MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacnvcnv Structured version   Visualization version   GIF version

Theorem imacnvcnv 6195
Description: The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
imacnvcnv (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem imacnvcnv
StepHypRef Expression
1 rescnvcnv 6193 . . 3 (𝐴𝐵) = (𝐴𝐵)
21rneqi 5917 . 2 ran (𝐴𝐵) = ran (𝐴𝐵)
3 df-ima 5667 . 2 (𝐴𝐵) = ran (𝐴𝐵)
4 df-ima 5667 . 2 (𝐴𝐵) = ran (𝐴𝐵)
52, 3, 43eqtr4i 2768 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ccnv 5653  ran crn 5655  cres 5656  cima 5657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667
This theorem is referenced by:  curry1  8103  curry2  8106  fnwelem  8130  fpwwe2lem5  10649  fpwwe2lem8  10652  eqglact  19162  hmeoima  23703  hmeocld  23705  hmeocls  23706  hmeontr  23707  reghmph  23731  qtopf1  23754  tgpconncompeqg  24050  imasf1obl  24427  mbfimaopnlem  25608  hmeoclda  36351
  Copyright terms: Public domain W3C validator