MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucpropd Structured version   Visualization version   GIF version

Theorem fucpropd 17949
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same functor categories. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
fucpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
fucpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
fucpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
fucpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
fucpropd.a (𝜑𝐴 ∈ Cat)
fucpropd.b (𝜑𝐵 ∈ Cat)
fucpropd.c (𝜑𝐶 ∈ Cat)
fucpropd.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
fucpropd (𝜑 → (𝐴 FuncCat 𝐶) = (𝐵 FuncCat 𝐷))

Proof of Theorem fucpropd
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucpropd.1 . . . . 5 (𝜑 → (Homf𝐴) = (Homf𝐵))
2 fucpropd.2 . . . . 5 (𝜑 → (compf𝐴) = (compf𝐵))
3 fucpropd.3 . . . . 5 (𝜑 → (Homf𝐶) = (Homf𝐷))
4 fucpropd.4 . . . . 5 (𝜑 → (compf𝐶) = (compf𝐷))
5 fucpropd.a . . . . 5 (𝜑𝐴 ∈ Cat)
6 fucpropd.b . . . . 5 (𝜑𝐵 ∈ Cat)
7 fucpropd.c . . . . 5 (𝜑𝐶 ∈ Cat)
8 fucpropd.d . . . . 5 (𝜑𝐷 ∈ Cat)
91, 2, 3, 4, 5, 6, 7, 8funcpropd 17871 . . . 4 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
109opeq2d 4847 . . 3 (𝜑 → ⟨(Base‘ndx), (𝐴 Func 𝐶)⟩ = ⟨(Base‘ndx), (𝐵 Func 𝐷)⟩)
111, 2, 3, 4, 5, 6, 7, 8natpropd 17948 . . . 4 (𝜑 → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷))
1211opeq2d 4847 . . 3 (𝜑 → ⟨(Hom ‘ndx), (𝐴 Nat 𝐶)⟩ = ⟨(Hom ‘ndx), (𝐵 Nat 𝐷)⟩)
139sqxpeqd 5673 . . . . 5 (𝜑 → ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) = ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)))
149adantr 480 . . . . 5 ((𝜑𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶))) → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
15 nfv 1914 . . . . . 6 𝑓(𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶)))
16 nfcsb1v 3889 . . . . . . 7 𝑓(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))
1716a1i 11 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) → 𝑓(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
18 fvexd 6876 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) → (1st𝑣) ∈ V)
19 nfv 1914 . . . . . . . 8 𝑔((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣))
20 nfcsb1v 3889 . . . . . . . . 9 𝑔(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))
2120a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → 𝑔(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
22 fvexd 6876 . . . . . . . 8 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → (2nd𝑣) ∈ V)
2311ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷))
2423oveqd 7407 . . . . . . . . . 10 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝑔(𝐴 Nat 𝐶)) = (𝑔(𝐵 Nat 𝐷)))
2523oveqdr 7418 . . . . . . . . . 10 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ 𝑏 ∈ (𝑔(𝐴 Nat 𝐶))) → (𝑓(𝐴 Nat 𝐶)𝑔) = (𝑓(𝐵 Nat 𝐷)𝑔))
261homfeqbas 17664 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
2726ad4antr 732 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (Base‘𝐴) = (Base‘𝐵))
28 eqid 2730 . . . . . . . . . . . 12 (Base‘𝐶) = (Base‘𝐶)
29 eqid 2730 . . . . . . . . . . . 12 (Hom ‘𝐶) = (Hom ‘𝐶)
30 eqid 2730 . . . . . . . . . . . 12 (comp‘𝐶) = (comp‘𝐶)
31 eqid 2730 . . . . . . . . . . . 12 (comp‘𝐷) = (comp‘𝐷)
323ad5antr 734 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → (Homf𝐶) = (Homf𝐷))
334ad5antr 734 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → (compf𝐶) = (compf𝐷))
34 eqid 2730 . . . . . . . . . . . . . 14 (Base‘𝐴) = (Base‘𝐴)
35 relfunc 17831 . . . . . . . . . . . . . . 15 Rel (𝐴 Func 𝐶)
36 simpllr 775 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑓 = (1st𝑣))
37 simp-4r 783 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶)))
3837simpld 494 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)))
39 xp1st 8003 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) → (1st𝑣) ∈ (𝐴 Func 𝐶))
4038, 39syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑣) ∈ (𝐴 Func 𝐶))
4136, 40eqeltrd 2829 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑓 ∈ (𝐴 Func 𝐶))
42 1st2ndbr 8024 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐶) ∧ 𝑓 ∈ (𝐴 Func 𝐶)) → (1st𝑓)(𝐴 Func 𝐶)(2nd𝑓))
4335, 41, 42sylancr 587 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑓)(𝐴 Func 𝐶)(2nd𝑓))
4434, 28, 43funcf1 17835 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑓):(Base‘𝐴)⟶(Base‘𝐶))
4544ffvelcdmda 7059 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((1st𝑓)‘𝑥) ∈ (Base‘𝐶))
46 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑔 = (2nd𝑣))
47 xp2nd 8004 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) → (2nd𝑣) ∈ (𝐴 Func 𝐶))
4838, 47syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (2nd𝑣) ∈ (𝐴 Func 𝐶))
4946, 48eqeltrd 2829 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑔 ∈ (𝐴 Func 𝐶))
50 1st2ndbr 8024 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶)) → (1st𝑔)(𝐴 Func 𝐶)(2nd𝑔))
5135, 49, 50sylancr 587 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑔)(𝐴 Func 𝐶)(2nd𝑔))
