![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sumsnd | Structured version Visualization version GIF version |
Description: A sum of a singleton is the term. The deduction version of sumsn 15639. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
sumsnd.1 | ⊢ (𝜑 → Ⅎ𝑘𝐵) |
sumsnd.2 | ⊢ Ⅎ𝑘𝜑 |
sumsnd.3 | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐵) |
sumsnd.4 | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
sumsnd.5 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
sumsnd | ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑚𝐴 | |
2 | nfcsb1v 3884 | . . . 4 ⊢ Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐴 | |
3 | csbeq1a 3873 | . . . 4 ⊢ (𝑘 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑘⦌𝐴) | |
4 | 1, 2, 3 | cbvsumi 15590 | . . 3 ⊢ Σ𝑘 ∈ {𝑀}𝐴 = Σ𝑚 ∈ {𝑀}⦋𝑚 / 𝑘⦌𝐴 |
5 | csbeq1 3862 | . . . 4 ⊢ (𝑚 = ({⟨1, 𝑀⟩}‘𝑛) → ⦋𝑚 / 𝑘⦌𝐴 = ⦋({⟨1, 𝑀⟩}‘𝑛) / 𝑘⦌𝐴) | |
6 | 1nn 12172 | . . . . 5 ⊢ 1 ∈ ℕ | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → 1 ∈ ℕ) |
8 | sumsnd.4 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
9 | f1osng 6829 | . . . . . 6 ⊢ ((1 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}) | |
10 | 6, 8, 9 | sylancr 588 | . . . . 5 ⊢ (𝜑 → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}) |
11 | 1z 12541 | . . . . . 6 ⊢ 1 ∈ ℤ | |
12 | fzsn 13492 | . . . . . 6 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
13 | f1oeq2 6777 | . . . . . 6 ⊢ ((1...1) = {1} → ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})) | |
14 | 11, 12, 13 | mp2b 10 | . . . . 5 ⊢ ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}) |
15 | 10, 14 | sylibr 233 | . . . 4 ⊢ (𝜑 → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀}) |
16 | elsni 4607 | . . . . . . 7 ⊢ (𝑚 ∈ {𝑀} → 𝑚 = 𝑀) | |
17 | 16 | adantl 483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → 𝑚 = 𝑀) |
18 | 17 | csbeq1d 3863 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑚 / 𝑘⦌𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
19 | sumsnd.2 | . . . . . . . 8 ⊢ Ⅎ𝑘𝜑 | |
20 | sumsnd.1 | . . . . . . . 8 ⊢ (𝜑 → Ⅎ𝑘𝐵) | |
21 | sumsnd.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐵) | |
22 | 19, 20, 8, 21 | csbiedf 3890 | . . . . . . 7 ⊢ (𝜑 → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
23 | 22 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
24 | sumsnd.5 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
25 | 24 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ) |
26 | 23, 25 | eqeltrd 2834 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) |
27 | 18, 26 | eqeltrd 2834 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑚 / 𝑘⦌𝐴 ∈ ℂ) |
28 | 22 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
29 | elfz1eq 13461 | . . . . . . . 8 ⊢ (𝑛 ∈ (1...1) → 𝑛 = 1) | |
30 | 29 | fveq2d 6850 | . . . . . . 7 ⊢ (𝑛 ∈ (1...1) → ({⟨1, 𝑀⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘1)) |
31 | fvsng 7130 | . . . . . . . 8 ⊢ ((1 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → ({⟨1, 𝑀⟩}‘1) = 𝑀) | |
32 | 6, 8, 31 | sylancr 588 | . . . . . . 7 ⊢ (𝜑 → ({⟨1, 𝑀⟩}‘1) = 𝑀) |
33 | 30, 32 | sylan9eqr 2795 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) = 𝑀) |
34 | 33 | csbeq1d 3863 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ⦋({⟨1, 𝑀⟩}‘𝑛) / 𝑘⦌𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
35 | 29 | fveq2d 6850 | . . . . . 6 ⊢ (𝑛 ∈ (1...1) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1)) |
36 | fvsng 7130 | . . . . . . 7 ⊢ ((1 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵) | |
37 | 6, 24, 36 | sylancr 588 | . . . . . 6 ⊢ (𝜑 → ({⟨1, 𝐵⟩}‘1) = 𝐵) |
38 | 35, 37 | sylan9eqr 2795 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = 𝐵) |
39 | 28, 34, 38 | 3eqtr4rd 2784 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = ⦋({⟨1, 𝑀⟩}‘𝑛) / 𝑘⦌𝐴) |
40 | 5, 7, 15, 27, 39 | fsum 15613 | . . 3 ⊢ (𝜑 → Σ𝑚 ∈ {𝑀}⦋𝑚 / 𝑘⦌𝐴 = (seq1( + , {⟨1, 𝐵⟩})‘1)) |
41 | 4, 40 | eqtrid 2785 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = (seq1( + , {⟨1, 𝐵⟩})‘1)) |
42 | 11, 37 | seq1i 13929 | . 2 ⊢ (𝜑 → (seq1( + , {⟨1, 𝐵⟩})‘1) = 𝐵) |
43 | 41, 42 | eqtrd 2773 | 1 ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 Ⅎwnfc 2884 ⦋csb 3859 {csn 4590 ⟨cop 4596 –1-1-onto→wf1o 6499 ‘cfv 6500 (class class class)co 7361 ℂcc 11057 1c1 11060 + caddc 11062 ℕcn 12161 ℤcz 12507 ...cfz 13433 seqcseq 13915 Σcsu 15579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-inf2 9585 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 ax-pre-sup 11137 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-se 5593 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-sup 9386 df-oi 9454 df-card 9883 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-div 11821 df-nn 12162 df-2 12224 df-3 12225 df-n0 12422 df-z 12508 df-uz 12772 df-rp 12924 df-fz 13434 df-fzo 13577 df-seq 13916 df-exp 13977 df-hash 14240 df-cj 14993 df-re 14994 df-im 14995 df-sqrt 15129 df-abs 15130 df-clim 15379 df-sum 15580 |
This theorem is referenced by: sumpair 43332 dvnmul 44274 sge0sn 44710 hoidmvlelem3 44928 |
Copyright terms: Public domain | W3C validator |