MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ov6g Structured version   Visualization version   GIF version

Theorem ov6g 7510
Description: The value of an operation class abstraction. Special case. (Contributed by NM, 13-Nov-2006.)
Hypotheses
Ref Expression
ov6g.1 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → 𝑅 = 𝑆)
ov6g.2 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)}
Assertion
Ref Expression
ov6g (((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) ∧ 𝑆𝐽) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑧,𝑅   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦,𝑧)   𝐺(𝑥,𝑦,𝑧)   𝐻(𝑥,𝑦,𝑧)   𝐽(𝑥,𝑦,𝑧)

Proof of Theorem ov6g
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7349 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 eqid 2731 . . . . . 6 𝑆 = 𝑆
3 biidd 262 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑆 = 𝑆𝑆 = 𝑆))
43copsex2g 5431 . . . . . 6 ((𝐴𝐺𝐵𝐻) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆) ↔ 𝑆 = 𝑆))
52, 4mpbiri 258 . . . . 5 ((𝐴𝐺𝐵𝐻) → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆))
653adant3 1132 . . . 4 ((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆))
76adantr 480 . . 3 (((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) ∧ 𝑆𝐽) → ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆))
8 eqeq1 2735 . . . . . . . 8 (𝑤 = ⟨𝐴, 𝐵⟩ → (𝑤 = ⟨𝑥, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩))
98anbi1d 631 . . . . . . 7 (𝑤 = ⟨𝐴, 𝐵⟩ → ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
10 ov6g.1 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → 𝑅 = 𝑆)
1110eqeq2d 2742 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → (𝑧 = 𝑅𝑧 = 𝑆))
1211eqcoms 2739 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ → (𝑧 = 𝑅𝑧 = 𝑆))
1312pm5.32i 574 . . . . . . 7 ((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑆))
149, 13bitrdi 287 . . . . . 6 (𝑤 = ⟨𝐴, 𝐵⟩ → ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑆)))
15142exbidv 1925 . . . . 5 (𝑤 = ⟨𝐴, 𝐵⟩ → (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅) ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑆)))
16 eqeq1 2735 . . . . . . 7 (𝑧 = 𝑆 → (𝑧 = 𝑆𝑆 = 𝑆))
1716anbi2d 630 . . . . . 6 (𝑧 = 𝑆 → ((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑆) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆)))
18172exbidv 1925 . . . . 5 (𝑧 = 𝑆 → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑆) ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆)))
19 moeq 3661 . . . . . . 7 ∃*𝑧 𝑧 = 𝑅
2019mosubop 5449 . . . . . 6 ∃*𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)
2120a1i 11 . . . . 5 (𝑤𝐶 → ∃*𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅))
22 ov6g.2 . . . . . 6 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)}
23 dfoprab2 7404 . . . . . 6 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅))}
24 eleq1 2819 . . . . . . . . . . . 12 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝑤𝐶 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐶))
2524anbi1d 631 . . . . . . . . . . 11 (𝑤 = ⟨𝑥, 𝑦⟩ → ((𝑤𝐶𝑧 = 𝑅) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)))
2625pm5.32i 574 . . . . . . . . . 10 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑤𝐶𝑧 = 𝑅)) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)))
27 an12 645 . . . . . . . . . 10 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ (𝑤𝐶𝑧 = 𝑅)) ↔ (𝑤𝐶 ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
2826, 27bitr3i 277 . . . . . . . . 9 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)) ↔ (𝑤𝐶 ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
29282exbii 1850 . . . . . . . 8 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)) ↔ ∃𝑥𝑦(𝑤𝐶 ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
30 19.42vv 1958 . . . . . . . 8 (∃𝑥𝑦(𝑤𝐶 ∧ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)) ↔ (𝑤𝐶 ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
3129, 30bitri 275 . . . . . . 7 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅)) ↔ (𝑤𝐶 ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅)))
3231opabbii 5156 . . . . . 6 {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑧 = 𝑅))} = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝐶 ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅))}
3322, 23, 323eqtri 2758 . . . . 5 𝐹 = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝐶 ∧ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑧 = 𝑅))}
3415, 18, 21, 33fvopab3ig 6925 . . . 4 ((⟨𝐴, 𝐵⟩ ∈ 𝐶𝑆𝐽) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆) → (𝐹‘⟨𝐴, 𝐵⟩) = 𝑆))
35343ad2antl3 1188 . . 3 (((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) ∧ 𝑆𝐽) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝑆 = 𝑆) → (𝐹‘⟨𝐴, 𝐵⟩) = 𝑆))
367, 35mpd 15 . 2 (((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) ∧ 𝑆𝐽) → (𝐹‘⟨𝐴, 𝐵⟩) = 𝑆)
371, 36eqtrid 2778 1 (((𝐴𝐺𝐵𝐻 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) ∧ 𝑆𝐽) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  ∃*wmo 2533  cop 4579  {copab 5151  cfv 6481  (class class class)co 7346  {coprab 7347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator