| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rescnvcnv | Structured version Visualization version GIF version | ||
| Description: The restriction of the double converse of a class. (Contributed by NM, 8-Apr-2007.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| rescnvcnv | ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnv2 6187 | . . 3 ⊢ ◡◡𝐴 = (𝐴 ↾ V) | |
| 2 | 1 | reseq1i 5967 | . 2 ⊢ (◡◡𝐴 ↾ 𝐵) = ((𝐴 ↾ V) ↾ 𝐵) |
| 3 | resres 5984 | . 2 ⊢ ((𝐴 ↾ V) ↾ 𝐵) = (𝐴 ↾ (V ∩ 𝐵)) | |
| 4 | ssv 3988 | . . . 4 ⊢ 𝐵 ⊆ V | |
| 5 | sseqin2 4203 | . . . 4 ⊢ (𝐵 ⊆ V ↔ (V ∩ 𝐵) = 𝐵) | |
| 6 | 4, 5 | mpbi 230 | . . 3 ⊢ (V ∩ 𝐵) = 𝐵 |
| 7 | 6 | reseq2i 5968 | . 2 ⊢ (𝐴 ↾ (V ∩ 𝐵)) = (𝐴 ↾ 𝐵) |
| 8 | 2, 3, 7 | 3eqtri 2763 | 1 ⊢ (◡◡𝐴 ↾ 𝐵) = (𝐴 ↾ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3464 ∩ cin 3930 ⊆ wss 3931 ◡ccnv 5658 ↾ cres 5661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-res 5671 |
| This theorem is referenced by: cnvcnvres 6199 imacnvcnv 6200 resdm2 6225 resdmres 6226 coires1 6258 f1oresrab 7122 |
| Copyright terms: Public domain | W3C validator |