MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodsplit1f Structured version   Visualization version   GIF version

Theorem fprodsplit1f 15932
Description: Separate out a term in a finite product. A version of fprodsplit1 45564 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodsplit1f.kph 𝑘𝜑
fprodsplit1f.fk (𝜑𝑘𝐷)
fprodsplit1f.a (𝜑𝐴 ∈ Fin)
fprodsplit1f.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodsplit1f.c (𝜑𝐶𝐴)
fprodsplit1f.d ((𝜑𝑘 = 𝐶) → 𝐵 = 𝐷)
Assertion
Ref Expression
fprodsplit1f (𝜑 → ∏𝑘𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐷(𝑘)

Proof of Theorem fprodsplit1f
StepHypRef Expression
1 fprodsplit1f.kph . . 3 𝑘𝜑
2 disjdif 4431 . . . 4 ({𝐶} ∩ (𝐴 ∖ {𝐶})) = ∅
32a1i 11 . . 3 (𝜑 → ({𝐶} ∩ (𝐴 ∖ {𝐶})) = ∅)
4 fprodsplit1f.c . . . . . 6 (𝜑𝐶𝐴)
54snssd 4769 . . . . 5 (𝜑 → {𝐶} ⊆ 𝐴)
6 undif 4441 . . . . 5 ({𝐶} ⊆ 𝐴 ↔ ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴)
75, 6sylib 218 . . . 4 (𝜑 → ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴)
87eqcomd 2735 . . 3 (𝜑𝐴 = ({𝐶} ∪ (𝐴 ∖ {𝐶})))
9 fprodsplit1f.a . . 3 (𝜑𝐴 ∈ Fin)
10 fprodsplit1f.b . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
111, 3, 8, 9, 10fprodsplitf 15930 . 2 (𝜑 → ∏𝑘𝐴 𝐵 = (∏𝑘 ∈ {𝐶}𝐵 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
124ancli 548 . . . . . 6 (𝜑 → (𝜑𝐶𝐴))
13 nfv 1914 . . . . . . . . 9 𝑘 𝐶𝐴
141, 13nfan 1899 . . . . . . . 8 𝑘(𝜑𝐶𝐴)
15 nfcsb1v 3883 . . . . . . . . 9 𝑘𝐶 / 𝑘𝐵
1615nfel1 2908 . . . . . . . 8 𝑘𝐶 / 𝑘𝐵 ∈ ℂ
1714, 16nfim 1896 . . . . . . 7 𝑘((𝜑𝐶𝐴) → 𝐶 / 𝑘𝐵 ∈ ℂ)
18 eleq1 2816 . . . . . . . . 9 (𝑘 = 𝐶 → (𝑘𝐴𝐶𝐴))
1918anbi2d 630 . . . . . . . 8 (𝑘 = 𝐶 → ((𝜑𝑘𝐴) ↔ (𝜑𝐶𝐴)))
20 csbeq1a 3873 . . . . . . . . 9 (𝑘 = 𝐶𝐵 = 𝐶 / 𝑘𝐵)
2120eleq1d 2813 . . . . . . . 8 (𝑘 = 𝐶 → (𝐵 ∈ ℂ ↔ 𝐶 / 𝑘𝐵 ∈ ℂ))
2219, 21imbi12d 344 . . . . . . 7 (𝑘 = 𝐶 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝐶𝐴) → 𝐶 / 𝑘𝐵 ∈ ℂ)))
2317, 22, 10vtoclg1f 3533 . . . . . 6 (𝐶𝐴 → ((𝜑𝐶𝐴) → 𝐶 / 𝑘𝐵 ∈ ℂ))
244, 12, 23sylc 65 . . . . 5 (𝜑𝐶 / 𝑘𝐵 ∈ ℂ)
25 prodsns 15914 . . . . 5 ((𝐶𝐴𝐶 / 𝑘𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝐶}𝐵 = 𝐶 / 𝑘𝐵)
264, 24, 25syl2anc 584 . . . 4 (𝜑 → ∏𝑘 ∈ {𝐶}𝐵 = 𝐶 / 𝑘𝐵)
27 fprodsplit1f.fk . . . . 5 (𝜑𝑘𝐷)
28 fprodsplit1f.d . . . . 5 ((𝜑𝑘 = 𝐶) → 𝐵 = 𝐷)
291, 27, 4, 28csbiedf 3889 . . . 4 (𝜑𝐶 / 𝑘𝐵 = 𝐷)
3026, 29eqtrd 2764 . . 3 (𝜑 → ∏𝑘 ∈ {𝐶}𝐵 = 𝐷)
3130oveq1d 7384 . 2 (𝜑 → (∏𝑘 ∈ {𝐶}𝐵 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵) = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
3211, 31eqtrd 2764 1 (𝜑 → ∏𝑘𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  csb 3859  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4292  {csn 4585  (class class class)co 7369  Fincfn 8895  cc 11042   · cmul 11049  cprod 15845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-prod 15846
This theorem is referenced by:  fprodeq0g  15936  fprodsplit1  45564  fprod0  45567  dvmptfprodlem  45915
  Copyright terms: Public domain W3C validator