| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rescnvcnv | Structured version Visualization version GIF version | ||
| Description: The restriction of the double converse of a class. (Contributed by NM, 8-Apr-2007.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| rescnvcnv | ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnv2 6142 | . . 3 ⊢ ◡◡𝐴 = (𝐴 ↾ V) | |
| 2 | 1 | reseq1i 5926 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = ((𝐴 ↾ V) ↾ 𝐵) |
| 3 | resres 5943 | . 2 ⊢ ((𝐴 ↾ V) ↾ 𝐵) = (𝐴 ↾ (V ∩ 𝐵)) | |
| 4 | ssv 3960 | . . . 4 ⊢ 𝐵 ⊆ V | |
| 5 | sseqin2 4174 | . . . 4 ⊢ (𝐵 ⊆ V ↔ (V ∩ 𝐵) = 𝐵) | |
| 6 | 4, 5 | mpbi 230 | . . 3 ⊢ (V ∩ 𝐵) = 𝐵 |
| 7 | 6 | reseq2i 5927 | . 2 ⊢ (𝐴 ↾ (V ∩ 𝐵)) = (𝐴 ↾ 𝐵) |
| 8 | 2, 3, 7 | 3eqtri 2756 | 1 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3436 ∩ cin 3902 ⊆ wss 3903 ◡ccnv 5618 ↾ cres 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 df-res 5631 |
| This theorem is referenced by: cnvcnvres 6154 imacnvcnv 6155 resdm2 6180 resdmres 6181 coires1 6213 f1oresrab 7061 |
| Copyright terms: Public domain | W3C validator |