27471 noetainflem2 27475 h2hlm 30498 hlimcaui 30754 dfrdg2 35069 funpartfun 35217 bj-idreseq 36348 bj-idreseqb 36349 brres2 37441 elecres 37450 br1cnvssrres 37680 refrelressn 37699 trrelressn 37758 dfeldisj2 37893 dfeldisj3 37894 dfeldisj4 37895 disjres 37919 antisymrelres 37938 antisymrelressn 37939 mapfzcons1 41759 diophrw 41801 eldioph2lem1 41802 eldioph2lem2 41803 undmrnresiss 42659 brfvrcld2 42747 relexpiidm 42759 limsupresuz 44719 liminfresuz 44800 funressnfv 46053 dfdfat2 46136 setrec2lem2 47828 |
Copyright terms: Public domain | W3C validator |