MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacnvcnv Structured version   Visualization version   GIF version

Theorem imacnvcnv 6098
Description: The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
imacnvcnv (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem imacnvcnv
StepHypRef Expression
1 rescnvcnv 6096 . . 3 (𝐴𝐵) = (𝐴𝐵)
21rneqi 5835 . 2 ran (𝐴𝐵) = ran (𝐴𝐵)
3 df-ima 5593 . 2 (𝐴𝐵) = ran (𝐴𝐵)
4 df-ima 5593 . 2 (𝐴𝐵) = ran (𝐴𝐵)
52, 3, 43eqtr4i 2776 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  ccnv 5579  ran crn 5581  cres 5582  cima 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  curry1  7915  curry2  7918  fnwelem  7943  fpwwe2lem5  10322  fpwwe2lem8  10325  eqglact  18722  hmeoima  22824  hmeocld  22826  hmeocls  22827  hmeontr  22828  reghmph  22852  qtopf1  22875  tgpconncompeqg  23171  imasf1obl  23550  mbfimaopnlem  24724  hmeoclda  34449
  Copyright terms: Public domain W3C validator