![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sumsnd | Structured version Visualization version GIF version |
Description: A sum of a singleton is the term. The deduction version of sumsn 15725. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
sumsnd.1 | ⊢ (𝜑 → Ⅎ𝑘𝐵) |
sumsnd.2 | ⊢ Ⅎ𝑘𝜑 |
sumsnd.3 | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐵) |
sumsnd.4 | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
sumsnd.5 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
sumsnd | ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑚𝐴 | |
2 | nfcsb1v 3917 | . . . 4 ⊢ Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐴 | |
3 | csbeq1a 3906 | . . . 4 ⊢ (𝑘 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑘⦌𝐴) | |
4 | 1, 2, 3 | cbvsumi 15676 | . . 3 ⊢ Σ𝑘 ∈ {𝑀}𝐴 = Σ𝑚 ∈ {𝑀}⦋𝑚 / 𝑘⦌𝐴 |
5 | csbeq1 3895 | . . . 4 ⊢ (𝑚 = ({⟨1, 𝑀⟩}‘𝑛) → ⦋𝑚 / 𝑘⦌𝐴 = ⦋({⟨1, 𝑀⟩}‘𝑛) / 𝑘⦌𝐴) | |
6 | 1nn 12254 | . . . . 5 ⊢ 1 ∈ ℕ | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → 1 ∈ ℕ) |
8 | sumsnd.4 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
9 | f1osng 6880 | . . . . . 6 ⊢ ((1 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}) | |
10 | 6, 8, 9 | sylancr 586 | . . . . 5 ⊢ (𝜑 → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}) |
11 | 1z 12623 | . . . . . 6 ⊢ 1 ∈ ℤ | |
12 | fzsn 13576 | . . . . . 6 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
13 | f1oeq2 6828 | . . . . . 6 ⊢ ((1...1) = {1} → ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})) | |
14 | 11, 12, 13 | mp2b 10 | . . . . 5 ⊢ ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}) |
15 | 10, 14 | sylibr 233 | . . . 4 ⊢ (𝜑 → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀}) |
16 | elsni 4646 | . . . . . . 7 ⊢ (𝑚 ∈ {𝑀} → 𝑚 = 𝑀) | |
17 | 16 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → 𝑚 = 𝑀) |
18 | 17 | csbeq1d 3896 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑚 / 𝑘⦌𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
19 | sumsnd.2 | . . . . . . . 8 ⊢ Ⅎ𝑘𝜑 | |
20 | sumsnd.1 | . . . . . . . 8 ⊢ (𝜑 → Ⅎ𝑘𝐵) | |
21 | sumsnd.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐵) | |
22 | 19, 20, 8, 21 | csbiedf 3923 | . . . . . . 7 ⊢ (𝜑 → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
23 | 22 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
24 | sumsnd.5 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
25 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ) |
26 | 23, 25 | eqeltrd 2829 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) |
27 | 18, 26 | eqeltrd 2829 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ {𝑀}) → ⦋𝑚 / 𝑘⦌𝐴 ∈ ℂ) |
28 | 22 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
29 | elfz1eq 13545 | . . . . . . . 8 ⊢ (𝑛 ∈ (1...1) → 𝑛 = 1) | |
30 | 29 | fveq2d 6901 | . . . . . . 7 ⊢ (𝑛 ∈ (1...1) → ({⟨1, 𝑀⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘1)) |
31 | fvsng 7189 | . . . . . . . 8 ⊢ ((1 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → ({⟨1, 𝑀⟩}‘1) = 𝑀) | |
32 | 6, 8, 31 | sylancr 586 | . . . . . . 7 ⊢ (𝜑 → ({⟨1, 𝑀⟩}‘1) = 𝑀) |
33 | 30, 32 | sylan9eqr 2790 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) = 𝑀) |
34 | 33 | csbeq1d 3896 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ⦋({⟨1, 𝑀⟩}‘𝑛) / 𝑘⦌𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
35 | 29 | fveq2d 6901 | . . . . . 6 ⊢ (𝑛 ∈ (1...1) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1)) |
36 | fvsng 7189 | . . . . . . 7 ⊢ ((1 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵) | |
37 | 6, 24, 36 | sylancr 586 | . . . . . 6 ⊢ (𝜑 → ({⟨1, 𝐵⟩}‘1) = 𝐵) |
38 | 35, 37 | sylan9eqr 2790 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = 𝐵) |
39 | 28, 34, 38 | 3eqtr4rd 2779 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = ⦋({⟨1, 𝑀⟩}‘𝑛) / 𝑘⦌𝐴) |
40 | 5, 7, 15, 27, 39 | fsum 15699 | . . 3 ⊢ (𝜑 → Σ𝑚 ∈ {𝑀}⦋𝑚 / 𝑘⦌𝐴 = (seq1( + , {⟨1, 𝐵⟩})‘1)) |
41 | 4, 40 | eqtrid 2780 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = (seq1( + , {⟨1, 𝐵⟩})‘1)) |
42 | 11, 37 | seq1i 14013 | . 2 ⊢ (𝜑 → (seq1( + , {⟨1, 𝐵⟩})‘1) = 𝐵) |
43 | 41, 42 | eqtrd 2768 | 1 ⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 Ⅎwnfc 2879 ⦋csb 3892 {csn 4629 ⟨cop 4635 –1-1-onto→wf1o 6547 ‘cfv 6548 (class class class)co 7420 ℂcc 11137 1c1 11140 + caddc 11142 ℕcn 12243 ℤcz 12589 ...cfz 13517 seqcseq 13999 Σcsu 15665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9665 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9466 df-oi 9534 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-n0 12504 df-z 12590 df-uz 12854 df-rp 13008 df-fz 13518 df-fzo 13661 df-seq 14000 df-exp 14060 df-hash 14323 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-clim 15465 df-sum 15666 |
This theorem is referenced by: sumpair 44397 dvnmul 45331 sge0sn 45767 hoidmvlelem3 45985 |
Copyright terms: Public domain | W3C validator |