MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacnvcnv Structured version   Visualization version   GIF version

Theorem imacnvcnv 6200
Description: The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
imacnvcnv (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem imacnvcnv
StepHypRef Expression
1 rescnvcnv 6198 . . 3 (𝐴𝐵) = (𝐴𝐵)
21rneqi 5922 . 2 ran (𝐴𝐵) = ran (𝐴𝐵)
3 df-ima 5672 . 2 (𝐴𝐵) = ran (𝐴𝐵)
4 df-ima 5672 . 2 (𝐴𝐵) = ran (𝐴𝐵)
52, 3, 43eqtr4i 2769 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ccnv 5658  ran crn 5660  cres 5661  cima 5662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672
This theorem is referenced by:  curry1  8108  curry2  8111  fnwelem  8135  fpwwe2lem5  10654  fpwwe2lem8  10657  eqglact  19167  hmeoima  23708  hmeocld  23710  hmeocls  23711  hmeontr  23712  reghmph  23736  qtopf1  23759  tgpconncompeqg  24055  imasf1obl  24432  mbfimaopnlem  25613  hmeoclda  36356
  Copyright terms: Public domain W3C validator