![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsummptf1o | Structured version Visualization version GIF version |
Description: Re-index a finite group sum using a bijection. (Contributed by Thierry Arnoux, 29-Mar-2018.) |
Ref | Expression |
---|---|
gsummptf1o.x | ⊢ Ⅎ𝑥𝐻 |
gsummptf1o.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptf1o.z | ⊢ 0 = (0g‘𝐺) |
gsummptf1o.i | ⊢ (𝑥 = 𝐸 → 𝐶 = 𝐻) |
gsummptf1o.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsummptf1o.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
gsummptf1o.d | ⊢ (𝜑 → 𝐹 ⊆ 𝐵) |
gsummptf1o.f | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐹) |
gsummptf1o.e | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐸 ∈ 𝐴) |
gsummptf1o.h | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃!𝑦 ∈ 𝐷 𝑥 = 𝐸) |
Ref | Expression |
---|---|
gsummptf1o | ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg (𝑦 ∈ 𝐷 ↦ 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptf1o.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsummptf1o.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsummptf1o.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsummptf1o.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
5 | gsummptf1o.d | . . . . . 6 ⊢ (𝜑 → 𝐹 ⊆ 𝐵) | |
6 | 5 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ⊆ 𝐵) |
7 | gsummptf1o.f | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐹) | |
8 | 6, 7 | sseldd 3983 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
9 | 8 | fmpttd 7114 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵) |
10 | eqid 2732 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
11 | 2 | fvexi 6905 | . . . . 5 ⊢ 0 ∈ V |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
13 | 10, 4, 8, 12 | fsuppmptdm 9373 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) finSupp 0 ) |
14 | gsummptf1o.e | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐸 ∈ 𝐴) | |
15 | 14 | ralrimiva 3146 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝐷 𝐸 ∈ 𝐴) |
16 | gsummptf1o.h | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃!𝑦 ∈ 𝐷 𝑥 = 𝐸) | |
17 | 16 | ralrimiva 3146 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐷 𝑥 = 𝐸) |
18 | eqid 2732 | . . . . 5 ⊢ (𝑦 ∈ 𝐷 ↦ 𝐸) = (𝑦 ∈ 𝐷 ↦ 𝐸) | |
19 | 18 | f1ompt 7110 | . . . 4 ⊢ ((𝑦 ∈ 𝐷 ↦ 𝐸):𝐷–1-1-onto→𝐴 ↔ (∀𝑦 ∈ 𝐷 𝐸 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐷 𝑥 = 𝐸)) |
20 | 15, 17, 19 | sylanbrc 583 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ 𝐸):𝐷–1-1-onto→𝐴) |
21 | 1, 2, 3, 4, 9, 13, 20 | gsumf1o 19783 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg ((𝑥 ∈ 𝐴 ↦ 𝐶) ∘ (𝑦 ∈ 𝐷 ↦ 𝐸)))) |
22 | eqidd 2733 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ 𝐸) = (𝑦 ∈ 𝐷 ↦ 𝐸)) | |
23 | eqidd 2733 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
24 | 15, 22, 23 | fmptcos 7128 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∘ (𝑦 ∈ 𝐷 ↦ 𝐸)) = (𝑦 ∈ 𝐷 ↦ ⦋𝐸 / 𝑥⦌𝐶)) |
25 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ 𝐷) | |
26 | gsummptf1o.x | . . . . . . 7 ⊢ Ⅎ𝑥𝐻 | |
27 | 26 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → Ⅎ𝑥𝐻) |
28 | gsummptf1o.i | . . . . . . 7 ⊢ (𝑥 = 𝐸 → 𝐶 = 𝐻) | |
29 | 28 | adantl 482 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐷) ∧ 𝑥 = 𝐸) → 𝐶 = 𝐻) |
30 | 25, 27, 14, 29 | csbiedf 3924 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ⦋𝐸 / 𝑥⦌𝐶 = 𝐻) |
31 | 30 | mpteq2dva 5248 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ ⦋𝐸 / 𝑥⦌𝐶) = (𝑦 ∈ 𝐷 ↦ 𝐻)) |
32 | 24, 31 | eqtrd 2772 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∘ (𝑦 ∈ 𝐷 ↦ 𝐸)) = (𝑦 ∈ 𝐷 ↦ 𝐻)) |
33 | 32 | oveq2d 7424 | . 2 ⊢ (𝜑 → (𝐺 Σg ((𝑥 ∈ 𝐴 ↦ 𝐶) ∘ (𝑦 ∈ 𝐷 ↦ 𝐸))) = (𝐺 Σg (𝑦 ∈ 𝐷 ↦ 𝐻))) |
34 | 21, 33 | eqtrd 2772 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg (𝑦 ∈ 𝐷 ↦ 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Ⅎwnfc 2883 ∀wral 3061 ∃!wreu 3374 Vcvv 3474 ⦋csb 3893 ⊆ wss 3948 ↦ cmpt 5231 ∘ ccom 5680 –1-1-onto→wf1o 6542 ‘cfv 6543 (class class class)co 7408 Fincfn 8938 Basecbs 17143 0gc0g 17384 Σg cgsu 17385 CMndccmn 19647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-fzo 13627 df-seq 13966 df-hash 14290 df-0g 17386 df-gsum 17387 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-cntz 19180 df-cmn 19649 |
This theorem is referenced by: gsummpt2co 32195 gsumhashmul 32203 mdetpmtr1 32798 |
Copyright terms: Public domain | W3C validator |