MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  copsex2dv Structured version   Visualization version   GIF version

Theorem copsex2dv 5432
Description: Implicit substitution deduction for ordered pairs. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
copsex2dv.a (𝜑𝐴𝑈)
copsex2dv.b (𝜑𝐵𝑉)
copsex2dv.1 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
copsex2dv (𝜑 → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ 𝜒))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜒,𝑥,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem copsex2dv
StepHypRef Expression
1 copsex2dv.1 . . . 4 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
21ex 412 . . 3 (𝜑 → ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜓𝜒)))
32alrimivv 1929 . 2 (𝜑 → ∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜓𝜒)))
4 copsex2dv.a . 2 (𝜑𝐴𝑈)
5 copsex2dv.b . 2 (𝜑𝐵𝑉)
6 copsex2t 5430 . 2 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜓𝜒)) ∧ (𝐴𝑈𝐵𝑉)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ 𝜒))
73, 4, 5, 6syl12anc 836 1 (𝜑 → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜓) ↔ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  cop 4579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580
This theorem is referenced by:  brab2d  32588  brab2dd  48927
  Copyright terms: Public domain W3C validator