MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacnvcnv Structured version   Visualization version   GIF version

Theorem imacnvcnv 6109
Description: The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
imacnvcnv (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem imacnvcnv
StepHypRef Expression
1 rescnvcnv 6107 . . 3 (𝐴𝐵) = (𝐴𝐵)
21rneqi 5846 . 2 ran (𝐴𝐵) = ran (𝐴𝐵)
3 df-ima 5602 . 2 (𝐴𝐵) = ran (𝐴𝐵)
4 df-ima 5602 . 2 (𝐴𝐵) = ran (𝐴𝐵)
52, 3, 43eqtr4i 2776 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  ccnv 5588  ran crn 5590  cres 5591  cima 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602
This theorem is referenced by:  curry1  7944  curry2  7947  fnwelem  7972  fpwwe2lem5  10391  fpwwe2lem8  10394  eqglact  18807  hmeoima  22916  hmeocld  22918  hmeocls  22919  hmeontr  22920  reghmph  22944  qtopf1  22967  tgpconncompeqg  23263  imasf1obl  23644  mbfimaopnlem  24819  hmeoclda  34522
  Copyright terms: Public domain W3C validator