MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptf1o Structured version   Visualization version   GIF version

Theorem gsummptf1o 19077
Description: Re-index a finite group sum using a bijection. (Contributed by Thierry Arnoux, 29-Mar-2018.)
Hypotheses
Ref Expression
gsummptf1o.x 𝑥𝐻
gsummptf1o.b 𝐵 = (Base‘𝐺)
gsummptf1o.z 0 = (0g𝐺)
gsummptf1o.i (𝑥 = 𝐸𝐶 = 𝐻)
gsummptf1o.g (𝜑𝐺 ∈ CMnd)
gsummptf1o.a (𝜑𝐴 ∈ Fin)
gsummptf1o.d (𝜑𝐹𝐵)
gsummptf1o.f ((𝜑𝑥𝐴) → 𝐶𝐹)
gsummptf1o.e ((𝜑𝑦𝐷) → 𝐸𝐴)
gsummptf1o.h ((𝜑𝑥𝐴) → ∃!𝑦𝐷 𝑥 = 𝐸)
Assertion
Ref Expression
gsummptf1o (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg (𝑦𝐷𝐻)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝐸   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝐶(𝑥)   𝐸(𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem gsummptf1o
StepHypRef Expression
1 gsummptf1o.b . . 3 𝐵 = (Base‘𝐺)
2 gsummptf1o.z . . 3 0 = (0g𝐺)
3 gsummptf1o.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsummptf1o.a . . 3 (𝜑𝐴 ∈ Fin)
5 gsummptf1o.d . . . . . 6 (𝜑𝐹𝐵)
65adantr 483 . . . . 5 ((𝜑𝑥𝐴) → 𝐹𝐵)
7 gsummptf1o.f . . . . 5 ((𝜑𝑥𝐴) → 𝐶𝐹)
86, 7sseldd 3968 . . . 4 ((𝜑𝑥𝐴) → 𝐶𝐵)
98fmpttd 6874 . . 3 (𝜑 → (𝑥𝐴𝐶):𝐴𝐵)
10 eqid 2821 . . . 4 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
112fvexi 6679 . . . . 5 0 ∈ V
1211a1i 11 . . . 4 (𝜑0 ∈ V)
1310, 4, 8, 12fsuppmptdm 8838 . . 3 (𝜑 → (𝑥𝐴𝐶) finSupp 0 )
14 gsummptf1o.e . . . . 5 ((𝜑𝑦𝐷) → 𝐸𝐴)
1514ralrimiva 3182 . . . 4 (𝜑 → ∀𝑦𝐷 𝐸𝐴)
16 gsummptf1o.h . . . . 5 ((𝜑𝑥𝐴) → ∃!𝑦𝐷 𝑥 = 𝐸)
1716ralrimiva 3182 . . . 4 (𝜑 → ∀𝑥𝐴 ∃!𝑦𝐷 𝑥 = 𝐸)
18 eqid 2821 . . . . 5 (𝑦𝐷𝐸) = (𝑦𝐷𝐸)
1918f1ompt 6870 . . . 4 ((𝑦𝐷𝐸):𝐷1-1-onto𝐴 ↔ (∀𝑦𝐷 𝐸𝐴 ∧ ∀𝑥𝐴 ∃!𝑦𝐷 𝑥 = 𝐸))
2015, 17, 19sylanbrc 585 . . 3 (𝜑 → (𝑦𝐷𝐸):𝐷1-1-onto𝐴)
211, 2, 3, 4, 9, 13, 20gsumf1o 19030 . 2 (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg ((𝑥𝐴𝐶) ∘ (𝑦𝐷𝐸))))
22 eqidd 2822 . . . . 5 (𝜑 → (𝑦𝐷𝐸) = (𝑦𝐷𝐸))
23 eqidd 2822 . . . . 5 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐴𝐶))
2415, 22, 23fmptcos 6888 . . . 4 (𝜑 → ((𝑥𝐴𝐶) ∘ (𝑦𝐷𝐸)) = (𝑦𝐷𝐸 / 𝑥𝐶))
25 nfv 1911 . . . . . 6 𝑥(𝜑𝑦𝐷)
26 gsummptf1o.x . . . . . . 7 𝑥𝐻
2726a1i 11 . . . . . 6 ((𝜑𝑦𝐷) → 𝑥𝐻)
28 gsummptf1o.i . . . . . . 7 (𝑥 = 𝐸𝐶 = 𝐻)
2928adantl 484 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑥 = 𝐸) → 𝐶 = 𝐻)
3025, 27, 14, 29csbiedf 3913 . . . . 5 ((𝜑𝑦𝐷) → 𝐸 / 𝑥𝐶 = 𝐻)
3130mpteq2dva 5154 . . . 4 (𝜑 → (𝑦𝐷𝐸 / 𝑥𝐶) = (𝑦𝐷𝐻))
3224, 31eqtrd 2856 . . 3 (𝜑 → ((𝑥𝐴𝐶) ∘ (𝑦𝐷𝐸)) = (𝑦𝐷𝐻))
3332oveq2d 7166 . 2 (𝜑 → (𝐺 Σg ((𝑥𝐴𝐶) ∘ (𝑦𝐷𝐸))) = (𝐺 Σg (𝑦𝐷𝐻)))
3421, 33eqtrd 2856 1 (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg (𝑦𝐷𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wnfc 2961  wral 3138  ∃!wreu 3140  Vcvv 3495  csb 3883  wss 3936  cmpt 5139  ccom 5554  1-1-ontowf1o 6349  cfv 6350  (class class class)co 7150  Fincfn 8503  Basecbs 16477  0gc0g 16707   Σg cgsu 16708  CMndccmn 18900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-0g 16709  df-gsum 16710  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-cntz 18441  df-cmn 18902
This theorem is referenced by:  gsummpt2co  30681  mdetpmtr1  31083
  Copyright terms: Public domain W3C validator