MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ov6g Structured version   Visualization version   GIF version

Theorem ov6g 7292
Description: The value of an operation class abstraction. Special case. (Contributed by NM, 13-Nov-2006.)
Hypotheses
Ref Expression
ov6g.1 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → 𝑅 = 𝑆)
ov6g.2 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)}
Assertion
Ref Expression
ov6g (((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) ∧ 𝑆𝐽) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑧,𝑅   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑦,𝑧)   𝐽(𝑥,𝑦,𝑧)

Proof of Theorem ov6g
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7138 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 eqid 2798 . . . . . 6 𝑆 = 𝑆
3 biidd 265 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑆 = 𝑆𝑆 = 𝑆))
43copsex2g 5349 . . . . . 6 ((𝐴𝐺𝐵𝐻) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆) ↔ 𝑆 = 𝑆))
52, 4mpbiri 261 . . . . 5 ((𝐴𝐺𝐵𝐻) → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆))
653adant3 1129 . . . 4 ((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆))
76adantr 484 . . 3 (((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) ∧ 𝑆𝐽) → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆))
8 eqeq1 2802 . . . . . . . 8 (𝑤 = ⟨𝐴, 𝐵⟩ → (𝑤 = ⟨𝑥, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩))
98anbi1d 632 . . . . . . 7 (𝑤 = ⟨𝐴, 𝐵⟩ → ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
10 ov6g.1 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → 𝑅 = 𝑆)
1110eqeq2d 2809 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → (𝑧 = 𝑅𝑧 = 𝑆))
1211eqcoms 2806 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝑧 = 𝑅𝑧 = 𝑆))
1312pm5.32i 578 . . . . . . 7 ((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑆))
149, 13syl6bb 290 . . . . . 6 (𝑤 = ⟨𝐴, 𝐵⟩ → ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑆)))
15142exbidv 1925 . . . . 5 (𝑤 = ⟨𝐴, 𝐵⟩ → (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅) ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑆)))
16 eqeq1 2802 . . . . . . 7 (𝑧 = 𝑆 → (𝑧 = 𝑆𝑆 = 𝑆))
1716anbi2d 631 . . . . . 6 (𝑧 = 𝑆 → ((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑆) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆)))
18172exbidv 1925 . . . . 5 (𝑧 = 𝑆 → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑆) ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆)))
19 moeq 3646 . . . . . . 7 ∃*𝑧 𝑧 = 𝑅
2019mosubop 5366 . . . . . 6 ∃*𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)
2120a1i 11 . . . . 5 (𝑤𝐶 → ∃*𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅))
22 ov6g.2 . . . . . 6 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)}
23 dfoprab2 7191 . . . . . 6 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅))}
24 eleq1 2877 . . . . . . . . . . . 12 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤𝐶 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐶))
2524anbi1d 632 . . . . . . . . . . 11 (𝑤 = ⟨𝑥, 𝑦⟩ → ((𝑤𝐶𝑧 = 𝑅) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)))
2625pm5.32i 578 . . . . . . . . . 10 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑤𝐶𝑧 = 𝑅)) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)))
27 an12 644 . . . . . . . . . 10 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑤𝐶𝑧 = 𝑅)) ↔ (𝑤𝐶 ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
2826, 27bitr3i 280 . . . . . . . . 9 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)) ↔ (𝑤𝐶 ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
29282exbii 1850 . . . . . . . 8 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)) ↔ ∃𝑥𝑦(𝑤𝐶 ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
30 19.42vv 1958 . . . . . . . 8 (∃𝑥𝑦(𝑤𝐶 ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)) ↔ (𝑤𝐶 ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
3129, 30bitri 278 . . . . . . 7 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)) ↔ (𝑤𝐶 ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
3231opabbii 5097 . . . . . 6 {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅))} = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝐶 ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅))}
3322, 23, 323eqtri 2825 . . . . 5 𝐹 = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝐶 ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅))}
3415, 18, 21, 33fvopab3ig 6741 . . . 4 ((⟨𝐴, 𝐵⟩ ∈ 𝐶𝑆𝐽) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆) → (𝐹‘⟨𝐴, 𝐵⟩) = 𝑆))
35343ad2antl3 1184 . . 3 (((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) ∧ 𝑆𝐽) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆) → (𝐹‘⟨𝐴, 𝐵⟩) = 𝑆))
367, 35mpd 15 . 2 (((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) ∧ 𝑆𝐽) → (𝐹‘⟨𝐴, 𝐵⟩) = 𝑆)
371, 36syl5eq 2845 1 (((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) ∧ 𝑆𝐽) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  ∃*wmo 2596  cop 4531  {copab 5092  cfv 6324  (class class class)co 7135  {coprab 7136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-oprab 7139
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator