MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacnvcnv Structured version   Visualization version   GIF version

Theorem imacnvcnv 6155
Description: The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
imacnvcnv (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem imacnvcnv
StepHypRef Expression
1 rescnvcnv 6153 . . 3 (𝐴𝐵) = (𝐴𝐵)
21rneqi 5879 . 2 ran (𝐴𝐵) = ran (𝐴𝐵)
3 df-ima 5632 . 2 (𝐴𝐵) = ran (𝐴𝐵)
4 df-ima 5632 . 2 (𝐴𝐵) = ran (𝐴𝐵)
52, 3, 43eqtr4i 2762 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ccnv 5618  ran crn 5620  cres 5621  cima 5622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632
This theorem is referenced by:  curry1  8037  curry2  8040  fnwelem  8064  fpwwe2lem5  10529  fpwwe2lem8  10532  eqglact  19058  hmeoima  23650  hmeocld  23652  hmeocls  23653  hmeontr  23654  reghmph  23678  qtopf1  23701  tgpconncompeqg  23997  imasf1obl  24374  mbfimaopnlem  25554  hmeoclda  36327
  Copyright terms: Public domain W3C validator