![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fprodsplit1f | Structured version Visualization version GIF version |
Description: Separate out a term in a finite product. A version of fprodsplit1 45514 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fprodsplit1f.kph | ⊢ Ⅎ𝑘𝜑 |
fprodsplit1f.fk | ⊢ (𝜑 → Ⅎ𝑘𝐷) |
fprodsplit1f.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fprodsplit1f.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
fprodsplit1f.c | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
fprodsplit1f.d | ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
fprodsplit1f | ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodsplit1f.kph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | disjdif 4495 | . . . 4 ⊢ ({𝐶} ∩ (𝐴 ∖ {𝐶})) = ∅ | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → ({𝐶} ∩ (𝐴 ∖ {𝐶})) = ∅) |
4 | fprodsplit1f.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
5 | 4 | snssd 4834 | . . . . 5 ⊢ (𝜑 → {𝐶} ⊆ 𝐴) |
6 | undif 4505 | . . . . 5 ⊢ ({𝐶} ⊆ 𝐴 ↔ ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴) | |
7 | 5, 6 | sylib 218 | . . . 4 ⊢ (𝜑 → ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴) |
8 | 7 | eqcomd 2746 | . . 3 ⊢ (𝜑 → 𝐴 = ({𝐶} ∪ (𝐴 ∖ {𝐶}))) |
9 | fprodsplit1f.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
10 | fprodsplit1f.b | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
11 | 1, 3, 8, 9, 10 | fprodsplitf 16036 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (∏𝑘 ∈ {𝐶}𝐵 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
12 | 4 | ancli 548 | . . . . . 6 ⊢ (𝜑 → (𝜑 ∧ 𝐶 ∈ 𝐴)) |
13 | nfv 1913 | . . . . . . . . 9 ⊢ Ⅎ𝑘 𝐶 ∈ 𝐴 | |
14 | 1, 13 | nfan 1898 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝜑 ∧ 𝐶 ∈ 𝐴) |
15 | nfcsb1v 3946 | . . . . . . . . 9 ⊢ Ⅎ𝑘⦋𝐶 / 𝑘⦌𝐵 | |
16 | 15 | nfel1 2925 | . . . . . . . 8 ⊢ Ⅎ𝑘⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ |
17 | 14, 16 | nfim 1895 | . . . . . . 7 ⊢ Ⅎ𝑘((𝜑 ∧ 𝐶 ∈ 𝐴) → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ) |
18 | eleq1 2832 | . . . . . . . . 9 ⊢ (𝑘 = 𝐶 → (𝑘 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
19 | 18 | anbi2d 629 | . . . . . . . 8 ⊢ (𝑘 = 𝐶 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝐶 ∈ 𝐴))) |
20 | csbeq1a 3935 | . . . . . . . . 9 ⊢ (𝑘 = 𝐶 → 𝐵 = ⦋𝐶 / 𝑘⦌𝐵) | |
21 | 20 | eleq1d 2829 | . . . . . . . 8 ⊢ (𝑘 = 𝐶 → (𝐵 ∈ ℂ ↔ ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ)) |
22 | 19, 21 | imbi12d 344 | . . . . . . 7 ⊢ (𝑘 = 𝐶 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝐶 ∈ 𝐴) → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ))) |
23 | 17, 22, 10 | vtoclg1f 3582 | . . . . . 6 ⊢ (𝐶 ∈ 𝐴 → ((𝜑 ∧ 𝐶 ∈ 𝐴) → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ)) |
24 | 4, 12, 23 | sylc 65 | . . . . 5 ⊢ (𝜑 → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ) |
25 | prodsns 16020 | . . . . 5 ⊢ ((𝐶 ∈ 𝐴 ∧ ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝐶}𝐵 = ⦋𝐶 / 𝑘⦌𝐵) | |
26 | 4, 24, 25 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ∏𝑘 ∈ {𝐶}𝐵 = ⦋𝐶 / 𝑘⦌𝐵) |
27 | fprodsplit1f.fk | . . . . 5 ⊢ (𝜑 → Ⅎ𝑘𝐷) | |
28 | fprodsplit1f.d | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 𝐷) | |
29 | 1, 27, 4, 28 | csbiedf 3952 | . . . 4 ⊢ (𝜑 → ⦋𝐶 / 𝑘⦌𝐵 = 𝐷) |
30 | 26, 29 | eqtrd 2780 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐶}𝐵 = 𝐷) |
31 | 30 | oveq1d 7463 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ {𝐶}𝐵 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵) = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
32 | 11, 31 | eqtrd 2780 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 ⦋csb 3921 ∖ cdif 3973 ∪ cun 3974 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 {csn 4648 (class class class)co 7448 Fincfn 9003 ℂcc 11182 · cmul 11189 ∏cprod 15951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-prod 15952 |
This theorem is referenced by: fprodeq0g 16042 fprodsplit1 45514 fprod0 45517 dvmptfprodlem 45865 |
Copyright terms: Public domain | W3C validator |