MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacnvcnv Structured version   Visualization version   GIF version

Theorem imacnvcnv 6167
Description: The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
imacnvcnv (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem imacnvcnv
StepHypRef Expression
1 rescnvcnv 6165 . . 3 (𝐴𝐵) = (𝐴𝐵)
21rneqi 5890 . 2 ran (𝐴𝐵) = ran (𝐴𝐵)
3 df-ima 5644 . 2 (𝐴𝐵) = ran (𝐴𝐵)
4 df-ima 5644 . 2 (𝐴𝐵) = ran (𝐴𝐵)
52, 3, 43eqtr4i 2762 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ccnv 5630  ran crn 5632  cres 5633  cima 5634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644
This theorem is referenced by:  curry1  8060  curry2  8063  fnwelem  8087  fpwwe2lem5  10564  fpwwe2lem8  10567  eqglact  19093  hmeoima  23685  hmeocld  23687  hmeocls  23688  hmeontr  23689  reghmph  23713  qtopf1  23736  tgpconncompeqg  24032  imasf1obl  24409  mbfimaopnlem  25589  hmeoclda  36314
  Copyright terms: Public domain W3C validator