MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptf1o Structured version   Visualization version   GIF version

Theorem gsummptf1o 19893
Description: Re-index a finite group sum using a bijection. (Contributed by Thierry Arnoux, 29-Mar-2018.)
Hypotheses
Ref Expression
gsummptf1o.x 𝑥𝐻
gsummptf1o.b 𝐵 = (Base‘𝐺)
gsummptf1o.z 0 = (0g𝐺)
gsummptf1o.i (𝑥 = 𝐸𝐶 = 𝐻)
gsummptf1o.g (𝜑𝐺 ∈ CMnd)
gsummptf1o.a (𝜑𝐴 ∈ Fin)
gsummptf1o.d (𝜑𝐹𝐵)
gsummptf1o.f ((𝜑𝑥𝐴) → 𝐶𝐹)
gsummptf1o.e ((𝜑𝑦𝐷) → 𝐸𝐴)
gsummptf1o.h ((𝜑𝑥𝐴) → ∃!𝑦𝐷 𝑥 = 𝐸)
Assertion
Ref Expression
gsummptf1o (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg (𝑦𝐷𝐻)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝐸   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝐶(𝑥)   𝐸(𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem gsummptf1o
StepHypRef Expression
1 gsummptf1o.b . . 3 𝐵 = (Base‘𝐺)
2 gsummptf1o.z . . 3 0 = (0g𝐺)
3 gsummptf1o.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsummptf1o.a . . 3 (𝜑𝐴 ∈ Fin)
5 gsummptf1o.d . . . . . 6 (𝜑𝐹𝐵)
65adantr 480 . . . . 5 ((𝜑𝑥𝐴) → 𝐹𝐵)
7 gsummptf1o.f . . . . 5 ((𝜑𝑥𝐴) → 𝐶𝐹)
86, 7sseldd 3947 . . . 4 ((𝜑𝑥𝐴) → 𝐶𝐵)
98fmpttd 7087 . . 3 (𝜑 → (𝑥𝐴𝐶):𝐴𝐵)
10 eqid 2729 . . . 4 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
112fvexi 6872 . . . . 5 0 ∈ V
1211a1i 11 . . . 4 (𝜑0 ∈ V)
1310, 4, 8, 12fsuppmptdm 9327 . . 3 (𝜑 → (𝑥𝐴𝐶) finSupp 0 )
14 gsummptf1o.e . . . . 5 ((𝜑𝑦𝐷) → 𝐸𝐴)
1514ralrimiva 3125 . . . 4 (𝜑 → ∀𝑦𝐷 𝐸𝐴)
16 gsummptf1o.h . . . . 5 ((𝜑𝑥𝐴) → ∃!𝑦𝐷 𝑥 = 𝐸)
1716ralrimiva 3125 . . . 4 (𝜑 → ∀𝑥𝐴 ∃!𝑦𝐷 𝑥 = 𝐸)
18 eqid 2729 . . . . 5 (𝑦𝐷𝐸) = (𝑦𝐷𝐸)
1918f1ompt 7083 . . . 4 ((𝑦𝐷𝐸):𝐷1-1-onto𝐴 ↔ (∀𝑦𝐷 𝐸𝐴 ∧ ∀𝑥𝐴 ∃!𝑦𝐷 𝑥 = 𝐸))
2015, 17, 19sylanbrc 583 . . 3 (𝜑 → (𝑦𝐷𝐸):𝐷1-1-onto𝐴)
211, 2, 3, 4, 9, 13, 20gsumf1o 19846 . 2 (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg ((𝑥𝐴𝐶) ∘ (𝑦𝐷𝐸))))
22 eqidd 2730 . . . . 5 (𝜑 → (𝑦𝐷𝐸) = (𝑦𝐷𝐸))
23 eqidd 2730 . . . . 5 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐴𝐶))
2415, 22, 23fmptcos 7103 . . . 4 (𝜑 → ((𝑥𝐴𝐶) ∘ (𝑦𝐷𝐸)) = (𝑦𝐷𝐸 / 𝑥𝐶))
25 nfv 1914 . . . . . 6 𝑥(𝜑𝑦𝐷)
26 gsummptf1o.x . . . . . . 7 𝑥𝐻
2726a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → 𝑥𝐻)
28 gsummptf1o.i . . . . . . 7 (𝑥 = 𝐸𝐶 = 𝐻)
2928adantl 481 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑥 = 𝐸) → 𝐶 = 𝐻)
3025, 27, 14, 29csbiedf 3892 . . . . 5 ((𝜑𝑦𝐷) → 𝐸 / 𝑥𝐶 = 𝐻)
3130mpteq2dva 5200 . . . 4 (𝜑 → (𝑦𝐷𝐸 / 𝑥𝐶) = (𝑦𝐷𝐻))
3224, 31eqtrd 2764 . . 3 (𝜑 → ((𝑥𝐴𝐶) ∘ (𝑦𝐷𝐸)) = (𝑦𝐷𝐻))
3332oveq2d 7403 . 2 (𝜑 → (𝐺 Σg ((𝑥𝐴𝐶) ∘ (𝑦𝐷𝐸))) = (𝐺 Σg (𝑦𝐷𝐻)))
3421, 33eqtrd 2764 1 (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg (𝑦𝐷𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  ∃!wreu 3352  Vcvv 3447  csb 3862  wss 3914  cmpt 5188  ccom 5642  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  Fincfn 8918  Basecbs 17179  0gc0g 17402   Σg cgsu 17403  CMndccmn 19710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-cntz 19249  df-cmn 19712
This theorem is referenced by:  gsummpt2co  32988  gsumhashmul  33001  elrgspnsubrunlem1  33198  mdetpmtr1  33813
  Copyright terms: Public domain W3C validator