![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imacnvcnv | Structured version Visualization version GIF version |
Description: The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.) |
Ref | Expression |
---|---|
imacnvcnv | ⊢ (◡◡𝐴 “ 𝐵) = (𝐴 “ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescnvcnv 6226 | . . 3 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
2 | 1 | rneqi 5951 | . 2 ⊢ ran (◡◡𝐴 ↾ 𝐵) = ran (𝐴 ↾ 𝐵) |
3 | df-ima 5702 | . 2 ⊢ (◡◡𝐴 “ 𝐵) = ran (◡◡𝐴 ↾ 𝐵) | |
4 | df-ima 5702 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
5 | 2, 3, 4 | 3eqtr4i 2773 | 1 ⊢ (◡◡𝐴 “ 𝐵) = (𝐴 “ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ◡ccnv 5688 ran crn 5690 ↾ cres 5691 “ cima 5692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 |
This theorem is referenced by: curry1 8128 curry2 8131 fnwelem 8155 fpwwe2lem5 10673 fpwwe2lem8 10676 eqglact 19210 hmeoima 23789 hmeocld 23791 hmeocls 23792 hmeontr 23793 reghmph 23817 qtopf1 23840 tgpconncompeqg 24136 imasf1obl 24517 mbfimaopnlem 25704 hmeoclda 36316 |
Copyright terms: Public domain | W3C validator |