| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sumsnd | Structured version Visualization version GIF version | ||
| Description: A sum of a singleton is the term. The deduction version of sumsn 15648. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| sumsnd.1 | ⊢ (𝜑 → Ⅎ𝑘𝐵) |
| sumsnd.2 | ⊢ Ⅎ𝑘𝜑 |
| sumsnd.3 | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐵) |
| sumsnd.4 | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
| sumsnd.5 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| sumsnd | ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1a 3859 | . . . 4 ⊢ (𝑘 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑘⦌𝐴) | |
| 2 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑚𝐴 | |
| 3 | nfcsb1v 3869 | . . . 4 ⊢ Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐴 | |
| 4 | 1, 2, 3 | cbvsum 15597 | . . 3 ⊢ Σ𝑘 ∈ {𝑀}𝐴 = Σ𝑚 ∈ {𝑀}⦋𝑚 / 𝑘⦌𝐴 |
| 5 | csbeq1 3848 | . . . 4 ⊢ (𝑚 = ({〈1, 𝑀〉}‘𝑛) → ⦋𝑚 / 𝑘⦌𝐴 = ⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴) | |
| 6 | 1nn 12131 | . . . . 5 ⊢ 1 ∈ ℕ | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → 1 ∈ ℕ) |
| 8 | sumsnd.4 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
| 9 | f1osng 6799 | . . . . . 6 ⊢ ((1 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀}) | |
| 10 | 6, 8, 9 | sylancr 587 | . . . . 5 ⊢ (𝜑 → {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀}) |
| 11 | 1z 12497 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 12 | fzsn 13461 | . . . . . 6 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
| 13 | f1oeq2 6747 | . . . . . 6 ⊢ ((1...1) = {1} → ({〈1, 𝑀〉}:(1...1)–1-1-onto→{𝑀} ↔ {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀})) | |
| 14 | 11, 12, 13 | mp2b 10 | . . . . 5 ⊢ ({〈1, 𝑀〉}:(1...1)–1-1-onto→{𝑀} ↔ {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀}) |
| 15 | 10, 14 | sylibr 234 | . . . 4 ⊢ (𝜑 → {〈1, 𝑀〉}:(1...1)–1-1-onto→{𝑀}) |
| 16 | elsni 4588 | . . . . . . 7 ⊢ (𝑚 ∈ {𝑀} → 𝑚 = 𝑀) | |
| 17 | 16 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → 𝑚 = 𝑀) |
| 18 | 17 | csbeq1d 3849 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑚 / 𝑘⦌𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
| 19 | sumsnd.2 | . . . . . . . 8 ⊢ Ⅎ𝑘𝜑 | |
| 20 | sumsnd.1 | . . . . . . . 8 ⊢ (𝜑 → Ⅎ𝑘𝐵) | |
| 21 | sumsnd.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐵) | |
| 22 | 19, 20, 8, 21 | csbiedf 3875 | . . . . . . 7 ⊢ (𝜑 → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
| 23 | 22 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
| 24 | sumsnd.5 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 25 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ) |
| 26 | 23, 25 | eqeltrd 2831 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) |
| 27 | 18, 26 | eqeltrd 2831 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑚 / 𝑘⦌𝐴 ∈ ℂ) |
| 28 | 22 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
| 29 | elfz1eq 13430 | . . . . . . . 8 ⊢ (𝑛 ∈ (1...1) → 𝑛 = 1) | |
| 30 | 29 | fveq2d 6821 | . . . . . . 7 ⊢ (𝑛 ∈ (1...1) → ({〈1, 𝑀〉}‘𝑛) = ({〈1, 𝑀〉}‘1)) |
| 31 | fvsng 7109 | . . . . . . . 8 ⊢ ((1 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → ({〈1, 𝑀〉}‘1) = 𝑀) | |
| 32 | 6, 8, 31 | sylancr 587 | . . . . . . 7 ⊢ (𝜑 → ({〈1, 𝑀〉}‘1) = 𝑀) |
| 33 | 30, 32 | sylan9eqr 2788 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ({〈1, 𝑀〉}‘𝑛) = 𝑀) |
| 34 | 33 | csbeq1d 3849 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
| 35 | 29 | fveq2d 6821 | . . . . . 6 ⊢ (𝑛 ∈ (1...1) → ({〈1, 𝐵〉}‘𝑛) = ({〈1, 𝐵〉}‘1)) |
| 36 | fvsng 7109 | . . . . . . 7 ⊢ ((1 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ({〈1, 𝐵〉}‘1) = 𝐵) | |
| 37 | 6, 24, 36 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → ({〈1, 𝐵〉}‘1) = 𝐵) |
| 38 | 35, 37 | sylan9eqr 2788 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ({〈1, 𝐵〉}‘𝑛) = 𝐵) |
| 39 | 28, 34, 38 | 3eqtr4rd 2777 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ({〈1, 𝐵〉}‘𝑛) = ⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴) |
| 40 | 5, 7, 15, 27, 39 | fsum 15622 | . . 3 ⊢ (𝜑 → Σ𝑚 ∈ {𝑀}⦋𝑚 / 𝑘⦌𝐴 = (seq1( + , {〈1, 𝐵〉})‘1)) |
| 41 | 4, 40 | eqtrid 2778 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = (seq1( + , {〈1, 𝐵〉})‘1)) |
| 42 | 11, 37 | seq1i 13917 | . 2 ⊢ (𝜑 → (seq1( + , {〈1, 𝐵〉})‘1) = 𝐵) |
| 43 | 41, 42 | eqtrd 2766 | 1 ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 ⦋csb 3845 {csn 4571 〈cop 4577 –1-1-onto→wf1o 6475 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 1c1 11002 + caddc 11004 ℕcn 12120 ℤcz 12463 ...cfz 13402 seqcseq 13903 Σcsu 15588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-fz 13403 df-fzo 13550 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-sum 15589 |
| This theorem is referenced by: sumpair 45072 dvnmul 45981 sge0sn 46417 hoidmvlelem3 46635 |
| Copyright terms: Public domain | W3C validator |