| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imacnvcnv | Structured version Visualization version GIF version | ||
| Description: The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.) |
| Ref | Expression |
|---|---|
| imacnvcnv | ⊢ (◡◡𝐴 “ 𝐵) = (𝐴 “ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescnvcnv 6180 | . . 3 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
| 2 | 1 | rneqi 5904 | . 2 ⊢ ran (◡◡𝐴 ↾ 𝐵) = ran (𝐴 ↾ 𝐵) |
| 3 | df-ima 5654 | . 2 ⊢ (◡◡𝐴 “ 𝐵) = ran (◡◡𝐴 ↾ 𝐵) | |
| 4 | df-ima 5654 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 5 | 2, 3, 4 | 3eqtr4i 2763 | 1 ⊢ (◡◡𝐴 “ 𝐵) = (𝐴 “ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ◡ccnv 5640 ran crn 5642 ↾ cres 5643 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: curry1 8086 curry2 8089 fnwelem 8113 fpwwe2lem5 10595 fpwwe2lem8 10598 eqglact 19118 hmeoima 23659 hmeocld 23661 hmeocls 23662 hmeontr 23663 reghmph 23687 qtopf1 23710 tgpconncompeqg 24006 imasf1obl 24383 mbfimaopnlem 25563 hmeoclda 36328 |
| Copyright terms: Public domain | W3C validator |