MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucpropd Structured version   Visualization version   GIF version

Theorem fucpropd 17611
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same functor categories. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
fucpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
fucpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
fucpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
fucpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
fucpropd.a (𝜑𝐴 ∈ Cat)
fucpropd.b (𝜑𝐵 ∈ Cat)
fucpropd.c (𝜑𝐶 ∈ Cat)
fucpropd.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
fucpropd (𝜑 → (𝐴 FuncCat 𝐶) = (𝐵 FuncCat 𝐷))

Proof of Theorem fucpropd
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucpropd.1 . . . . 5 (𝜑 → (Homf𝐴) = (Homf𝐵))
2 fucpropd.2 . . . . 5 (𝜑 → (compf𝐴) = (compf𝐵))
3 fucpropd.3 . . . . 5 (𝜑 → (Homf𝐶) = (Homf𝐷))
4 fucpropd.4 . . . . 5 (𝜑 → (compf𝐶) = (compf𝐷))
5 fucpropd.a . . . . 5 (𝜑𝐴 ∈ Cat)
6 fucpropd.b . . . . 5 (𝜑𝐵 ∈ Cat)
7 fucpropd.c . . . . 5 (𝜑𝐶 ∈ Cat)
8 fucpropd.d . . . . 5 (𝜑𝐷 ∈ Cat)
91, 2, 3, 4, 5, 6, 7, 8funcpropd 17532 . . . 4 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
109opeq2d 4808 . . 3 (𝜑 → ⟨(Base‘ndx), (𝐴 Func 𝐶)⟩ = ⟨(Base‘ndx), (𝐵 Func 𝐷)⟩)
111, 2, 3, 4, 5, 6, 7, 8natpropd 17610 . . . 4 (𝜑 → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷))
1211opeq2d 4808 . . 3 (𝜑 → ⟨(Hom ‘ndx), (𝐴 Nat 𝐶)⟩ = ⟨(Hom ‘ndx), (𝐵 Nat 𝐷)⟩)
139sqxpeqd 5612 . . . . 5 (𝜑 → ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) = ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)))
149adantr 480 . . . . 5 ((𝜑𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶))) → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
15 nfv 1918 . . . . . 6 𝑓(𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶)))
16 nfcsb1v 3853 . . . . . . 7 𝑓(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))
1716a1i 11 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) → 𝑓(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
18 fvexd 6771 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) → (1st𝑣) ∈ V)
19 nfv 1918 . . . . . . . 8 𝑔((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣))
20 nfcsb1v 3853 . . . . . . . . 9 𝑔(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))
2120a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → 𝑔(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
22 fvexd 6771 . . . . . . . 8 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → (2nd𝑣) ∈ V)
2311ad3antrrr 726 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷))
2423oveqd 7272 . . . . . . . . . 10 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝑔(𝐴 Nat 𝐶)) = (𝑔(𝐵 Nat 𝐷)))
2523oveqdr 7283 . . . . . . . . . 10 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ 𝑏 ∈ (𝑔(𝐴 Nat 𝐶))) → (𝑓(𝐴 Nat 𝐶)𝑔) = (𝑓(𝐵 Nat 𝐷)𝑔))
261homfeqbas 17322 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
2726ad4antr 728 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (Base‘𝐴) = (Base‘𝐵))
28 eqid 2738 . . . . . . . . . . . 12 (Base‘𝐶) = (Base‘𝐶)
29 eqid 2738 . . . . . . . . . . . 12 (Hom ‘𝐶) = (Hom ‘𝐶)
30 eqid 2738 . . . . . . . . . . . 12 (comp‘𝐶) = (comp‘𝐶)
31 eqid 2738 . . . . . . . . . . . 12 (comp‘𝐷) = (comp‘𝐷)
323ad5antr 730 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → (Homf𝐶) = (Homf𝐷))
334ad5antr 730 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → (compf𝐶) = (compf𝐷))
34 eqid 2738 . . . . . . . . . . . . . 14 (Base‘𝐴) = (Base‘𝐴)
35 relfunc 17493 . . . . . . . . . . . . . . 15 Rel (𝐴 Func 𝐶)
36 simpllr 772 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑓 = (1st𝑣))
37 simp-4r 780 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶)))
3837simpld 494 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)))
39 xp1st 7836 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) → (1st𝑣) ∈ (𝐴 Func 𝐶))
4038, 39syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑣) ∈ (𝐴 Func 𝐶))
4136, 40eqeltrd 2839 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑓 ∈ (𝐴 Func 𝐶))
42 1st2ndbr 7856 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐶) ∧ 𝑓 ∈ (𝐴 Func 𝐶)) → (1st𝑓)(𝐴 Func 𝐶)(2nd𝑓))
4335, 41, 42sylancr 586 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑓)(𝐴 Func 𝐶)(2nd𝑓))
4434, 28, 43funcf1 17497 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑓):(Base‘𝐴)⟶(Base‘𝐶))
4544ffvelrnda 6943 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((1st𝑓)‘𝑥) ∈ (Base‘𝐶))
46 simplr 765 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑔 = (2nd𝑣))
47 xp2nd 7837 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) → (2nd𝑣) ∈ (𝐴 Func 𝐶))
4838, 47syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (2nd𝑣) ∈ (𝐴 Func 𝐶))
4946, 48eqeltrd 2839 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑔 ∈ (𝐴 Func 𝐶))
50 1st2ndbr 7856 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶)) → (1st𝑔)(𝐴 Func 𝐶)(2nd𝑔))
5135, 49, 50sylancr 586 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑔)(𝐴 Func 𝐶)(2nd𝑔))
