Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sumsnd Structured version   Visualization version   GIF version

Theorem sumsnd 44388
Description: A sum of a singleton is the term. The deduction version of sumsn 15725. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
sumsnd.1 (𝜑𝑘𝐵)
sumsnd.2 𝑘𝜑
sumsnd.3 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐵)
sumsnd.4 (𝜑𝑀𝑉)
sumsnd.5 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
sumsnd (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable group:   𝑘,𝑀
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem sumsnd
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2899 . . . 4 𝑚𝐴
2 nfcsb1v 3917 . . . 4 𝑘𝑚 / 𝑘𝐴
3 csbeq1a 3906 . . . 4 (𝑘 = 𝑚𝐴 = 𝑚 / 𝑘𝐴)
41, 2, 3cbvsumi 15676 . . 3 Σ𝑘 ∈ {𝑀}𝐴 = Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴
5 csbeq1 3895 . . . 4 (𝑚 = ({⟨1, 𝑀⟩}‘𝑛) → 𝑚 / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
6 1nn 12254 . . . . 5 1 ∈ ℕ
76a1i 11 . . . 4 (𝜑 → 1 ∈ ℕ)
8 sumsnd.4 . . . . . 6 (𝜑𝑀𝑉)
9 f1osng 6880 . . . . . 6 ((1 ∈ ℕ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
106, 8, 9sylancr 586 . . . . 5 (𝜑 → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
11 1z 12623 . . . . . 6 1 ∈ ℤ
12 fzsn 13576 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
13 f1oeq2 6828 . . . . . 6 ((1...1) = {1} → ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}))
1411, 12, 13mp2b 10 . . . . 5 ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
1510, 14sylibr 233 . . . 4 (𝜑 → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
16 elsni 4646 . . . . . . 7 (𝑚 ∈ {𝑀} → 𝑚 = 𝑀)
1716adantl 481 . . . . . 6 ((𝜑𝑚 ∈ {𝑀}) → 𝑚 = 𝑀)
1817csbeq1d 3896 . . . . 5 ((𝜑𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
19 sumsnd.2 . . . . . . . 8 𝑘𝜑
20 sumsnd.1 . . . . . . . 8 (𝜑𝑘𝐵)
21 sumsnd.3 . . . . . . . 8 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐵)
2219, 20, 8, 21csbiedf 3923 . . . . . . 7 (𝜑𝑀 / 𝑘𝐴 = 𝐵)
2322adantr 480 . . . . . 6 ((𝜑𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 = 𝐵)
24 sumsnd.5 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
2524adantr 480 . . . . . 6 ((𝜑𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ)
2623, 25eqeltrd 2829 . . . . 5 ((𝜑𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 ∈ ℂ)
2718, 26eqeltrd 2829 . . . 4 ((𝜑𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 ∈ ℂ)
2822adantr 480 . . . . 5 ((𝜑𝑛 ∈ (1...1)) → 𝑀 / 𝑘𝐴 = 𝐵)
29 elfz1eq 13545 . . . . . . . 8 (𝑛 ∈ (1...1) → 𝑛 = 1)
3029fveq2d 6901 . . . . . . 7 (𝑛 ∈ (1...1) → ({⟨1, 𝑀⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘1))
31 fvsng 7189 . . . . . . . 8 ((1 ∈ ℕ ∧ 𝑀𝑉) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
326, 8, 31sylancr 586 . . . . . . 7 (𝜑 → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3330, 32sylan9eqr 2790 . . . . . 6 ((𝜑𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) = 𝑀)
3433csbeq1d 3896 . . . . 5 ((𝜑𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
3529fveq2d 6901 . . . . . 6 (𝑛 ∈ (1...1) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1))
36 fvsng 7189 . . . . . . 7 ((1 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
376, 24, 36sylancr 586 . . . . . 6 (𝜑 → ({⟨1, 𝐵⟩}‘1) = 𝐵)
3835, 37sylan9eqr 2790 . . . . 5 ((𝜑𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = 𝐵)
3928, 34, 383eqtr4rd 2779 . . . 4 ((𝜑𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
405, 7, 15, 27, 39fsum 15699 . . 3 (𝜑 → Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴 = (seq1( + , {⟨1, 𝐵⟩})‘1))
414, 40eqtrid 2780 . 2 (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = (seq1( + , {⟨1, 𝐵⟩})‘1))
4211, 37seq1i 14013 . 2 (𝜑 → (seq1( + , {⟨1, 𝐵⟩})‘1) = 𝐵)
4341, 42eqtrd 2768 1 (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wnf 1778  wcel 2099  wnfc 2879  csb 3892  {csn 4629  cop 4635  1-1-ontowf1o 6547  cfv 6548  (class class class)co 7420  cc 11137  1c1 11140   + caddc 11142  cn 12243  cz 12589  ...cfz 13517  seqcseq 13999  Σcsu 15665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9466  df-oi 9534  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-n0 12504  df-z 12590  df-uz 12854  df-rp 13008  df-fz 13518  df-fzo 13661  df-seq 14000  df-exp 14060  df-hash 14323  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-clim 15465  df-sum 15666
This theorem is referenced by:  sumpair  44397  dvnmul  45331  sge0sn  45767  hoidmvlelem3  45985
  Copyright terms: Public domain W3C validator