![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imacnvcnv | Structured version Visualization version GIF version |
Description: The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.) |
Ref | Expression |
---|---|
imacnvcnv | ⊢ (◡◡𝐴 “ 𝐵) = (𝐴 “ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescnvcnv 6213 | . . 3 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
2 | 1 | rneqi 5943 | . 2 ⊢ ran (◡◡𝐴 ↾ 𝐵) = ran (𝐴 ↾ 𝐵) |
3 | df-ima 5695 | . 2 ⊢ (◡◡𝐴 “ 𝐵) = ran (◡◡𝐴 ↾ 𝐵) | |
4 | df-ima 5695 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
5 | 2, 3, 4 | 3eqtr4i 2766 | 1 ⊢ (◡◡𝐴 “ 𝐵) = (𝐴 “ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ◡ccnv 5681 ran crn 5683 ↾ cres 5684 “ cima 5685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-xp 5688 df-rel 5689 df-cnv 5690 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 |
This theorem is referenced by: curry1 8115 curry2 8118 fnwelem 8142 fpwwe2lem5 10666 fpwwe2lem8 10669 eqglact 19141 hmeoima 23689 hmeocld 23691 hmeocls 23692 hmeontr 23693 reghmph 23717 qtopf1 23740 tgpconncompeqg 24036 imasf1obl 24417 mbfimaopnlem 25604 hmeoclda 35850 |
Copyright terms: Public domain | W3C validator |