Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsummptf1o | Structured version Visualization version GIF version |
Description: Re-index a finite group sum using a bijection. (Contributed by Thierry Arnoux, 29-Mar-2018.) |
Ref | Expression |
---|---|
gsummptf1o.x | ⊢ Ⅎ𝑥𝐻 |
gsummptf1o.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptf1o.z | ⊢ 0 = (0g‘𝐺) |
gsummptf1o.i | ⊢ (𝑥 = 𝐸 → 𝐶 = 𝐻) |
gsummptf1o.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsummptf1o.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
gsummptf1o.d | ⊢ (𝜑 → 𝐹 ⊆ 𝐵) |
gsummptf1o.f | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐹) |
gsummptf1o.e | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐸 ∈ 𝐴) |
gsummptf1o.h | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃!𝑦 ∈ 𝐷 𝑥 = 𝐸) |
Ref | Expression |
---|---|
gsummptf1o | ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg (𝑦 ∈ 𝐷 ↦ 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptf1o.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsummptf1o.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsummptf1o.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsummptf1o.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
5 | gsummptf1o.d | . . . . . 6 ⊢ (𝜑 → 𝐹 ⊆ 𝐵) | |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ⊆ 𝐵) |
7 | gsummptf1o.f | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐹) | |
8 | 6, 7 | sseldd 3918 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
9 | 8 | fmpttd 6971 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵) |
10 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
11 | 2 | fvexi 6770 | . . . . 5 ⊢ 0 ∈ V |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
13 | 10, 4, 8, 12 | fsuppmptdm 9069 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) finSupp 0 ) |
14 | gsummptf1o.e | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐸 ∈ 𝐴) | |
15 | 14 | ralrimiva 3107 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝐷 𝐸 ∈ 𝐴) |
16 | gsummptf1o.h | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃!𝑦 ∈ 𝐷 𝑥 = 𝐸) | |
17 | 16 | ralrimiva 3107 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐷 𝑥 = 𝐸) |
18 | eqid 2738 | . . . . 5 ⊢ (𝑦 ∈ 𝐷 ↦ 𝐸) = (𝑦 ∈ 𝐷 ↦ 𝐸) | |
19 | 18 | f1ompt 6967 | . . . 4 ⊢ ((𝑦 ∈ 𝐷 ↦ 𝐸):𝐷–1-1-onto→𝐴 ↔ (∀𝑦 ∈ 𝐷 𝐸 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐷 𝑥 = 𝐸)) |
20 | 15, 17, 19 | sylanbrc 582 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ 𝐸):𝐷–1-1-onto→𝐴) |
21 | 1, 2, 3, 4, 9, 13, 20 | gsumf1o 19432 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg ((𝑥 ∈ 𝐴 ↦ 𝐶) ∘ (𝑦 ∈ 𝐷 ↦ 𝐸)))) |
22 | eqidd 2739 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ 𝐸) = (𝑦 ∈ 𝐷 ↦ 𝐸)) | |
23 | eqidd 2739 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
24 | 15, 22, 23 | fmptcos 6985 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∘ (𝑦 ∈ 𝐷 ↦ 𝐸)) = (𝑦 ∈ 𝐷 ↦ ⦋𝐸 / 𝑥⦌𝐶)) |
25 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ 𝐷) | |
26 | gsummptf1o.x | . . . . . . 7 ⊢ Ⅎ𝑥𝐻 | |
27 | 26 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → Ⅎ𝑥𝐻) |
28 | gsummptf1o.i | . . . . . . 7 ⊢ (𝑥 = 𝐸 → 𝐶 = 𝐻) | |
29 | 28 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑥 = 𝐸) → 𝐶 = 𝐻) |
30 | 25, 27, 14, 29 | csbiedf 3859 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ⦋𝐸 / 𝑥⦌𝐶 = 𝐻) |
31 | 30 | mpteq2dva 5170 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ ⦋𝐸 / 𝑥⦌𝐶) = (𝑦 ∈ 𝐷 ↦ 𝐻)) |
32 | 24, 31 | eqtrd 2778 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∘ (𝑦 ∈ 𝐷 ↦ 𝐸)) = (𝑦 ∈ 𝐷 ↦ 𝐻)) |
33 | 32 | oveq2d 7271 | . 2 ⊢ (𝜑 → (𝐺 Σg ((𝑥 ∈ 𝐴 ↦ 𝐶) ∘ (𝑦 ∈ 𝐷 ↦ 𝐸))) = (𝐺 Σg (𝑦 ∈ 𝐷 ↦ 𝐻))) |
34 | 21, 33 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg (𝑦 ∈ 𝐷 ↦ 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2886 ∀wral 3063 ∃!wreu 3065 Vcvv 3422 ⦋csb 3828 ⊆ wss 3883 ↦ cmpt 5153 ∘ ccom 5584 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 Basecbs 16840 0gc0g 17067 Σg cgsu 17068 CMndccmn 19301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-0g 17069 df-gsum 17070 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-cntz 18838 df-cmn 19303 |
This theorem is referenced by: gsummpt2co 31210 gsumhashmul 31218 mdetpmtr1 31675 |
Copyright terms: Public domain | W3C validator |