5234, 28, 51funcf1 17497 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑔):(Base‘𝐴)⟶(Base‘𝐶))
5352ffvelrnda 6943 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((1st𝑔)‘𝑥) ∈ (Base‘𝐶))
5437simprd 495 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → ∈ (𝐴 Func 𝐶))
55 1st2ndbr 7856 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐶) ∧ ∈ (𝐴 Func 𝐶)) → (1st)(𝐴 Func 𝐶)(2nd))
5635, 54, 55sylancr 586 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st)(𝐴 Func 𝐶)(2nd))
5734, 28, 56funcf1 17497 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st):(Base‘𝐴)⟶(Base‘𝐶))
5857ffvelrnda 6943 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((1st)‘𝑥) ∈ (Base‘𝐶))
59 eqid 2738 . . . . . . . . . . . . 13 (𝐴 Nat 𝐶) = (𝐴 Nat 𝐶)
60 simplrr 774 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))
6159, 60nat1st2nd 17583 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑎 ∈ (⟨(1st𝑓), (2nd𝑓)⟩(𝐴 Nat 𝐶)⟨(1st𝑔), (2nd𝑔)⟩))
62 simpr 484 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑥 ∈ (Base‘𝐴))
6359, 61, 34, 29, 62natcl 17585 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑎𝑥) ∈ (((1st𝑓)‘𝑥)(Hom ‘𝐶)((1st𝑔)‘𝑥)))
64 simplrl 773 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑏 ∈ (𝑔(𝐴 Nat 𝐶)))
6559, 64nat1st2nd 17583 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑏 ∈ (⟨(1st𝑔), (2nd𝑔)⟩(𝐴 Nat 𝐶)⟨(1st), (2nd)⟩))
6659, 65, 34, 29, 62natcl 17585 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑏𝑥) ∈ (((1st𝑔)‘𝑥)(Hom ‘𝐶)((1st)‘𝑥)))
6728, 29, 30, 31, 32, 33, 45, 53, 58, 63, 66comfeqval 17334 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)) = ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))
6827, 67mpteq12dva 5159 . . . . . . . . . 10 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥))) = (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))
6924, 25, 68mpoeq123dva 7327 . . . . . . . . 9 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
70 csbeq1a 3842 . . . . . . . . . 10 (𝑔 = (2nd𝑣) → (𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))) = (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7170adantl 481 . . . . . . . . 9 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))) = (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7269, 71eqtrd 2778 . . . . . . . 8 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7319, 21, 22, 72csbiedf 3859 . . . . . . 7 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
74 csbeq1a 3842 . . . . . . . 8 (𝑓 = (1st𝑣) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))) = (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7574adantl 481 . . . . . . 7 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))) = (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7673, 75eqtrd 2778 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7715, 17, 18, 76csbiedf 3859 . . . . 5 ((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) → (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7813, 14, 77mpoeq123dva 7327 . . . 4 (𝜑 → (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))))
7978opeq2d 4808 . . 3 (𝜑 → ⟨(comp‘ndx), (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))))⟩ = ⟨(comp‘ndx), (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))⟩)
8010, 12, 79tpeq123d 4681 . 2 (𝜑 → {⟨(Base‘ndx), (𝐴 Func 𝐶)⟩, ⟨(Hom ‘ndx), (𝐴 Nat 𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))))⟩} = {⟨(Base‘ndx), (𝐵 Func 𝐷)⟩, ⟨(Hom ‘ndx), (𝐵 Nat 𝐷)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))⟩})
81 eqid 2738 . . 3 (𝐴 FuncCat 𝐶) = (𝐴 FuncCat 𝐶)
82 eqid 2738 . . 3 (𝐴 Func 𝐶) = (𝐴 Func 𝐶)
83 eqidd 2739 . . 3 (𝜑 → (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥))))))
8481, 82, 59, 34, 30, 5, 7, 83fucval 17591 . 2 (𝜑 → (𝐴 FuncCat 𝐶) = {⟨(Base‘ndx), (𝐴 Func 𝐶)⟩, ⟨(Hom ‘ndx), (𝐴 Nat 𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))))⟩})
85 eqid 2738 . . 3 (𝐵 FuncCat 𝐷) = (𝐵 FuncCat 𝐷)
86 eqid 2738 . . 3 (𝐵 Func 𝐷) = (𝐵 Func 𝐷)
87 eqid 2738 . . 3 (𝐵 Nat 𝐷) = (𝐵 Nat 𝐷)
88 eqid 2738 . . 3 (Base‘𝐵) = (Base‘𝐵)
89 eqidd 2739 . . 3 (𝜑 → (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))))
9085, 86, 87, 88, 31, 6, 8, 89fucval 17591 . 2 (𝜑 → (𝐵 FuncCat 𝐷) = {⟨(Base‘ndx), (𝐵 Func 𝐷)⟩, ⟨(Hom ‘ndx), (𝐵 Nat 𝐷)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))⟩})
9180, 84, 903eqtr4d 2788 1 (𝜑 → (𝐴 FuncCat 𝐶) = (𝐵 FuncCat 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wnfc 2886  Vcvv 3422  csb 3828  {ctp 4562  cop 4564   class class class wbr 5070  cmpt 5153   × cxp 5578  Rel wrel 5585  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  ndxcnx 16822  Basecbs 16840  Hom chom 16899  compcco 16900  Catccat 17290  Homf chomf 17292  compfccomf 17293   Func cfunc 17485   Nat cnat 17573   FuncCat cfuc 17574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-ixp 8644  df-cat 17294  df-cid 17295  df-homf 17296  df-comf 17297  df-func 17489  df-nat 17575  df-fuc 17576
This theorem is referenced by:  oyoncl  17904
  Copyright terms: Public domain W3C validator