![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sumsnd | Structured version Visualization version GIF version |
Description: A sum of a singleton is the term. The deduction version of sumsn 15691. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
sumsnd.1 | ⊢ (𝜑 → Ⅎ𝑘𝐵) |
sumsnd.2 | ⊢ Ⅎ𝑘𝜑 |
sumsnd.3 | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐵) |
sumsnd.4 | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
sumsnd.5 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
sumsnd | ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑚𝐴 | |
2 | nfcsb1v 3918 | . . . 4 ⊢ Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐴 | |
3 | csbeq1a 3907 | . . . 4 ⊢ (𝑘 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑘⦌𝐴) | |
4 | 1, 2, 3 | cbvsumi 15642 | . . 3 ⊢ Σ𝑘 ∈ {𝑀}𝐴 = Σ𝑚 ∈ {𝑀}⦋𝑚 / 𝑘⦌𝐴 |
5 | csbeq1 3896 | . . . 4 ⊢ (𝑚 = ({⟨1, 𝑀⟩}‘𝑛) → ⦋𝑚 / 𝑘⦌𝐴 = ⦋({⟨1, 𝑀⟩}‘𝑛) / 𝑘⦌𝐴) | |
6 | 1nn 12222 | . . . . 5 ⊢ 1 ∈ ℕ | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → 1 ∈ ℕ) |
8 | sumsnd.4 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
9 | f1osng 6874 | . . . . . 6 ⊢ ((1 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}) | |
10 | 6, 8, 9 | sylancr 587 | . . . . 5 ⊢ (𝜑 → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}) |
11 | 1z 12591 | . . . . . 6 ⊢ 1 ∈ ℤ | |
12 | fzsn 13542 | . . . . . 6 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
13 | f1oeq2 6822 | . . . . . 6 ⊢ ((1...1) = {1} → ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})) | |
14 | 11, 12, 13 | mp2b 10 | . . . . 5 ⊢ ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}) |
15 | 10, 14 | sylibr 233 | . . . 4 ⊢ (𝜑 → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀}) |
16 | elsni 4645 | . . . . . . 7 ⊢ (𝑚 ∈ {𝑀} → 𝑚 = 𝑀) | |
17 | 16 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → 𝑚 = 𝑀) |
18 | 17 | csbeq1d 3897 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑚 / 𝑘⦌𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
19 | sumsnd.2 | . . . . . . . 8 ⊢ Ⅎ𝑘𝜑 | |
20 | sumsnd.1 | . . . . . . . 8 ⊢ (𝜑 → Ⅎ𝑘𝐵) | |
21 | sumsnd.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐵) | |
22 | 19, 20, 8, 21 | csbiedf 3924 | . . . . . . 7 ⊢ (𝜑 → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
23 | 22 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
24 | sumsnd.5 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
25 | 24 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ) |
26 | 23, 25 | eqeltrd 2833 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) |
27 | 18, 26 | eqeltrd 2833 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑚 / 𝑘⦌𝐴 ∈ ℂ) |
28 | 22 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
29 | elfz1eq 13511 | . . . . . . . 8 ⊢ (𝑛 ∈ (1...1) → 𝑛 = 1) | |
30 | 29 | fveq2d 6895 | . . . . . . 7 ⊢ (𝑛 ∈ (1...1) → ({⟨1, 𝑀⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘1)) |
31 | fvsng 7177 | . . . . . . . 8 ⊢ ((1 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → ({⟨1, 𝑀⟩}‘1) = 𝑀) | |
32 | 6, 8, 31 | sylancr 587 | . . . . . . 7 ⊢ (𝜑 → ({⟨1, 𝑀⟩}‘1) = 𝑀) |
33 | 30, 32 | sylan9eqr 2794 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) = 𝑀) |
34 | 33 | csbeq1d 3897 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ⦋({⟨1, 𝑀⟩}‘𝑛) / 𝑘⦌𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
35 | 29 | fveq2d 6895 | . . . . . 6 ⊢ (𝑛 ∈ (1...1) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1)) |
36 | fvsng 7177 | . . . . . . 7 ⊢ ((1 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵) | |
37 | 6, 24, 36 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → ({⟨1, 𝐵⟩}‘1) = 𝐵) |
38 | 35, 37 | sylan9eqr 2794 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = 𝐵) |
39 | 28, 34, 38 | 3eqtr4rd 2783 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = ⦋({⟨1, 𝑀⟩}‘𝑛) / 𝑘⦌𝐴) |
40 | 5, 7, 15, 27, 39 | fsum 15665 | . . 3 ⊢ (𝜑 → Σ𝑚 ∈ {𝑀}⦋𝑚 / 𝑘⦌𝐴 = (seq1( + , {⟨1, 𝐵⟩})‘1)) |
41 | 4, 40 | eqtrid 2784 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = (seq1( + , {⟨1, 𝐵⟩})‘1)) |
42 | 11, 37 | seq1i 13979 | . 2 ⊢ (𝜑 → (seq1( + , {⟨1, 𝐵⟩})‘1) = 𝐵) |
43 | 41, 42 | eqtrd 2772 | 1 ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 Ⅎwnfc 2883 ⦋csb 3893 {csn 4628 ⟨cop 4634 –1-1-onto→wf1o 6542 ‘cfv 6543 (class class class)co 7408 ℂcc 11107 1c1 11110 + caddc 11112 ℕcn 12211 ℤcz 12557 ...cfz 13483 seqcseq 13965 Σcsu 15631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-fz 13484 df-fzo 13627 df-seq 13966 df-exp 14027 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 df-sum 15632 |
This theorem is referenced by: sumpair 43709 dvnmul 44649 sge0sn 45085 hoidmvlelem3 45303 |
Copyright terms: Public domain | W3C validator |