MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodsplit1f Structured version   Visualization version   GIF version

Theorem fprodsplit1f 15700
Description: Separate out a term in a finite product. A version of fprodsplit1 43134 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodsplit1f.kph 𝑘𝜑
fprodsplit1f.fk (𝜑𝑘𝐷)
fprodsplit1f.a (𝜑𝐴 ∈ Fin)
fprodsplit1f.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fprodsplit1f.c (𝜑𝐶𝐴)
fprodsplit1f.d ((𝜑𝑘 = 𝐶) → 𝐵 = 𝐷)
Assertion
Ref Expression
fprodsplit1f (𝜑 → ∏𝑘𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐷(𝑘)

Proof of Theorem fprodsplit1f
StepHypRef Expression
1 fprodsplit1f.kph . . 3 𝑘𝜑
2 disjdif 4405 . . . 4 ({𝐶} ∩ (𝐴 ∖ {𝐶})) = ∅
32a1i 11 . . 3 (𝜑 → ({𝐶} ∩ (𝐴 ∖ {𝐶})) = ∅)
4 fprodsplit1f.c . . . . . 6 (𝜑𝐶𝐴)
54snssd 4742 . . . . 5 (𝜑 → {𝐶} ⊆ 𝐴)
6 undif 4415 . . . . 5 ({𝐶} ⊆ 𝐴 ↔ ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴)
75, 6sylib 217 . . . 4 (𝜑 → ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴)
87eqcomd 2744 . . 3 (𝜑𝐴 = ({𝐶} ∪ (𝐴 ∖ {𝐶})))
9 fprodsplit1f.a . . 3 (𝜑𝐴 ∈ Fin)
10 fprodsplit1f.b . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
111, 3, 8, 9, 10fprodsplitf 15698 . 2 (𝜑 → ∏𝑘𝐴 𝐵 = (∏𝑘 ∈ {𝐶}𝐵 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
124ancli 549 . . . . . 6 (𝜑 → (𝜑𝐶𝐴))
13 nfv 1917 . . . . . . . . 9 𝑘 𝐶𝐴
141, 13nfan 1902 . . . . . . . 8 𝑘(𝜑𝐶𝐴)
15 nfcsb1v 3857 . . . . . . . . 9 𝑘𝐶 / 𝑘𝐵
1615nfel1 2923 . . . . . . . 8 𝑘𝐶 / 𝑘𝐵 ∈ ℂ
1714, 16nfim 1899 . . . . . . 7 𝑘((𝜑𝐶𝐴) → 𝐶 / 𝑘𝐵 ∈ ℂ)
18 eleq1 2826 . . . . . . . . 9 (𝑘 = 𝐶 → (𝑘𝐴𝐶𝐴))
1918anbi2d 629 . . . . . . . 8 (𝑘 = 𝐶 → ((𝜑𝑘𝐴) ↔ (𝜑𝐶𝐴)))
20 csbeq1a 3846 . . . . . . . . 9 (𝑘 = 𝐶𝐵 = 𝐶 / 𝑘𝐵)
2120eleq1d 2823 . . . . . . . 8 (𝑘 = 𝐶 → (𝐵 ∈ ℂ ↔ 𝐶 / 𝑘𝐵 ∈ ℂ))
2219, 21imbi12d 345 . . . . . . 7 (𝑘 = 𝐶 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝐶𝐴) → 𝐶 / 𝑘𝐵 ∈ ℂ)))
2317, 22, 10vtoclg1f 3504 . . . . . 6 (𝐶𝐴 → ((𝜑𝐶𝐴) → 𝐶 / 𝑘𝐵 ∈ ℂ))
244, 12, 23sylc 65 . . . . 5 (𝜑𝐶 / 𝑘𝐵 ∈ ℂ)
25 prodsns 15682 . . . . 5 ((𝐶𝐴𝐶 / 𝑘𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝐶}𝐵 = 𝐶 / 𝑘𝐵)
264, 24, 25syl2anc 584 . . . 4 (𝜑 → ∏𝑘 ∈ {𝐶}𝐵 = 𝐶 / 𝑘𝐵)
27 fprodsplit1f.fk . . . . 5 (𝜑𝑘𝐷)
28 fprodsplit1f.d . . . . 5 ((𝜑𝑘 = 𝐶) → 𝐵 = 𝐷)
291, 27, 4, 28csbiedf 3863 . . . 4 (𝜑𝐶 / 𝑘𝐵 = 𝐷)
3026, 29eqtrd 2778 . . 3 (𝜑 → ∏𝑘 ∈ {𝐶}𝐵 = 𝐷)
3130oveq1d 7290 . 2 (𝜑 → (∏𝑘 ∈ {𝐶}𝐵 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵) = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
3211, 31eqtrd 2778 1 (𝜑 → ∏𝑘𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wnf 1786  wcel 2106  wnfc 2887  csb 3832  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561  (class class class)co 7275  Fincfn 8733  cc 10869   · cmul 10876  cprod 15615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-prod 15616
This theorem is referenced by:  fprodeq0g  15704  fprodsplit1  43134  fprod0  43137  dvmptfprodlem  43485
  Copyright terms: Public domain W3C validator