MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodsplit1f Structured version   Visualization version   GIF version

Theorem fprodsplit1f 16027
Description: Separate out a term in a finite product. A version of fprodsplit1 45613 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodsplit1f.kph 𝑘𝜑
fprodsplit1f.fk (𝜑𝑘𝐷)
fprodsplit1f.a (𝜑𝐴 ∈ Fin)
fprodsplit1f.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodsplit1f.c (𝜑𝐶𝐴)
fprodsplit1f.d ((𝜑𝑘 = 𝐶) → 𝐵 = 𝐷)
Assertion
Ref Expression
fprodsplit1f (𝜑 → ∏𝑘𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐷(𝑘)

Proof of Theorem fprodsplit1f
StepHypRef Expression
1 fprodsplit1f.kph . . 3 𝑘𝜑
2 disjdif 4471 . . . 4 ({𝐶} ∩ (𝐴 ∖ {𝐶})) = ∅
32a1i 11 . . 3 (𝜑 → ({𝐶} ∩ (𝐴 ∖ {𝐶})) = ∅)
4 fprodsplit1f.c . . . . . 6 (𝜑𝐶𝐴)
54snssd 4808 . . . . 5 (𝜑 → {𝐶} ⊆ 𝐴)
6 undif 4481 . . . . 5 ({𝐶} ⊆ 𝐴 ↔ ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴)
75, 6sylib 218 . . . 4 (𝜑 → ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴)
87eqcomd 2742 . . 3 (𝜑𝐴 = ({𝐶} ∪ (𝐴 ∖ {𝐶})))
9 fprodsplit1f.a . . 3 (𝜑𝐴 ∈ Fin)
10 fprodsplit1f.b . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
111, 3, 8, 9, 10fprodsplitf 16025 . 2 (𝜑 → ∏𝑘𝐴 𝐵 = (∏𝑘 ∈ {𝐶}𝐵 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
124ancli 548 . . . . . 6 (𝜑 → (𝜑𝐶𝐴))
13 nfv 1913 . . . . . . . . 9 𝑘 𝐶𝐴
141, 13nfan 1898 . . . . . . . 8 𝑘(𝜑𝐶𝐴)
15 nfcsb1v 3922 . . . . . . . . 9 𝑘𝐶 / 𝑘𝐵
1615nfel1 2921 . . . . . . . 8 𝑘𝐶 / 𝑘𝐵 ∈ ℂ
1714, 16nfim 1895 . . . . . . 7 𝑘((𝜑𝐶𝐴) → 𝐶 / 𝑘𝐵 ∈ ℂ)
18 eleq1 2828 . . . . . . . . 9 (𝑘 = 𝐶 → (𝑘𝐴𝐶𝐴))
1918anbi2d 630 . . . . . . . 8 (𝑘 = 𝐶 → ((𝜑𝑘𝐴) ↔ (𝜑𝐶𝐴)))
20 csbeq1a 3912 . . . . . . . . 9 (𝑘 = 𝐶𝐵 = 𝐶 / 𝑘𝐵)
2120eleq1d 2825 . . . . . . . 8 (𝑘 = 𝐶 → (𝐵 ∈ ℂ ↔ 𝐶 / 𝑘𝐵 ∈ ℂ))
2219, 21imbi12d 344 . . . . . . 7 (𝑘 = 𝐶 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝐶𝐴) → 𝐶 / 𝑘𝐵 ∈ ℂ)))
2317, 22, 10vtoclg1f 3569 . . . . . 6 (𝐶𝐴 → ((𝜑𝐶𝐴) → 𝐶 / 𝑘𝐵 ∈ ℂ))
244, 12, 23sylc 65 . . . . 5 (𝜑𝐶 / 𝑘𝐵 ∈ ℂ)
25 prodsns 16009 . . . . 5 ((𝐶𝐴𝐶 / 𝑘𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝐶}𝐵 = 𝐶 / 𝑘𝐵)
264, 24, 25syl2anc 584 . . . 4 (𝜑 → ∏𝑘 ∈ {𝐶}𝐵 = 𝐶 / 𝑘𝐵)
27 fprodsplit1f.fk . . . . 5 (𝜑𝑘𝐷)
28 fprodsplit1f.d . . . . 5 ((𝜑𝑘 = 𝐶) → 𝐵 = 𝐷)
291, 27, 4, 28csbiedf 3928 . . . 4 (𝜑𝐶 / 𝑘𝐵 = 𝐷)
3026, 29eqtrd 2776 . . 3 (𝜑 → ∏𝑘 ∈ {𝐶}𝐵 = 𝐷)
3130oveq1d 7447 . 2 (𝜑 → (∏𝑘 ∈ {𝐶}𝐵 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵) = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
3211, 31eqtrd 2776 1 (𝜑 → ∏𝑘𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1782  wcel 2107  wnfc 2889  csb 3898  cdif 3947  cun 3948  cin 3949  wss 3950  c0 4332  {csn 4625  (class class class)co 7432  Fincfn 8986  cc 11154   · cmul 11161  cprod 15940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-prod 15941
This theorem is referenced by:  fprodeq0g  16031  fprodsplit1  45613  fprod0  45616  dvmptfprodlem  45964
  Copyright terms: Public domain W3C validator