Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sumsnd Structured version   Visualization version   GIF version

Theorem sumsnd 42018
 Description: A sum of a singleton is the term. The deduction version of sumsn 15139. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
sumsnd.1 (𝜑𝑘𝐵)
sumsnd.2 𝑘𝜑
sumsnd.3 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐵)
sumsnd.4 (𝜑𝑀𝑉)
sumsnd.5 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
sumsnd (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable group:   𝑘,𝑀
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem sumsnd
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2920 . . . 4 𝑚𝐴
2 nfcsb1v 3830 . . . 4 𝑘𝑚 / 𝑘𝐴
3 csbeq1a 3820 . . . 4 (𝑘 = 𝑚𝐴 = 𝑚 / 𝑘𝐴)
41, 2, 3cbvsumi 15092 . . 3 Σ𝑘 ∈ {𝑀}𝐴 = Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴
5 csbeq1 3809 . . . 4 (𝑚 = ({⟨1, 𝑀⟩}‘𝑛) → 𝑚 / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
6 1nn 11675 . . . . 5 1 ∈ ℕ
76a1i 11 . . . 4 (𝜑 → 1 ∈ ℕ)
8 sumsnd.4 . . . . . 6 (𝜑𝑀𝑉)
9 f1osng 6640 . . . . . 6 ((1 ∈ ℕ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
106, 8, 9sylancr 591 . . . . 5 (𝜑 → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
11 1z 12041 . . . . . 6 1 ∈ ℤ
12 fzsn 12988 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
13 f1oeq2 6589 . . . . . 6 ((1...1) = {1} → ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}))
1411, 12, 13mp2b 10 . . . . 5 ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
1510, 14sylibr 237 . . . 4 (𝜑 → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
16 elsni 4537 . . . . . . 7 (𝑚 ∈ {𝑀} → 𝑚 = 𝑀)
1716adantl 486 . . . . . 6 ((𝜑𝑚 ∈ {𝑀}) → 𝑚 = 𝑀)
1817csbeq1d 3810 . . . . 5 ((𝜑𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
19 sumsnd.2 . . . . . . . 8 𝑘𝜑
20 sumsnd.1 . . . . . . . 8 (𝜑𝑘𝐵)
21 sumsnd.3 . . . . . . . 8 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐵)
2219, 20, 8, 21csbiedf 3836 . . . . . . 7 (𝜑𝑀 / 𝑘𝐴 = 𝐵)
2322adantr 485 . . . . . 6 ((𝜑𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 = 𝐵)
24 sumsnd.5 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
2524adantr 485 . . . . . 6 ((𝜑𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ)
2623, 25eqeltrd 2853 . . . . 5 ((𝜑𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 ∈ ℂ)
2718, 26eqeltrd 2853 . . . 4 ((𝜑𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 ∈ ℂ)
2822adantr 485 . . . . 5 ((𝜑𝑛 ∈ (1...1)) → 𝑀 / 𝑘𝐴 = 𝐵)
29 elfz1eq 12957 . . . . . . . 8 (𝑛 ∈ (1...1) → 𝑛 = 1)
3029fveq2d 6660 . . . . . . 7 (𝑛 ∈ (1...1) → ({⟨1, 𝑀⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘1))
31 fvsng 6931 . . . . . . . 8 ((1 ∈ ℕ ∧ 𝑀𝑉) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
326, 8, 31sylancr 591 . . . . . . 7 (𝜑 → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3330, 32sylan9eqr 2816 . . . . . 6 ((𝜑𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) = 𝑀)
3433csbeq1d 3810 . . . . 5 ((𝜑𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
3529fveq2d 6660 . . . . . 6 (𝑛 ∈ (1...1) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1))
36 fvsng 6931 . . . . . . 7 ((1 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
376, 24, 36sylancr 591 . . . . . 6 (𝜑 → ({⟨1, 𝐵⟩}‘1) = 𝐵)
3835, 37sylan9eqr 2816 . . . . 5 ((𝜑𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = 𝐵)
3928, 34, 383eqtr4rd 2805 . . . 4 ((𝜑𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
405, 7, 15, 27, 39fsum 15115 . . 3 (𝜑 → Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴 = (seq1( + , {⟨1, 𝐵⟩})‘1))
414, 40syl5eq 2806 . 2 (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = (seq1( + , {⟨1, 𝐵⟩})‘1))
4211, 37seq1i 13422 . 2 (𝜑 → (seq1( + , {⟨1, 𝐵⟩})‘1) = 𝐵)
4341, 42eqtrd 2794 1 (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400   = wceq 1539  Ⅎwnf 1786   ∈ wcel 2112  Ⅎwnfc 2900  ⦋csb 3806  {csn 4520  ⟨cop 4526  –1-1-onto→wf1o 6332  ‘cfv 6333  (class class class)co 7148  ℂcc 10563  1c1 10566   + caddc 10568  ℕcn 11664  ℤcz 12010  ...cfz 12929  seqcseq 13408  Σcsu 15080 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-inf2 9127  ax-cnex 10621  ax-resscn 10622  ax-1cn 10623  ax-icn 10624  ax-addcl 10625  ax-addrcl 10626  ax-mulcl 10627  ax-mulrcl 10628  ax-mulcom 10629  ax-addass 10630  ax-mulass 10631  ax-distr 10632  ax-i2m1 10633  ax-1ne0 10634  ax-1rid 10635  ax-rnegex 10636  ax-rrecex 10637  ax-cnre 10638  ax-pre-lttri 10639  ax-pre-lttrn 10640  ax-pre-ltadd 10641  ax-pre-mulgt0 10642  ax-pre-sup 10643 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-se 5482  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7578  df-1st 7691  df-2nd 7692  df-wrecs 7955  df-recs 8016  df-rdg 8054  df-1o 8110  df-oadd 8114  df-er 8297  df-en 8526  df-dom 8527  df-sdom 8528  df-fin 8529  df-sup 8929  df-oi 8997  df-card 9391  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709  df-sub 10900  df-neg 10901  df-div 11326  df-nn 11665  df-2 11727  df-3 11728  df-n0 11925  df-z 12011  df-uz 12273  df-rp 12421  df-fz 12930  df-fzo 13073  df-seq 13409  df-exp 13470  df-hash 13731  df-cj 14496  df-re 14497  df-im 14498  df-sqrt 14632  df-abs 14633  df-clim 14883  df-sum 15081 This theorem is referenced by:  sumpair  42027  dvnmul  42941  sge0sn  43374  hoidmvlelem3  43592
 Copyright terms: Public domain W3C validator