MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacnvcnv Structured version   Visualization version   GIF version

Theorem imacnvcnv 6237
Description: The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
imacnvcnv (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem imacnvcnv
StepHypRef Expression
1 rescnvcnv 6235 . . 3 (𝐴𝐵) = (𝐴𝐵)
21rneqi 5962 . 2 ran (𝐴𝐵) = ran (𝐴𝐵)
3 df-ima 5713 . 2 (𝐴𝐵) = ran (𝐴𝐵)
4 df-ima 5713 . 2 (𝐴𝐵) = ran (𝐴𝐵)
52, 3, 43eqtr4i 2778 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  ccnv 5699  ran crn 5701  cres 5702  cima 5703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by:  curry1  8145  curry2  8148  fnwelem  8172  fpwwe2lem5  10704  fpwwe2lem8  10707  eqglact  19219  hmeoima  23794  hmeocld  23796  hmeocls  23797  hmeontr  23798  reghmph  23822  qtopf1  23845  tgpconncompeqg  24141  imasf1obl  24522  mbfimaopnlem  25709  hmeoclda  36299
  Copyright terms: Public domain W3C validator