Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sumsnd Structured version   Visualization version   GIF version

Theorem sumsnd 42890
Description: A sum of a singleton is the term. The deduction version of sumsn 15557. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
sumsnd.1 (𝜑𝑘𝐵)
sumsnd.2 𝑘𝜑
sumsnd.3 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐵)
sumsnd.4 (𝜑𝑀𝑉)
sumsnd.5 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
sumsnd (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable group:   𝑘,𝑀
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem sumsnd
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2904 . . . 4 𝑚𝐴
2 nfcsb1v 3868 . . . 4 𝑘𝑚 / 𝑘𝐴
3 csbeq1a 3857 . . . 4 (𝑘 = 𝑚𝐴 = 𝑚 / 𝑘𝐴)
41, 2, 3cbvsumi 15508 . . 3 Σ𝑘 ∈ {𝑀}𝐴 = Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴
5 csbeq1 3846 . . . 4 (𝑚 = ({⟨1, 𝑀⟩}‘𝑛) → 𝑚 / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
6 1nn 12085 . . . . 5 1 ∈ ℕ
76a1i 11 . . . 4 (𝜑 → 1 ∈ ℕ)
8 sumsnd.4 . . . . . 6 (𝜑𝑀𝑉)
9 f1osng 6808 . . . . . 6 ((1 ∈ ℕ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
106, 8, 9sylancr 587 . . . . 5 (𝜑 → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
11 1z 12451 . . . . . 6 1 ∈ ℤ
12 fzsn 13399 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
13 f1oeq2 6756 . . . . . 6 ((1...1) = {1} → ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}))
1411, 12, 13mp2b 10 . . . . 5 ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
1510, 14sylibr 233 . . . 4 (𝜑 → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
16 elsni 4590 . . . . . . 7 (𝑚 ∈ {𝑀} → 𝑚 = 𝑀)
1716adantl 482 . . . . . 6 ((𝜑𝑚 ∈ {𝑀}) → 𝑚 = 𝑀)
1817csbeq1d 3847 . . . . 5 ((𝜑𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
19 sumsnd.2 . . . . . . . 8 𝑘𝜑
20 sumsnd.1 . . . . . . . 8 (𝜑𝑘𝐵)
21 sumsnd.3 . . . . . . . 8 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐵)
2219, 20, 8, 21csbiedf 3874 . . . . . . 7 (𝜑𝑀 / 𝑘𝐴 = 𝐵)
2322adantr 481 . . . . . 6 ((𝜑𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 = 𝐵)
24 sumsnd.5 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
2524adantr 481 . . . . . 6 ((𝜑𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ)
2623, 25eqeltrd 2837 . . . . 5 ((𝜑𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 ∈ ℂ)
2718, 26eqeltrd 2837 . . . 4 ((𝜑𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 ∈ ℂ)
2822adantr 481 . . . . 5 ((𝜑𝑛 ∈ (1...1)) → 𝑀 / 𝑘𝐴 = 𝐵)
29 elfz1eq 13368 . . . . . . . 8 (𝑛 ∈ (1...1) → 𝑛 = 1)
3029fveq2d 6829 . . . . . . 7 (𝑛 ∈ (1...1) → ({⟨1, 𝑀⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘1))
31 fvsng 7108 . . . . . . . 8 ((1 ∈ ℕ ∧ 𝑀𝑉) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
326, 8, 31sylancr 587 . . . . . . 7 (𝜑 → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3330, 32sylan9eqr 2798 . . . . . 6 ((𝜑𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) = 𝑀)
3433csbeq1d 3847 . . . . 5 ((𝜑𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
3529fveq2d 6829 . . . . . 6 (𝑛 ∈ (1...1) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1))
36 fvsng 7108 . . . . . . 7 ((1 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
376, 24, 36sylancr 587 . . . . . 6 (𝜑 → ({⟨1, 𝐵⟩}‘1) = 𝐵)
3835, 37sylan9eqr 2798 . . . . 5 ((𝜑𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = 𝐵)
3928, 34, 383eqtr4rd 2787 . . . 4 ((𝜑𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
405, 7, 15, 27, 39fsum 15531 . . 3 (𝜑 → Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴 = (seq1( + , {⟨1, 𝐵⟩})‘1))
414, 40eqtrid 2788 . 2 (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = (seq1( + , {⟨1, 𝐵⟩})‘1))
4211, 37seq1i 13836 . 2 (𝜑 → (seq1( + , {⟨1, 𝐵⟩})‘1) = 𝐵)
4341, 42eqtrd 2776 1 (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wnf 1784  wcel 2105  wnfc 2884  csb 3843  {csn 4573  cop 4579  1-1-ontowf1o 6478  cfv 6479  (class class class)co 7337  cc 10970  1c1 10973   + caddc 10975  cn 12074  cz 12420  ...cfz 13340  seqcseq 13822  Σcsu 15496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-inf2 9498  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-sup 9299  df-oi 9367  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-n0 12335  df-z 12421  df-uz 12684  df-rp 12832  df-fz 13341  df-fzo 13484  df-seq 13823  df-exp 13884  df-hash 14146  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-clim 15296  df-sum 15497
This theorem is referenced by:  sumpair  42899  dvnmul  43820  sge0sn  44254  hoidmvlelem3  44472
  Copyright terms: Public domain W3C validator