Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sumsnd Structured version   Visualization version   GIF version

Theorem sumsnd 42569
Description: A sum of a singleton is the term. The deduction version of sumsn 15458. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
sumsnd.1 (𝜑𝑘𝐵)
sumsnd.2 𝑘𝜑
sumsnd.3 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐵)
sumsnd.4 (𝜑𝑀𝑉)
sumsnd.5 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
sumsnd (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable group:   𝑘,𝑀
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem sumsnd
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2907 . . . 4 𝑚𝐴
2 nfcsb1v 3857 . . . 4 𝑘𝑚 / 𝑘𝐴
3 csbeq1a 3846 . . . 4 (𝑘 = 𝑚𝐴 = 𝑚 / 𝑘𝐴)
41, 2, 3cbvsumi 15409 . . 3 Σ𝑘 ∈ {𝑀}𝐴 = Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴
5 csbeq1 3835 . . . 4 (𝑚 = ({⟨1, 𝑀⟩}‘𝑛) → 𝑚 / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
6 1nn 11984 . . . . 5 1 ∈ ℕ
76a1i 11 . . . 4 (𝜑 → 1 ∈ ℕ)
8 sumsnd.4 . . . . . 6 (𝜑𝑀𝑉)
9 f1osng 6757 . . . . . 6 ((1 ∈ ℕ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
106, 8, 9sylancr 587 . . . . 5 (𝜑 → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
11 1z 12350 . . . . . 6 1 ∈ ℤ
12 fzsn 13298 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
13 f1oeq2 6705 . . . . . 6 ((1...1) = {1} → ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}))
1411, 12, 13mp2b 10 . . . . 5 ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
1510, 14sylibr 233 . . . 4 (𝜑 → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
16 elsni 4578 . . . . . . 7 (𝑚 ∈ {𝑀} → 𝑚 = 𝑀)
1716adantl 482 . . . . . 6 ((𝜑𝑚 ∈ {𝑀}) → 𝑚 = 𝑀)
1817csbeq1d 3836 . . . . 5 ((𝜑𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
19 sumsnd.2 . . . . . . . 8 𝑘𝜑
20 sumsnd.1 . . . . . . . 8 (𝜑𝑘𝐵)
21 sumsnd.3 . . . . . . . 8 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐵)
2219, 20, 8, 21csbiedf 3863 . . . . . . 7 (𝜑𝑀 / 𝑘𝐴 = 𝐵)
2322adantr 481 . . . . . 6 ((𝜑𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 = 𝐵)
24 sumsnd.5 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
2524adantr 481 . . . . . 6 ((𝜑𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ)
2623, 25eqeltrd 2839 . . . . 5 ((𝜑𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 ∈ ℂ)
2718, 26eqeltrd 2839 . . . 4 ((𝜑𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 ∈ ℂ)
2822adantr 481 . . . . 5 ((𝜑𝑛 ∈ (1...1)) → 𝑀 / 𝑘𝐴 = 𝐵)
29 elfz1eq 13267 . . . . . . . 8 (𝑛 ∈ (1...1) → 𝑛 = 1)
3029fveq2d 6778 . . . . . . 7 (𝑛 ∈ (1...1) → ({⟨1, 𝑀⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘1))
31 fvsng 7052 . . . . . . . 8 ((1 ∈ ℕ ∧ 𝑀𝑉) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
326, 8, 31sylancr 587 . . . . . . 7 (𝜑 → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3330, 32sylan9eqr 2800 . . . . . 6 ((𝜑𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) = 𝑀)
3433csbeq1d 3836 . . . . 5 ((𝜑𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
3529fveq2d 6778 . . . . . 6 (𝑛 ∈ (1...1) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1))
36 fvsng 7052 . . . . . . 7 ((1 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
376, 24, 36sylancr 587 . . . . . 6 (𝜑 → ({⟨1, 𝐵⟩}‘1) = 𝐵)
3835, 37sylan9eqr 2800 . . . . 5 ((𝜑𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = 𝐵)
3928, 34, 383eqtr4rd 2789 . . . 4 ((𝜑𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
405, 7, 15, 27, 39fsum 15432 . . 3 (𝜑 → Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴 = (seq1( + , {⟨1, 𝐵⟩})‘1))
414, 40eqtrid 2790 . 2 (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = (seq1( + , {⟨1, 𝐵⟩})‘1))
4211, 37seq1i 13735 . 2 (𝜑 → (seq1( + , {⟨1, 𝐵⟩})‘1) = 𝐵)
4341, 42eqtrd 2778 1 (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wnf 1786  wcel 2106  wnfc 2887  csb 3832  {csn 4561  cop 4567  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  cc 10869  1c1 10872   + caddc 10874  cn 11973  cz 12319  ...cfz 13239  seqcseq 13721  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398
This theorem is referenced by:  sumpair  42578  dvnmul  43484  sge0sn  43917  hoidmvlelem3  44135
  Copyright terms: Public domain W3C validator