Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sumsnd | Structured version Visualization version GIF version |
Description: A sum of a singleton is the term. The deduction version of sumsn 15139. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
sumsnd.1 | ⊢ (𝜑 → Ⅎ𝑘𝐵) |
sumsnd.2 | ⊢ Ⅎ𝑘𝜑 |
sumsnd.3 | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐵) |
sumsnd.4 | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
sumsnd.5 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
sumsnd | ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2920 | . . . 4 ⊢ Ⅎ𝑚𝐴 | |
2 | nfcsb1v 3830 | . . . 4 ⊢ Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐴 | |
3 | csbeq1a 3820 | . . . 4 ⊢ (𝑘 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑘⦌𝐴) | |
4 | 1, 2, 3 | cbvsumi 15092 | . . 3 ⊢ Σ𝑘 ∈ {𝑀}𝐴 = Σ𝑚 ∈ {𝑀}⦋𝑚 / 𝑘⦌𝐴 |
5 | csbeq1 3809 | . . . 4 ⊢ (𝑚 = ({〈1, 𝑀〉}‘𝑛) → ⦋𝑚 / 𝑘⦌𝐴 = ⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴) | |
6 | 1nn 11675 | . . . . 5 ⊢ 1 ∈ ℕ | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → 1 ∈ ℕ) |
8 | sumsnd.4 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
9 | f1osng 6640 | . . . . . 6 ⊢ ((1 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀}) | |
10 | 6, 8, 9 | sylancr 591 | . . . . 5 ⊢ (𝜑 → {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀}) |
11 | 1z 12041 | . . . . . 6 ⊢ 1 ∈ ℤ | |
12 | fzsn 12988 | . . . . . 6 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
13 | f1oeq2 6589 | . . . . . 6 ⊢ ((1...1) = {1} → ({〈1, 𝑀〉}:(1...1)–1-1-onto→{𝑀} ↔ {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀})) | |
14 | 11, 12, 13 | mp2b 10 | . . . . 5 ⊢ ({〈1, 𝑀〉}:(1...1)–1-1-onto→{𝑀} ↔ {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀}) |
15 | 10, 14 | sylibr 237 | . . . 4 ⊢ (𝜑 → {〈1, 𝑀〉}:(1...1)–1-1-onto→{𝑀}) |
16 | elsni 4537 | . . . . . . 7 ⊢ (𝑚 ∈ {𝑀} → 𝑚 = 𝑀) | |
17 | 16 | adantl 486 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → 𝑚 = 𝑀) |
18 | 17 | csbeq1d 3810 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑚 / 𝑘⦌𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
19 | sumsnd.2 | . . . . . . . 8 ⊢ Ⅎ𝑘𝜑 | |
20 | sumsnd.1 | . . . . . . . 8 ⊢ (𝜑 → Ⅎ𝑘𝐵) | |
21 | sumsnd.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐵) | |
22 | 19, 20, 8, 21 | csbiedf 3836 | . . . . . . 7 ⊢ (𝜑 → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
23 | 22 | adantr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
24 | sumsnd.5 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
25 | 24 | adantr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ) |
26 | 23, 25 | eqeltrd 2853 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) |
27 | 18, 26 | eqeltrd 2853 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑚 / 𝑘⦌𝐴 ∈ ℂ) |
28 | 22 | adantr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
29 | elfz1eq 12957 | . . . . . . . 8 ⊢ (𝑛 ∈ (1...1) → 𝑛 = 1) | |
30 | 29 | fveq2d 6660 | . . . . . . 7 ⊢ (𝑛 ∈ (1...1) → ({〈1, 𝑀〉}‘𝑛) = ({〈1, 𝑀〉}‘1)) |
