| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fprodsplit1f | Structured version Visualization version GIF version | ||
| Description: Separate out a term in a finite product. A version of fprodsplit1 45564 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fprodsplit1f.kph | ⊢ Ⅎ𝑘𝜑 |
| fprodsplit1f.fk | ⊢ (𝜑 → Ⅎ𝑘𝐷) |
| fprodsplit1f.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodsplit1f.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| fprodsplit1f.c | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| fprodsplit1f.d | ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| fprodsplit1f | ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodsplit1f.kph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 2 | disjdif 4431 | . . . 4 ⊢ ({𝐶} ∩ (𝐴 ∖ {𝐶})) = ∅ | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → ({𝐶} ∩ (𝐴 ∖ {𝐶})) = ∅) |
| 4 | fprodsplit1f.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
| 5 | 4 | snssd 4769 | . . . . 5 ⊢ (𝜑 → {𝐶} ⊆ 𝐴) |
| 6 | undif 4441 | . . . . 5 ⊢ ({𝐶} ⊆ 𝐴 ↔ ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴) | |
| 7 | 5, 6 | sylib 218 | . . . 4 ⊢ (𝜑 → ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴) |
| 8 | 7 | eqcomd 2735 | . . 3 ⊢ (𝜑 → 𝐴 = ({𝐶} ∪ (𝐴 ∖ {𝐶}))) |
| 9 | fprodsplit1f.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 10 | fprodsplit1f.b | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 11 | 1, 3, 8, 9, 10 | fprodsplitf 15930 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (∏𝑘 ∈ {𝐶}𝐵 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
| 12 | 4 | ancli 548 | . . . . . 6 ⊢ (𝜑 → (𝜑 ∧ 𝐶 ∈ 𝐴)) |
| 13 | nfv 1914 | . . . . . . . . 9 ⊢ Ⅎ𝑘 𝐶 ∈ 𝐴 | |
| 14 | 1, 13 | nfan 1899 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝜑 ∧ 𝐶 ∈ 𝐴) |
| 15 | nfcsb1v 3883 | . . . . . . . . 9 ⊢ Ⅎ𝑘⦋𝐶 / 𝑘⦌𝐵 | |
| 16 | 15 | nfel1 2908 | . . . . . . . 8 ⊢ Ⅎ𝑘⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ |
| 17 | 14, 16 | nfim 1896 | . . . . . . 7 ⊢ Ⅎ𝑘((𝜑 ∧ 𝐶 ∈ 𝐴) → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ) |
| 18 | eleq1 2816 | . . . . . . . . 9 ⊢ (𝑘 = 𝐶 → (𝑘 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
| 19 | 18 | anbi2d 630 | . . . . . . . 8 ⊢ (𝑘 = 𝐶 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝐶 ∈ 𝐴))) |
| 20 | csbeq1a 3873 | . . . . . . . . 9 ⊢ (𝑘 = 𝐶 → 𝐵 = ⦋𝐶 / 𝑘⦌𝐵) | |
| 21 | 20 | eleq1d 2813 | . . . . . . . 8 ⊢ (𝑘 = 𝐶 → (𝐵 ∈ ℂ ↔ ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ)) |
| 22 | 19, 21 | imbi12d 344 | . . . . . . 7 ⊢ (𝑘 = 𝐶 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝐶 ∈ 𝐴) → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ))) |
| 23 | 17, 22, 10 | vtoclg1f 3533 | . . . . . 6 ⊢ (𝐶 ∈ 𝐴 → ((𝜑 ∧ 𝐶 ∈ 𝐴) → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ)) |
| 24 | 4, 12, 23 | sylc 65 | . . . . 5 ⊢ (𝜑 → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ) |
| 25 | prodsns 15914 | . . . . 5 ⊢ ((𝐶 ∈ 𝐴 ∧ ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝐶}𝐵 = ⦋𝐶 / 𝑘⦌𝐵) | |
| 26 | 4, 24, 25 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ∏𝑘 ∈ {𝐶}𝐵 = ⦋𝐶 / 𝑘⦌𝐵) |
| 27 | fprodsplit1f.fk | . . . . 5 ⊢ (𝜑 → Ⅎ𝑘𝐷) | |
| 28 | fprodsplit1f.d | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 𝐷) | |
| 29 | 1, 27, 4, 28 | csbiedf 3889 | . . . 4 ⊢ (𝜑 → ⦋𝐶 / 𝑘⦌𝐵 = 𝐷) |
| 30 | 26, 29 | eqtrd 2764 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐶}𝐵 = 𝐷) |
| 31 | 30 | oveq1d 7384 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ {𝐶}𝐵 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵) = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
| 32 | 11, 31 | eqtrd 2764 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ⦋csb 3859 ∖ cdif 3908 ∪ cun 3909 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 {csn 4585 (class class class)co 7369 Fincfn 8895 ℂcc 11042 · cmul 11049 ∏cprod 15845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-prod 15846 |
| This theorem is referenced by: fprodeq0g 15936 fprodsplit1 45564 fprod0 45567 dvmptfprodlem 45915 |
| Copyright terms: Public domain | W3C validator |