| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imacnvcnv | Structured version Visualization version GIF version | ||
| Description: The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.) |
| Ref | Expression |
|---|---|
| imacnvcnv | ⊢ (◡◡𝐴 “ 𝐵) = (𝐴 “ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescnvcnv 6193 | . . 3 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
| 2 | 1 | rneqi 5917 | . 2 ⊢ ran (◡◡𝐴 ↾ 𝐵) = ran (𝐴 ↾ 𝐵) |
| 3 | df-ima 5667 | . 2 ⊢ (◡◡𝐴 “ 𝐵) = ran (◡◡𝐴 ↾ 𝐵) | |
| 4 | df-ima 5667 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 5 | 2, 3, 4 | 3eqtr4i 2768 | 1 ⊢ (◡◡𝐴 “ 𝐵) = (𝐴 “ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ◡ccnv 5653 ran crn 5655 ↾ cres 5656 “ cima 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 |
| This theorem is referenced by: curry1 8103 curry2 8106 fnwelem 8130 fpwwe2lem5 10649 fpwwe2lem8 10652 eqglact 19162 hmeoima 23703 hmeocld 23705 hmeocls 23706 hmeontr 23707 reghmph 23731 qtopf1 23754 tgpconncompeqg 24050 imasf1obl 24427 mbfimaopnlem 25608 hmeoclda 36351 |
| Copyright terms: Public domain | W3C validator |