MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucpropd Structured version   Visualization version   GIF version

Theorem fucpropd 17895
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same functor categories. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
fucpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
fucpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
fucpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
fucpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
fucpropd.a (𝜑𝐴 ∈ Cat)
fucpropd.b (𝜑𝐵 ∈ Cat)
fucpropd.c (𝜑𝐶 ∈ Cat)
fucpropd.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
fucpropd (𝜑 → (𝐴 FuncCat 𝐶) = (𝐵 FuncCat 𝐷))

Proof of Theorem fucpropd
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucpropd.1 . . . . 5 (𝜑 → (Homf𝐴) = (Homf𝐵))
2 fucpropd.2 . . . . 5 (𝜑 → (compf𝐴) = (compf𝐵))
3 fucpropd.3 . . . . 5 (𝜑 → (Homf𝐶) = (Homf𝐷))
4 fucpropd.4 . . . . 5 (𝜑 → (compf𝐶) = (compf𝐷))
5 fucpropd.a . . . . 5 (𝜑𝐴 ∈ Cat)
6 fucpropd.b . . . . 5 (𝜑𝐵 ∈ Cat)
7 fucpropd.c . . . . 5 (𝜑𝐶 ∈ Cat)
8 fucpropd.d . . . . 5 (𝜑𝐷 ∈ Cat)
91, 2, 3, 4, 5, 6, 7, 8funcpropd 17817 . . . 4 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
109opeq2d 4833 . . 3 (𝜑 → ⟨(Base‘ndx), (𝐴 Func 𝐶)⟩ = ⟨(Base‘ndx), (𝐵 Func 𝐷)⟩)
111, 2, 3, 4, 5, 6, 7, 8natpropd 17894 . . . 4 (𝜑 → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷))
1211opeq2d 4833 . . 3 (𝜑 → ⟨(Hom ‘ndx), (𝐴 Nat 𝐶)⟩ = ⟨(Hom ‘ndx), (𝐵 Nat 𝐷)⟩)
139sqxpeqd 5653 . . . . 5 (𝜑 → ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) = ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)))
149adantr 480 . . . . 5 ((𝜑𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶))) → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
15 nfv 1915 . . . . . 6 𝑓(𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶)))
16 nfcsb1v 3870 . . . . . . 7 𝑓(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))
1716a1i 11 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) → 𝑓(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
18 fvexd 6846 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) → (1st𝑣) ∈ V)
19 nfv 1915 . . . . . . . 8 𝑔((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣))
20 nfcsb1v 3870 . . . . . . . . 9 𝑔(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))
2120a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → 𝑔(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
22 fvexd 6846 . . . . . . . 8 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → (2nd𝑣) ∈ V)
2311ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷))
2423oveqd 7372 . . . . . . . . . 10 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝑔(𝐴 Nat 𝐶)) = (𝑔(𝐵 Nat 𝐷)))
2523oveqdr 7383 . . . . . . . . . 10 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ 𝑏 ∈ (𝑔(𝐴 Nat 𝐶))) → (𝑓(𝐴 Nat 𝐶)𝑔) = (𝑓(𝐵 Nat 𝐷)𝑔))
261homfeqbas 17610 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
2726ad4antr 732 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (Base‘𝐴) = (Base‘𝐵))
28 eqid 2733 . . . . . . . . . . . 12 (Base‘𝐶) = (Base‘𝐶)
29 eqid 2733 . . . . . . . . . . . 12 (Hom ‘𝐶) = (Hom ‘𝐶)
30 eqid 2733 . . . . . . . . . . . 12 (comp‘𝐶) = (comp‘𝐶)
31 eqid 2733 . . . . . . . . . . . 12 (comp‘𝐷) = (comp‘𝐷)
323ad5antr 734 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → (Homf𝐶) = (Homf𝐷))
