| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imacnvcnv | Structured version Visualization version GIF version | ||
| Description: The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.) |
| Ref | Expression |
|---|---|
| imacnvcnv | ⊢ (◡◡𝐴 “ 𝐵) = (𝐴 “ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescnvcnv 6165 | . . 3 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
| 2 | 1 | rneqi 5890 | . 2 ⊢ ran (◡◡𝐴 ↾ 𝐵) = ran (𝐴 ↾ 𝐵) |
| 3 | df-ima 5644 | . 2 ⊢ (◡◡𝐴 “ 𝐵) = ran (◡◡𝐴 ↾ 𝐵) | |
| 4 | df-ima 5644 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
| 5 | 2, 3, 4 | 3eqtr4i 2762 | 1 ⊢ (◡◡𝐴 “ 𝐵) = (𝐴 “ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ◡ccnv 5630 ran crn 5632 ↾ cres 5633 “ cima 5634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 |
| This theorem is referenced by: curry1 8060 curry2 8063 fnwelem 8087 fpwwe2lem5 10564 fpwwe2lem8 10567 eqglact 19093 hmeoima 23685 hmeocld 23687 hmeocls 23688 hmeontr 23689 reghmph 23713 qtopf1 23736 tgpconncompeqg 24032 imasf1obl 24409 mbfimaopnlem 25589 hmeoclda 36314 |
| Copyright terms: Public domain | W3C validator |