MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacnvcnv Structured version   Visualization version   GIF version

Theorem imacnvcnv 5816
Description: The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
imacnvcnv (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem imacnvcnv
StepHypRef Expression
1 rescnvcnv 5814 . . 3 (𝐴𝐵) = (𝐴𝐵)
21rneqi 5556 . 2 ran (𝐴𝐵) = ran (𝐴𝐵)
3 df-ima 5326 . 2 (𝐴𝐵) = ran (𝐴𝐵)
4 df-ima 5326 . 2 (𝐴𝐵) = ran (𝐴𝐵)
52, 3, 43eqtr4i 2832 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1653  ccnv 5312  ran crn 5314  cres 5315  cima 5316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pr 5098
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ral 3095  df-rab 3099  df-v 3388  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-sn 4370  df-pr 4372  df-op 4376  df-br 4845  df-opab 4907  df-xp 5319  df-rel 5320  df-cnv 5321  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326
This theorem is referenced by:  curry1  7507  curry2  7510  fnwelem  7530  fpwwe2lem6  9746  fpwwe2lem9  9749  eqglact  17957  hmeoima  21896  hmeocld  21898  hmeocls  21899  hmeontr  21900  reghmph  21924  qtopf1  21947  tgpconncompeqg  22242  imasf1obl  22620  mbfimaopnlem  23762  hmeoclda  32839
  Copyright terms: Public domain W3C validator