![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > copsex2dv | Structured version Visualization version GIF version |
Description: Implicit substitution deduction for ordered pairs. (Contributed by Thierry Arnoux, 4-May-2025.) |
Ref | Expression |
---|---|
copsex2dv.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
copsex2dv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
copsex2dv.1 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
copsex2dv | ⊢ (𝜑 → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | copsex2dv.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝜑 → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒))) |
3 | 2 | alrimivv 1926 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒))) |
4 | copsex2dv.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
5 | copsex2dv.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
6 | copsex2t 5503 | . 2 ⊢ ((∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒)) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ 𝜒)) | |
7 | 3, 4, 5, 6 | syl12anc 837 | 1 ⊢ (𝜑 → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜓) ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1776 ∈ wcel 2106 〈cop 4637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 |
This theorem is referenced by: brab2d 32627 |
Copyright terms: Public domain | W3C validator |