| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsummptf1o | Structured version Visualization version GIF version | ||
| Description: Re-index a finite group sum using a bijection. (Contributed by Thierry Arnoux, 29-Mar-2018.) |
| Ref | Expression |
|---|---|
| gsummptf1o.x | ⊢ Ⅎ𝑥𝐻 |
| gsummptf1o.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsummptf1o.z | ⊢ 0 = (0g‘𝐺) |
| gsummptf1o.i | ⊢ (𝑥 = 𝐸 → 𝐶 = 𝐻) |
| gsummptf1o.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsummptf1o.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| gsummptf1o.d | ⊢ (𝜑 → 𝐹 ⊆ 𝐵) |
| gsummptf1o.f | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐹) |
| gsummptf1o.e | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐸 ∈ 𝐴) |
| gsummptf1o.h | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃!𝑦 ∈ 𝐷 𝑥 = 𝐸) |
| Ref | Expression |
|---|---|
| gsummptf1o | ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg (𝑦 ∈ 𝐷 ↦ 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptf1o.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsummptf1o.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsummptf1o.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | gsummptf1o.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 5 | gsummptf1o.d | . . . . . 6 ⊢ (𝜑 → 𝐹 ⊆ 𝐵) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ⊆ 𝐵) |
| 7 | gsummptf1o.f | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐹) | |
| 8 | 6, 7 | sseldd 3931 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
| 9 | 8 | fmpttd 7054 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵) |
| 10 | eqid 2733 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 11 | 2 | fvexi 6842 | . . . . 5 ⊢ 0 ∈ V |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
| 13 | 10, 4, 8, 12 | fsuppmptdm 9267 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) finSupp 0 ) |
| 14 | gsummptf1o.e | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐸 ∈ 𝐴) | |
| 15 | 14 | ralrimiva 3125 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝐷 𝐸 ∈ 𝐴) |
| 16 | gsummptf1o.h | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃!𝑦 ∈ 𝐷 𝑥 = 𝐸) | |
| 17 | 16 | ralrimiva 3125 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐷 𝑥 = 𝐸) |
| 18 | eqid 2733 | . . . . 5 ⊢ (𝑦 ∈ 𝐷 ↦ 𝐸) = (𝑦 ∈ 𝐷 ↦ 𝐸) | |
| 19 | 18 | f1ompt 7050 | . . . 4 ⊢ ((𝑦 ∈ 𝐷 ↦ 𝐸):𝐷–1-1-onto→𝐴 ↔ (∀𝑦 ∈ 𝐷 𝐸 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐷 𝑥 = 𝐸)) |
| 20 | 15, 17, 19 | sylanbrc 583 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ 𝐸):𝐷–1-1-onto→𝐴) |
| 21 | 1, 2, 3, 4, 9, 13, 20 | gsumf1o 19830 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg ((𝑥 ∈ 𝐴 ↦ 𝐶) ∘ (𝑦 ∈ 𝐷 ↦ 𝐸)))) |
| 22 | eqidd 2734 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ 𝐸) = (𝑦 ∈ 𝐷 ↦ 𝐸)) | |
| 23 | eqidd 2734 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
| 24 | 15, 22, 23 | fmptcos 7070 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∘ (𝑦 ∈ 𝐷 ↦ 𝐸)) = (𝑦 ∈ 𝐷 ↦ ⦋𝐸 / 𝑥⦌𝐶)) |
| 25 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ 𝐷) | |
| 26 | gsummptf1o.x | . . . . . . 7 ⊢ Ⅎ𝑥𝐻 | |
| 27 | 26 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → Ⅎ𝑥𝐻) |
| 28 | gsummptf1o.i | . . . . . . 7 ⊢ (𝑥 = 𝐸 → 𝐶 = 𝐻) | |
| 29 | 28 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑥 = 𝐸) → 𝐶 = 𝐻) |
| 30 | 25, 27, 14, 29 | csbiedf 3876 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ⦋𝐸 / 𝑥⦌𝐶 = 𝐻) |
| 31 | 30 | mpteq2dva 5186 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ ⦋𝐸 / 𝑥⦌𝐶) = (𝑦 ∈ 𝐷 ↦ 𝐻)) |
| 32 | 24, 31 | eqtrd 2768 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∘ (𝑦 ∈ 𝐷 ↦ 𝐸)) = (𝑦 ∈ 𝐷 ↦ 𝐻)) |
| 33 | 32 | oveq2d 7368 | . 2 ⊢ (𝜑 → (𝐺 Σg ((𝑥 ∈ 𝐴 ↦ 𝐶) ∘ (𝑦 ∈ 𝐷 ↦ 𝐸))) = (𝐺 Σg (𝑦 ∈ 𝐷 ↦ 𝐻))) |
| 34 | 21, 33 | eqtrd 2768 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg (𝑦 ∈ 𝐷 ↦ 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Ⅎwnfc 2880 ∀wral 3048 ∃!wreu 3345 Vcvv 3437 ⦋csb 3846 ⊆ wss 3898 ↦ cmpt 5174 ∘ ccom 5623 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7352 Fincfn 8875 Basecbs 17122 0gc0g 17345 Σg cgsu 17346 CMndccmn 19694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-seq 13911 df-hash 14240 df-0g 17347 df-gsum 17348 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-cntz 19231 df-cmn 19696 |
| This theorem is referenced by: gsummpt2co 33035 gsumhashmul 33048 elrgspnsubrunlem1 33221 mdetpmtr1 33857 |
| Copyright terms: Public domain | W3C validator |