MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacnvcnv Structured version   Visualization version   GIF version

Theorem imacnvcnv 6215
Description: The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
imacnvcnv (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem imacnvcnv
StepHypRef Expression
1 rescnvcnv 6213 . . 3 (𝐴𝐵) = (𝐴𝐵)
21rneqi 5943 . 2 ran (𝐴𝐵) = ran (𝐴𝐵)
3 df-ima 5695 . 2 (𝐴𝐵) = ran (𝐴𝐵)
4 df-ima 5695 . 2 (𝐴𝐵) = ran (𝐴𝐵)
52, 3, 43eqtr4i 2766 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  ccnv 5681  ran crn 5683  cres 5684  cima 5685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-xp 5688  df-rel 5689  df-cnv 5690  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695
This theorem is referenced by:  curry1  8115  curry2  8118  fnwelem  8142  fpwwe2lem5  10666  fpwwe2lem8  10669  eqglact  19141  hmeoima  23689  hmeocld  23691  hmeocls  23692  hmeontr  23693  reghmph  23717  qtopf1  23740  tgpconncompeqg  24036  imasf1obl  24417  mbfimaopnlem  25604  hmeoclda  35850
  Copyright terms: Public domain W3C validator