334ad5antr 734 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → (compf𝐶) = (compf𝐷))
34 eqid 2733 . . . . . . . . . . . . . 14 (Base‘𝐴) = (Base‘𝐴)
35 relfunc 17777 . . . . . . . . . . . . . . 15 Rel (𝐴 Func 𝐶)
36 simpllr 775 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑓 = (1st𝑣))
37 simp-4r 783 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶)))
3837simpld 494 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)))
39 xp1st 7962 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) → (1st𝑣) ∈ (𝐴 Func 𝐶))
4038, 39syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑣) ∈ (𝐴 Func 𝐶))
4136, 40eqeltrd 2833 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑓 ∈ (𝐴 Func 𝐶))
42 1st2ndbr 7983 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐶) ∧ 𝑓 ∈ (𝐴 Func 𝐶)) → (1st𝑓)(𝐴 Func 𝐶)(2nd𝑓))
4335, 41, 42sylancr 587 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑓)(𝐴 Func 𝐶)(2nd𝑓))
4434, 28, 43funcf1 17781 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑓):(Base‘𝐴)⟶(Base‘𝐶))
4544ffvelcdmda 7026 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((1st𝑓)‘𝑥) ∈ (Base‘𝐶))
46 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑔 = (2nd𝑣))
47 xp2nd 7963 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) → (2nd𝑣) ∈ (𝐴 Func 𝐶))
4838, 47syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (2nd𝑣) ∈ (𝐴 Func 𝐶))
4946, 48eqeltrd 2833 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑔 ∈ (𝐴 Func 𝐶))
50 1st2ndbr 7983 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶)) → (1st𝑔)(𝐴 Func 𝐶)(2nd𝑔))
5135, 49, 50sylancr 587 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑔)(𝐴 Func 𝐶)(2nd𝑔))
5234, 28, 51funcf1 17781 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑔):(Base‘𝐴)⟶(Base‘𝐶))
5352ffvelcdmda 7026 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((1st𝑔)‘𝑥) ∈ (Base‘𝐶))
5437simprd 495 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → ∈ (𝐴 Func 𝐶))
55 1st2ndbr 7983 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐶) ∧ ∈ (𝐴 Func 𝐶)) → (1st)(𝐴 Func 𝐶)(2nd))
5635, 54, 55sylancr 587 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st)(𝐴 Func 𝐶)(2nd))
5734, 28, 56funcf1 17781 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st):(Base‘𝐴)⟶(Base‘𝐶))
5857ffvelcdmda 7026 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((1st)‘𝑥) ∈ (Base‘𝐶))
59 eqid 2733 . . . . . . . . . . . . 13 (𝐴 Nat 𝐶) = (𝐴 Nat 𝐶)
60 simplrr 777 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))
6159, 60nat1st2nd 17869 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑎 ∈ (⟨(1st𝑓), (2nd𝑓)⟩(𝐴 Nat 𝐶)⟨(1st𝑔), (2nd𝑔)⟩))
62 simpr 484 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑥 ∈ (Base‘𝐴))
6359, 61, 34, 29, 62natcl 17871 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑎𝑥) ∈ (((1st𝑓)‘𝑥)(Hom ‘𝐶)((1st𝑔)‘𝑥)))
64 simplrl 776 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑏 ∈ (𝑔(𝐴 Nat 𝐶)))
6559, 64nat1st2nd 17869 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑏 ∈ (⟨(1st𝑔), (2nd𝑔)⟩(𝐴 Nat 𝐶)⟨(1st), (2nd)⟩))
6659, 65, 34, 29, 62natcl 17871 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑏𝑥) ∈ (((1st𝑔)‘𝑥)(Hom ‘𝐶)((1st)‘𝑥)))
6728, 29, 30, 31, 32, 33, 45, 53, 58, 63, 66comfeqval 17622 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)) = ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))
