| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sumsnd | Structured version Visualization version GIF version | ||
| Description: A sum of a singleton is the term. The deduction version of sumsn 15688. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| sumsnd.1 | ⊢ (𝜑 → Ⅎ𝑘𝐵) |
| sumsnd.2 | ⊢ Ⅎ𝑘𝜑 |
| sumsnd.3 | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐵) |
| sumsnd.4 | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
| sumsnd.5 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| sumsnd | ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1a 3873 | . . . 4 ⊢ (𝑘 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑘⦌𝐴) | |
| 2 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑚𝐴 | |
| 3 | nfcsb1v 3883 | . . . 4 ⊢ Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐴 | |
| 4 | 1, 2, 3 | cbvsum 15637 | . . 3 ⊢ Σ𝑘 ∈ {𝑀}𝐴 = Σ𝑚 ∈ {𝑀}⦋𝑚 / 𝑘⦌𝐴 |
| 5 | csbeq1 3862 | . . . 4 ⊢ (𝑚 = ({〈1, 𝑀〉}‘𝑛) → ⦋𝑚 / 𝑘⦌𝐴 = ⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴) | |
| 6 | 1nn 12173 | . . . . 5 ⊢ 1 ∈ ℕ | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → 1 ∈ ℕ) |
| 8 | sumsnd.4 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
| 9 | f1osng 6823 | . . . . . 6 ⊢ ((1 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀}) | |
| 10 | 6, 8, 9 | sylancr 587 | . . . . 5 ⊢ (𝜑 → {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀}) |
| 11 | 1z 12539 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 12 | fzsn 13503 | . . . . . 6 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
| 13 | f1oeq2 6771 | . . . . . 6 ⊢ ((1...1) = {1} → ({〈1, 𝑀〉}:(1...1)–1-1-onto→{𝑀} ↔ {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀})) | |
| 14 | 11, 12, 13 | mp2b 10 | . . . . 5 ⊢ ({〈1, 𝑀〉}:(1...1)–1-1-onto→{𝑀} ↔ {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀}) |
| 15 | 10, 14 | sylibr 234 | . . . 4 ⊢ (𝜑 → {〈1, 𝑀〉}:(1...1)–1-1-onto→{𝑀}) |
| 16 | elsni 4602 | . . . . . . 7 ⊢ (𝑚 ∈ {𝑀} → 𝑚 = 𝑀) | |
| 17 | 16 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → 𝑚 = 𝑀) |
| 18 | 17 | csbeq1d 3863 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑚 / 𝑘⦌𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
| 19 | sumsnd.2 | . . . . . . . 8 ⊢ Ⅎ𝑘𝜑 | |
| 20 | sumsnd.1 | . . . . . . . 8 ⊢ (𝜑 → Ⅎ𝑘𝐵) | |
| 21 | sumsnd.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐵) | |
| 22 | 19, 20, 8, 21 | csbiedf 3889 | . . . . . . 7 ⊢ (𝜑 → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
| 23 | 22 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
| 24 | sumsnd.5 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 25 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ) |
| 26 | 23, 25 | eqeltrd 2828 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) |
| 27 | 18, 26 | eqeltrd 2828 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑚 / 𝑘⦌𝐴 ∈ ℂ) |
| 28 | 22 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
| 29 | elfz1eq 13472 | . . . . . . . 8 ⊢ (𝑛 ∈ (1...1) → 𝑛 = 1) | |
| 30 | 29 | fveq2d 6844 | . . . . . . 7 ⊢ (𝑛 ∈ (1...1) → ({〈1, 𝑀〉}‘𝑛) = ({〈1, 𝑀〉}‘1)) |
| 31 | fvsng 7136 | . . . . . . . 8 ⊢ ((1 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → ({〈1, 𝑀〉}‘1) = 𝑀) | |
| 32 | 6, 8, 31 | sylancr 587 | . . . . . . 7 ⊢ (𝜑 → ({〈1, 𝑀〉}‘1) = 𝑀) |
| 33 | 30, 32 | sylan9eqr 2786 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ({〈1, 𝑀〉}‘𝑛) = 𝑀) |
| 34 | 33 | csbeq1d 3863 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
| 35 | 29 | fveq2d 6844 | . . . . . 6 ⊢ (𝑛 ∈ (1...1) → ({〈1, 𝐵〉}‘𝑛) = ({〈1, 𝐵〉}‘1)) |
| 36 | fvsng 7136 | . . . . . . 7 ⊢ ((1 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ({〈1, 𝐵〉}‘1) = 𝐵) | |
| 37 | 6, 24, 36 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → ({〈1, 𝐵〉}‘1) = 𝐵) |
| 38 | 35, 37 | sylan9eqr 2786 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ({〈1, 𝐵〉}‘𝑛) = 𝐵) |
| 39 | 28, 34, 38 | 3eqtr4rd 2775 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ({〈1, 𝐵〉}‘𝑛) = ⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴) |
| 40 | 5, 7, 15, 27, 39 | fsum 15662 | . . 3 ⊢ (𝜑 → Σ𝑚 ∈ {𝑀}⦋𝑚 / 𝑘⦌𝐴 = (seq1( + , {〈1, 𝐵〉})‘1)) |
| 41 | 4, 40 | eqtrid 2776 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = (seq1( + , {〈1, 𝐵〉})‘1)) |
| 42 | 11, 37 | seq1i 13956 | . 2 ⊢ (𝜑 → (seq1( + , {〈1, 𝐵〉})‘1) = 𝐵) |
| 43 | 41, 42 | eqtrd 2764 | 1 ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ⦋csb 3859 {csn 4585 〈cop 4591 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 1c1 11045 + caddc 11047 ℕcn 12162 ℤcz 12505 ...cfz 13444 seqcseq 13942 Σcsu 15628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 |
| This theorem is referenced by: sumpair 45002 dvnmul 45914 sge0sn 46350 hoidmvlelem3 46568 |
| Copyright terms: Public domain | W3C validator |