MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacnvcnv Structured version   Visualization version   GIF version

Theorem imacnvcnv 6048
Description: The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
imacnvcnv (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem imacnvcnv
StepHypRef Expression
1 rescnvcnv 6046 . . 3 (𝐴𝐵) = (𝐴𝐵)
21rneqi 5790 . 2 ran (𝐴𝐵) = ran (𝐴𝐵)
3 df-ima 5548 . 2 (𝐴𝐵) = ran (𝐴𝐵)
4 df-ima 5548 . 2 (𝐴𝐵) = ran (𝐴𝐵)
52, 3, 43eqtr4i 2772 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  ccnv 5534  ran crn 5536  cres 5537  cima 5538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pr 5306
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-rab 3063  df-v 3402  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-sn 4527  df-pr 4529  df-op 4533  df-br 5041  df-opab 5103  df-xp 5541  df-rel 5542  df-cnv 5543  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548
This theorem is referenced by:  curry1  7838  curry2  7841  fnwelem  7864  fpwwe2lem5  10148  fpwwe2lem8  10151  eqglact  18462  hmeoima  22529  hmeocld  22531  hmeocls  22532  hmeontr  22533  reghmph  22557  qtopf1  22580  tgpconncompeqg  22876  imasf1obl  23254  mbfimaopnlem  24420  hmeoclda  34178
  Copyright terms: Public domain W3C validator