31 | fvsng 6931 | . . . . . . . 8 ⊢ ((1 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → ({〈1, 𝑀〉}‘1) = 𝑀) | |
32 | 6, 8, 31 | sylancr 591 | . . . . . . 7 ⊢ (𝜑 → ({〈1, 𝑀〉}‘1) = 𝑀) |
33 | 30, 32 | sylan9eqr 2816 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ({〈1, 𝑀〉}‘𝑛) = 𝑀) |
34 | 33 | csbeq1d 3810 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
35 | 29 | fveq2d 6660 | . . . . . 6 ⊢ (𝑛 ∈ (1...1) → ({〈1, 𝐵〉}‘𝑛) = ({〈1, 𝐵〉}‘1)) |
36 | fvsng 6931 | . . . . . . 7 ⊢ ((1 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ({〈1, 𝐵〉}‘1) = 𝐵) | |
37 | 6, 24, 36 | sylancr 591 | . . . . . 6 ⊢ (𝜑 → ({〈1, 𝐵〉}‘1) = 𝐵) |
38 | 35, 37 | sylan9eqr 2816 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ({〈1, 𝐵〉}‘𝑛) = 𝐵) |
39 | 28, 34, 38 | 3eqtr4rd 2805 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ({〈1, 𝐵〉}‘𝑛) = ⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴) |
40 | 5, 7, 15, 27, 39 | fsum 15115 | . . 3 ⊢ (𝜑 → Σ𝑚 ∈ {𝑀}⦋𝑚 / 𝑘⦌𝐴 = (seq1( + , {〈1, 𝐵〉})‘1)) |
41 | 4, 40 | syl5eq 2806 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = (seq1( + , {〈1, 𝐵〉})‘1)) |
42 | 11, 37 | seq1i 13422 | . 2 ⊢ (𝜑 → (seq1( + , {〈1, 𝐵〉})‘1) = 𝐵) |
43 | 41, 42 | eqtrd 2794 | 1 ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2112 Ⅎwnfc 2900 ⦋csb 3806 {csn 4520 〈cop 4526 –1-1-onto→wf1o 6332 ‘cfv 6333 (class class class)co 7148 ℂcc 10563 1c1 10566 + caddc 10568 ℕcn 11664 ℤcz 12010 ...cfz 12929 seqcseq 13408 Σcsu 15080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-inf2 9127 ax-cnex 10621 ax-resscn 10622 ax-1cn 10623 ax-icn 10624 ax-addcl 10625 ax-addrcl 10626 ax-mulcl 10627 ax-mulrcl 10628 ax-mulcom 10629 ax-addass 10630 ax-mulass 10631 ax-distr 10632 ax-i2m1 10633 ax-1ne0 10634 ax-1rid 10635 ax-rnegex 10636 ax-rrecex 10637 ax-cnre 10638 ax-pre-lttri 10639 ax-pre-lttrn 10640 ax-pre-ltadd 10641 ax-pre-mulgt0 10642 ax-pre-sup 10643 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5428 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-se 5482 df-we 5483 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-pred 6124 df-ord 6170 df-on 6171 df-lim 6172 df-suc 6173 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-isom 6342 df-riota 7106 df-ov 7151 df-oprab 7152 df-mpo 7153 df-om 7578 df-1st 7691 df-2nd 7692 df-wrecs 7955 df-recs 8016 df-rdg 8054 df-1o 8110 df-oadd 8114 df-er 8297 df-en 8526 df-dom 8527 df-sdom 8528 df-fin 8529 df-sup 8929 df-oi 8997 df-card 9391 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 df-sub 10900 df-neg 10901 df-div 11326 df-nn 11665 df-2 11727 df-3 11728 df-n0 11925 df-z 12011 df-uz 12273 df-rp 12421 df-fz 12930 df-fzo 13073 df-seq 13409 df-exp 13470 df-hash 13731 df-cj 14496 df-re 14497 df-im 14498 df-sqrt 14632 df-abs 14633 df-clim 14883 df-sum 15081 |
This theorem is referenced by: sumpair 42027 dvnmul 42941 sge0sn 43374 hoidmvlelem3 43592 |
Copyright terms: Public domain | W3C validator |