5234, 28, 51funcf1 17835 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑔):(Base‘𝐴)⟶(Base‘𝐶))
5352ffvelcdmda 7059 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((1st𝑔)‘𝑥) ∈ (Base‘𝐶))
5437simprd 495 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → ∈ (𝐴 Func 𝐶))
55 1st2ndbr 8024 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐶) ∧ ∈ (𝐴 Func 𝐶)) → (1st)(𝐴 Func 𝐶)(2nd))
5635, 54, 55sylancr 587 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st)(𝐴 Func 𝐶)(2nd))
5734, 28, 56funcf1 17835 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st):(Base‘𝐴)⟶(Base‘𝐶))
5857ffvelcdmda 7059 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((1st)‘𝑥) ∈ (Base‘𝐶))
59 eqid 2730 . . . . . . . . . . . . 13 (𝐴 Nat 𝐶) = (𝐴 Nat 𝐶)
60 simplrr 777 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))
6159, 60nat1st2nd 17923 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑎 ∈ (⟨(1st𝑓), (2nd𝑓)⟩(𝐴 Nat 𝐶)⟨(1st𝑔), (2nd𝑔)⟩))
62 simpr 484 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑥 ∈ (Base‘𝐴))
6359, 61, 34, 29, 62natcl 17925 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑎𝑥) ∈ (((1st𝑓)‘𝑥)(Hom ‘𝐶)((1st𝑔)‘𝑥)))
64 simplrl 776 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑏 ∈ (𝑔(𝐴 Nat 𝐶)))
6559, 64nat1st2nd 17923 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑏 ∈ (⟨(1st𝑔), (2nd𝑔)⟩(𝐴 Nat 𝐶)⟨(1st), (2nd)⟩))
6659, 65, 34, 29, 62natcl 17925 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑏𝑥) ∈ (((1st𝑔)‘𝑥)(Hom ‘𝐶)((1st)‘𝑥)))
6728, 29, 30, 31, 32, 33, 45, 53, 58, 63, 66comfeqval 17676 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)) = ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))
6827, 67mpteq12dva 5196 . . . . . . . . . 10 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥))) = (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))
6924, 25, 68mpoeq123dva 7466 . . . . . . . . 9 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
70 csbeq1a 3879 . . . . . . . . . 10 (𝑔 = (2nd𝑣) → (𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))) = (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7170adantl 481 . . . . . . . . 9 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))) = (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7269, 71eqtrd 2765 . . . . . . . 8 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7319, 21, 22, 72csbiedf 3895 . . . . . . 7 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
74 csbeq1a 3879 . . . . . . . 8 (𝑓 = (1st𝑣) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))) = (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7574adantl 481 . . . . . . 7 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))) = (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7673, 75eqtrd 2765 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7715, 17, 18, 76csbiedf 3895 . . . . 5 ((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) → (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7813, 14, 77mpoeq123dva 7466 . . . 4 (𝜑 → (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))))
7978opeq2d 4847 . . 3 (𝜑 → ⟨(comp‘ndx), (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))))⟩ = ⟨(comp‘ndx), (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))⟩)
8010, 12, 79tpeq123d 4715 . 2 (𝜑 → {⟨(Base‘ndx), (𝐴 Func 𝐶)⟩, ⟨(Hom ‘ndx), (𝐴 Nat 𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))))⟩} = {⟨(Base‘ndx), (𝐵 Func 𝐷)⟩, ⟨(Hom ‘ndx), (𝐵 Nat 𝐷)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))⟩})
81 eqid 2730 . . 3 (𝐴 FuncCat 𝐶) = (𝐴 FuncCat 𝐶)
82 eqid 2730 . . 3 (𝐴 Func 𝐶) = (𝐴 Func 𝐶)
83 eqidd 2731 . . 3 (𝜑 → (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥))))))
8481, 82, 59, 34, 30, 5, 7, 83fucval 17930 . 2 (𝜑 → (𝐴 FuncCat 𝐶) = {⟨(Base‘ndx), (𝐴 Func 𝐶)⟩, ⟨(Hom ‘ndx), (𝐴 Nat 𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))))⟩})
85 eqid 2730 . . 3 (𝐵 FuncCat 𝐷) = (𝐵 FuncCat 𝐷)
86 eqid 2730 . . 3 (𝐵 Func 𝐷) = (𝐵 Func 𝐷)
87 eqid 2730 . . 3 (𝐵 Nat 𝐷) = (𝐵 Nat 𝐷)
88 eqid 2730 . . 3 (Base‘𝐵) = (Base‘𝐵)
89 eqidd 2731 . . 3 (𝜑 → (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))))
9085, 86, 87, 88, 31, 6, 8, 89fucval 17930 . 2 (𝜑 → (𝐵 FuncCat 𝐷) = {⟨(Base‘ndx), (𝐵 Func 𝐷)⟩, ⟨(Hom ‘ndx), (𝐵 Nat 𝐷)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))⟩})
9180, 84, 903eqtr4d 2775 1 (𝜑 → (𝐴 FuncCat 𝐶) = (𝐵 FuncCat 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wnfc 2877  Vcvv 3450  csb 3865  {ctp 4596  cop 4598   class class class wbr 5110  cmpt 5191   × cxp 5639  Rel wrel 5646  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  ndxcnx 17170  Basecbs 17186  Hom chom 17238  compcco 17239  Catccat 17632  Homf chomf 17634  compfccomf 17635   Func cfunc 17823   Nat cnat 17913   FuncCat cfuc 17914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-ixp 8874  df-cat 17636  df-cid 17637  df-homf 17638  df-comf 17639  df-func 17827  df-nat 17915  df-fuc 17916
This theorem is referenced by:  oyoncl  18238  lanpropd  49608  ranpropd  49609  lmdpropd  49650  cmdpropd  49651  cmddu  49661
  Copyright terms: Public domain W3C validator