MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacnvcnv Structured version   Visualization version   GIF version

Theorem imacnvcnv 6182
Description: The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
imacnvcnv (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem imacnvcnv
StepHypRef Expression
1 rescnvcnv 6180 . . 3 (𝐴𝐵) = (𝐴𝐵)
21rneqi 5904 . 2 ran (𝐴𝐵) = ran (𝐴𝐵)
3 df-ima 5654 . 2 (𝐴𝐵) = ran (𝐴𝐵)
4 df-ima 5654 . 2 (𝐴𝐵) = ran (𝐴𝐵)
52, 3, 43eqtr4i 2763 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ccnv 5640  ran crn 5642  cres 5643  cima 5644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654
This theorem is referenced by:  curry1  8086  curry2  8089  fnwelem  8113  fpwwe2lem5  10595  fpwwe2lem8  10598  eqglact  19118  hmeoima  23659  hmeocld  23661  hmeocls  23662  hmeontr  23663  reghmph  23687  qtopf1  23710  tgpconncompeqg  24006  imasf1obl  24383  mbfimaopnlem  25563  hmeoclda  36328
  Copyright terms: Public domain W3C validator