Step | Hyp | Ref
| Expression |
1 | | df-ov 7258 |
. 2
⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) |
2 | | eqid 2738 |
. . . . . 6
⊢ 𝑆 = 𝑆 |
3 | | biidd 261 |
. . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑆 = 𝑆 ↔ 𝑆 = 𝑆)) |
4 | 3 | copsex2g 5401 |
. . . . . 6
⊢ ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻) → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑆 = 𝑆) ↔ 𝑆 = 𝑆)) |
5 | 2, 4 | mpbiri 257 |
. . . . 5
⊢ ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑆 = 𝑆)) |
6 | 5 | 3adant3 1130 |
. . . 4
⊢ ((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻 ∧ 〈𝐴, 𝐵〉 ∈ 𝐶) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑆 = 𝑆)) |
7 | 6 | adantr 480 |
. . 3
⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻 ∧ 〈𝐴, 𝐵〉 ∈ 𝐶) ∧ 𝑆 ∈ 𝐽) → ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑆 = 𝑆)) |
8 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑤 = 〈𝐴, 𝐵〉 → (𝑤 = 〈𝑥, 𝑦〉 ↔ 〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉)) |
9 | 8 | anbi1d 629 |
. . . . . . 7
⊢ (𝑤 = 〈𝐴, 𝐵〉 → ((𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅) ↔ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅))) |
10 | | ov6g.1 |
. . . . . . . . . 10
⊢
(〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 → 𝑅 = 𝑆) |
11 | 10 | eqeq2d 2749 |
. . . . . . . . 9
⊢
(〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 → (𝑧 = 𝑅 ↔ 𝑧 = 𝑆)) |
12 | 11 | eqcoms 2746 |
. . . . . . . 8
⊢
(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 → (𝑧 = 𝑅 ↔ 𝑧 = 𝑆)) |
13 | 12 | pm5.32i 574 |
. . . . . . 7
⊢
((〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅) ↔ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑆)) |
14 | 9, 13 | bitrdi 286 |
. . . . . 6
⊢ (𝑤 = 〈𝐴, 𝐵〉 → ((𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅) ↔ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑆))) |
15 | 14 | 2exbidv 1928 |
. . . . 5
⊢ (𝑤 = 〈𝐴, 𝐵〉 → (∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅) ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑆))) |
16 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑧 = 𝑆 → (𝑧 = 𝑆 ↔ 𝑆 = 𝑆)) |
17 | 16 | anbi2d 628 |
. . . . . 6
⊢ (𝑧 = 𝑆 → ((〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑆) ↔ (〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑆 = 𝑆))) |
18 | 17 | 2exbidv 1928 |
. . . . 5
⊢ (𝑧 = 𝑆 → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑆) ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑆 = 𝑆))) |
19 | | moeq 3637 |
. . . . . . 7
⊢
∃*𝑧 𝑧 = 𝑅 |
20 | 19 | mosubop 5419 |
. . . . . 6
⊢
∃*𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅) |
21 | 20 | a1i 11 |
. . . . 5
⊢ (𝑤 ∈ 𝐶 → ∃*𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅)) |
22 | | ov6g.2 |
. . . . . 6
⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑧 = 𝑅)} |
23 | | dfoprab2 7311 |
. . . . . 6
⊢
{〈〈𝑥,
𝑦〉, 𝑧〉 ∣ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑧 = 𝑅)} = {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑧 = 𝑅))} |
24 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝑤 ∈ 𝐶 ↔ 〈𝑥, 𝑦〉 ∈ 𝐶)) |
25 | 24 | anbi1d 629 |
. . . . . . . . . . 11
⊢ (𝑤 = 〈𝑥, 𝑦〉 → ((𝑤 ∈ 𝐶 ∧ 𝑧 = 𝑅) ↔ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑧 = 𝑅))) |
26 | 25 | pm5.32i 574 |
. . . . . . . . . 10
⊢ ((𝑤 = 〈𝑥, 𝑦〉 ∧ (𝑤 ∈ 𝐶 ∧ 𝑧 = 𝑅)) ↔ (𝑤 = 〈𝑥, 𝑦〉 ∧ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑧 = 𝑅))) |
27 | | an12 641 |
. . . . . . . . . 10
⊢ ((𝑤 = 〈𝑥, 𝑦〉 ∧ (𝑤 ∈ 𝐶 ∧ 𝑧 = 𝑅)) ↔ (𝑤 ∈ 𝐶 ∧ (𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅))) |
28 | 26, 27 | bitr3i 276 |
. . . . . . . . 9
⊢ ((𝑤 = 〈𝑥, 𝑦〉 ∧ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑧 = 𝑅)) ↔ (𝑤 ∈ 𝐶 ∧ (𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅))) |
29 | 28 | 2exbii 1852 |
. . . . . . . 8
⊢
(∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑧 = 𝑅)) ↔ ∃𝑥∃𝑦(𝑤 ∈ 𝐶 ∧ (𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅))) |
30 | | 19.42vv 1962 |
. . . . . . . 8
⊢
(∃𝑥∃𝑦(𝑤 ∈ 𝐶 ∧ (𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅)) ↔ (𝑤 ∈ 𝐶 ∧ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅))) |
31 | 29, 30 | bitri 274 |
. . . . . . 7
⊢
(∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑧 = 𝑅)) ↔ (𝑤 ∈ 𝐶 ∧ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅))) |
32 | 31 | opabbii 5137 |
. . . . . 6
⊢
{〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑧 = 𝑅))} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐶 ∧ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅))} |
33 | 22, 23, 32 | 3eqtri 2770 |
. . . . 5
⊢ 𝐹 = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ 𝐶 ∧ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝑧 = 𝑅))} |
34 | 15, 18, 21, 33 | fvopab3ig 6853 |
. . . 4
⊢
((〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝑆 ∈ 𝐽) → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑆 = 𝑆) → (𝐹‘〈𝐴, 𝐵〉) = 𝑆)) |
35 | 34 | 3ad2antl3 1185 |
. . 3
⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻 ∧ 〈𝐴, 𝐵〉 ∈ 𝐶) ∧ 𝑆 ∈ 𝐽) → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝑆 = 𝑆) → (𝐹‘〈𝐴, 𝐵〉) = 𝑆)) |
36 | 7, 35 | mpd 15 |
. 2
⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻 ∧ 〈𝐴, 𝐵〉 ∈ 𝐶) ∧ 𝑆 ∈ 𝐽) → (𝐹‘〈𝐴, 𝐵〉) = 𝑆) |
37 | 1, 36 | eqtrid 2790 |
1
⊢ (((𝐴 ∈ 𝐺 ∧ 𝐵 ∈ 𝐻 ∧ 〈𝐴, 𝐵〉 ∈ 𝐶) ∧ 𝑆 ∈ 𝐽) → (𝐴𝐹𝐵) = 𝑆) |