6827, 67mpteq12dva 5181 . . . . . . . . . 10 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥))) = (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))
6924, 25, 68mpoeq123dva 7429 . . . . . . . . 9 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
70 csbeq1a 3860 . . . . . . . . . 10 (𝑔 = (2nd𝑣) → (𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))) = (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7170adantl 481 . . . . . . . . 9 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))) = (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7269, 71eqtrd 2768 . . . . . . . 8 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7319, 21, 22, 72csbiedf 3876 . . . . . . 7 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
74 csbeq1a 3860 . . . . . . . 8 (𝑓 = (1st𝑣) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))) = (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7574adantl 481 . . . . . . 7 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))) = (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7673, 75eqtrd 2768 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7715, 17, 18, 76csbiedf 3876 . . . . 5 ((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) → (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7813, 14, 77mpoeq123dva 7429 . . . 4 (𝜑 → (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))))
7978opeq2d 4833 . . 3 (𝜑 → ⟨(comp‘ndx), (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))))⟩ = ⟨(comp‘ndx), (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))⟩)
8010, 12, 79tpeq123d 4702 . 2 (𝜑 → {⟨(Base‘ndx), (𝐴 Func 𝐶)⟩, ⟨(Hom ‘ndx), (𝐴 Nat 𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))))⟩} = {⟨(Base‘ndx), (𝐵 Func 𝐷)⟩, ⟨(Hom ‘ndx), (𝐵 Nat 𝐷)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))⟩})
81 eqid 2733 . . 3 (𝐴 FuncCat 𝐶) = (𝐴 FuncCat 𝐶)
82 eqid 2733 . . 3 (𝐴 Func 𝐶) = (𝐴 Func 𝐶)
83 eqidd 2734 . . 3 (𝜑 → (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥))))))
8481, 82, 59, 34, 30, 5, 7, 83fucval 17876 . 2 (𝜑 → (𝐴 FuncCat 𝐶) = {⟨(Base‘ndx), (𝐴 Func 𝐶)⟩, ⟨(Hom ‘ndx), (𝐴 Nat 𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))))⟩})
85 eqid 2733 . . 3 (𝐵 FuncCat 𝐷) = (𝐵 FuncCat 𝐷)
86 eqid 2733 . . 3 (𝐵 Func 𝐷) = (𝐵 Func 𝐷)
87 eqid 2733 . . 3 (𝐵 Nat 𝐷) = (𝐵 Nat 𝐷)
88 eqid 2733 . . 3 (Base‘𝐵) = (Base‘𝐵)
89 eqidd 2734 . . 3 (𝜑 → (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))))
9085, 86, 87, 88, 31, 6, 8, 89fucval 17876 . 2 (𝜑 → (𝐵 FuncCat 𝐷) = {⟨(Base‘ndx), (𝐵 Func 𝐷)⟩, ⟨(Hom ‘ndx), (𝐵 Nat 𝐷)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))⟩})
9180, 84, 903eqtr4d 2778 1 (𝜑 → (𝐴 FuncCat 𝐶) = (𝐵 FuncCat 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wnfc 2880  Vcvv 3437  csb 3846  {ctp 4581  cop 4583   class class class wbr 5095  cmpt 5176   × cxp 5619  Rel wrel 5626  cfv 6489  (class class class)co 7355  cmpo 7357  1st c1st 7928  2nd c2nd 7929  ndxcnx 17111  Basecbs 17127  Hom chom 17179  compcco 17180  Catccat 17578  Homf chomf 17580  compfccomf 17581   Func cfunc 17769   Nat cnat 17859   FuncCat cfuc 17860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-map 8761  df-ixp 8832  df-cat 17582  df-cid 17583  df-homf 17584  df-comf 17585  df-func 17773  df-nat 17861  df-fuc 17862
This theorem is referenced by:  oyoncl  18184  lanpropd  49776  ranpropd  49777  lmdpropd  49818  cmdpropd  49819  cmddu  49829
  Copyright terms: Public domain W3C validator