MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imacnvcnv Structured version   Visualization version   GIF version

Theorem imacnvcnv 6206
Description: The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
imacnvcnv (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem imacnvcnv
StepHypRef Expression
1 rescnvcnv 6204 . . 3 (𝐴𝐵) = (𝐴𝐵)
21rneqi 5937 . 2 ran (𝐴𝐵) = ran (𝐴𝐵)
3 df-ima 5690 . 2 (𝐴𝐵) = ran (𝐴𝐵)
4 df-ima 5690 . 2 (𝐴𝐵) = ran (𝐴𝐵)
52, 3, 43eqtr4i 2769 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ccnv 5676  ran crn 5678  cres 5679  cima 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690
This theorem is referenced by:  curry1  8093  curry2  8096  fnwelem  8120  fpwwe2lem5  10633  fpwwe2lem8  10636  eqglact  19096  hmeoima  23490  hmeocld  23492  hmeocls  23493  hmeontr  23494  reghmph  23518  qtopf1  23541  tgpconncompeqg  23837  imasf1obl  24218  mbfimaopnlem  25405  hmeoclda  35522
  Copyright terms: Public domain W3C validator