![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imacnvcnv | Structured version Visualization version GIF version |
Description: The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.) |
Ref | Expression |
---|---|
imacnvcnv | ⊢ (◡◡𝐴 “ 𝐵) = (𝐴 “ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescnvcnv 6235 | . . 3 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
2 | 1 | rneqi 5962 | . 2 ⊢ ran (◡◡𝐴 ↾ 𝐵) = ran (𝐴 ↾ 𝐵) |
3 | df-ima 5713 | . 2 ⊢ (◡◡𝐴 “ 𝐵) = ran (◡◡𝐴 ↾ 𝐵) | |
4 | df-ima 5713 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
5 | 2, 3, 4 | 3eqtr4i 2778 | 1 ⊢ (◡◡𝐴 “ 𝐵) = (𝐴 “ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ◡ccnv 5699 ran crn 5701 ↾ cres 5702 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: curry1 8145 curry2 8148 fnwelem 8172 fpwwe2lem5 10704 fpwwe2lem8 10707 eqglact 19219 hmeoima 23794 hmeocld 23796 hmeocls 23797 hmeontr 23798 reghmph 23822 qtopf1 23845 tgpconncompeqg 24141 imasf1obl 24522 mbfimaopnlem 25709 hmeoclda 36299 |
Copyright terms: Public domain | W3C validator |