Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsummptf1o | Structured version Visualization version GIF version |
Description: Re-index a finite group sum using a bijection. (Contributed by Thierry Arnoux, 29-Mar-2018.) |
Ref | Expression |
---|---|
gsummptf1o.x | ⊢ Ⅎ𝑥𝐻 |
gsummptf1o.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptf1o.z | ⊢ 0 = (0g‘𝐺) |
gsummptf1o.i | ⊢ (𝑥 = 𝐸 → 𝐶 = 𝐻) |
gsummptf1o.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsummptf1o.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
gsummptf1o.d | ⊢ (𝜑 → 𝐹 ⊆ 𝐵) |
gsummptf1o.f | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐹) |
gsummptf1o.e | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐸 ∈ 𝐴) |
gsummptf1o.h | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃!𝑦 ∈ 𝐷 𝑥 = 𝐸) |
Ref | Expression |
---|---|
gsummptf1o | ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg (𝑦 ∈ 𝐷 ↦ 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptf1o.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsummptf1o.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsummptf1o.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsummptf1o.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
5 | gsummptf1o.d | . . . . . 6 ⊢ (𝜑 → 𝐹 ⊆ 𝐵) | |
6 | 5 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ⊆ 𝐵) |
7 | gsummptf1o.f | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐹) | |
8 | 6, 7 | sseldd 3922 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
9 | 8 | fmpttd 6982 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵) |
10 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
11 | 2 | fvexi 6781 | . . . . 5 ⊢ 0 ∈ V |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
13 | 10, 4, 8, 12 | fsuppmptdm 9127 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) finSupp 0 ) |
14 | gsummptf1o.e | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐸 ∈ 𝐴) | |
15 | 14 | ralrimiva 3113 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝐷 𝐸 ∈ 𝐴) |
16 | gsummptf1o.h | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃!𝑦 ∈ 𝐷 𝑥 = 𝐸) | |
17 | 16 | ralrimiva 3113 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐷 𝑥 = 𝐸) |
18 | eqid 2738 | . . . . 5 ⊢ (𝑦 ∈ 𝐷 ↦ 𝐸) = (𝑦 ∈ 𝐷 ↦ 𝐸) | |
19 | 18 | f1ompt 6978 | . . . 4 ⊢ ((𝑦 ∈ 𝐷 ↦ 𝐸):𝐷–1-1-onto→𝐴 ↔ (∀𝑦 ∈ 𝐷 𝐸 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐷 𝑥 = 𝐸)) |
20 | 15, 17, 19 | sylanbrc 583 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ 𝐸):𝐷–1-1-onto→𝐴) |
21 | 1, 2, 3, 4, 9, 13, 20 | gsumf1o 19505 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg ((𝑥 ∈ 𝐴 ↦ 𝐶) ∘ (𝑦 ∈ 𝐷 ↦ 𝐸)))) |
22 | eqidd 2739 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ 𝐸) = (𝑦 ∈ 𝐷 ↦ 𝐸)) | |
23 | eqidd 2739 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
24 | 15, 22, 23 | fmptcos 6996 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∘ (𝑦 ∈ 𝐷 ↦ 𝐸)) = (𝑦 ∈ 𝐷 ↦ ⦋𝐸 / 𝑥⦌𝐶)) |
25 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ 𝐷) | |
26 | gsummptf1o.x | . . . . . . 7 ⊢ Ⅎ𝑥𝐻 | |
27 | 26 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → Ⅎ𝑥𝐻) |
28 | gsummptf1o.i | . . . . . . 7 ⊢ (𝑥 = 𝐸 → 𝐶 = 𝐻) | |
29 | 28 | adantl 482 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑥 = 𝐸) → 𝐶 = 𝐻) |
30 | 25, 27, 14, 29 | csbiedf 3863 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ⦋𝐸 / 𝑥⦌𝐶 = 𝐻) |
31 | 30 | mpteq2dva 5174 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ ⦋𝐸 / 𝑥⦌𝐶) = (𝑦 ∈ 𝐷 ↦ 𝐻)) |
32 | 24, 31 | eqtrd 2778 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∘ (𝑦 ∈ 𝐷 ↦ 𝐸)) = (𝑦 ∈ 𝐷 ↦ 𝐻)) |
33 | 32 | oveq2d 7284 | . 2 ⊢ (𝜑 → (𝐺 Σg ((𝑥 ∈ 𝐴 ↦ 𝐶) ∘ (𝑦 ∈ 𝐷 ↦ 𝐸))) = (𝐺 Σg (𝑦 ∈ 𝐷 ↦ 𝐻))) |
34 | 21, 33 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg (𝑦 ∈ 𝐷 ↦ 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Ⅎwnfc 2887 ∀wral 3064 ∃!wreu 3066 Vcvv 3430 ⦋csb 3832 ⊆ wss 3887 ↦ cmpt 5157 ∘ ccom 5589 –1-1-onto→wf1o 6426 ‘cfv 6427 (class class class)co 7268 Fincfn 8721 Basecbs 16900 0gc0g 17138 Σg cgsu 17139 CMndccmn 19374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-se 5541 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-isom 6436 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-1st 7821 df-2nd 7822 df-supp 7966 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-1o 8285 df-er 8486 df-en 8722 df-dom 8723 df-sdom 8724 df-fin 8725 df-fsupp 9117 df-oi 9257 df-card 9685 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-nn 11962 df-n0 12222 df-z 12308 df-uz 12571 df-fz 13228 df-fzo 13371 df-seq 13710 df-hash 14033 df-0g 17140 df-gsum 17141 df-mgm 18314 df-sgrp 18363 df-mnd 18374 df-cntz 18911 df-cmn 19376 |
This theorem is referenced by: gsummpt2co 31294 gsumhashmul 31302 mdetpmtr1 31759 |
Copyright terms: Public domain | W3C validator |