MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescnvcnv Structured version   Visualization version   GIF version

Theorem rescnvcnv 6203
Description: The restriction of the double converse of a class. (Contributed by NM, 8-Apr-2007.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
rescnvcnv (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem rescnvcnv
StepHypRef Expression
1 cnvcnv2 6192 . . 3 𝐴 = (𝐴 ↾ V)
21reseq1i 5977 . 2 (𝐴𝐵) = ((𝐴 ↾ V) ↾ 𝐵)
3 resres 5994 . 2 ((𝐴 ↾ V) ↾ 𝐵) = (𝐴 ↾ (V ∩ 𝐵))
4 ssv 4006 . . . 4 𝐵 ⊆ V
5 sseqin2 4215 . . . 4 (𝐵 ⊆ V ↔ (V ∩ 𝐵) = 𝐵)
64, 5mpbi 229 . . 3 (V ∩ 𝐵) = 𝐵
76reseq2i 5978 . 2 (𝐴 ↾ (V ∩ 𝐵)) = (𝐴𝐵)
82, 3, 73eqtri 2764 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  Vcvv 3474  cin 3947  wss 3948  ccnv 5675  cres 5678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-res 5688
This theorem is referenced by:  cnvcnvres  6204  imacnvcnv  6205  resdm2  6230  resdmres  6231  coires1  6263  f1oresrab  7124
  Copyright terms: Public domain W3C validator