![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > copsex2dv | Structured version Visualization version GIF version |
Description: Implicit substitution deduction for ordered pairs. (Contributed by Thierry Arnoux, 4-May-2025.) |
Ref | Expression |
---|---|
copsex2dv.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
copsex2dv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
copsex2dv.1 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
copsex2dv | ⊢ (𝜑 → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | copsex2dv.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒))) |
3 | 2 | alrimivv 1927 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒))) |
4 | copsex2dv.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
5 | copsex2dv.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
6 | copsex2t 5512 | . 2 ⊢ ((∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒)) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ 𝜒)) | |
7 | 3, 4, 5, 6 | syl12anc 836 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1777 ∈ wcel 2108 〈cop 4654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 |
This theorem is referenced by: brab2d 32629 |
Copyright terms: Public domain | W3C validator |