MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucpropd Structured version   Visualization version   GIF version

Theorem fucpropd 17934
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same functor categories. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
fucpropd.1 (πœ‘ β†’ (Homf β€˜π΄) = (Homf β€˜π΅))
fucpropd.2 (πœ‘ β†’ (compfβ€˜π΄) = (compfβ€˜π΅))
fucpropd.3 (πœ‘ β†’ (Homf β€˜πΆ) = (Homf β€˜π·))
fucpropd.4 (πœ‘ β†’ (compfβ€˜πΆ) = (compfβ€˜π·))
fucpropd.a (πœ‘ β†’ 𝐴 ∈ Cat)
fucpropd.b (πœ‘ β†’ 𝐡 ∈ Cat)
fucpropd.c (πœ‘ β†’ 𝐢 ∈ Cat)
fucpropd.d (πœ‘ β†’ 𝐷 ∈ Cat)
Assertion
Ref Expression
fucpropd (πœ‘ β†’ (𝐴 FuncCat 𝐢) = (𝐡 FuncCat 𝐷))

Proof of Theorem fucpropd
Dummy variables π‘Ž 𝑏 𝑓 𝑔 β„Ž 𝑣 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucpropd.1 . . . . 5 (πœ‘ β†’ (Homf β€˜π΄) = (Homf β€˜π΅))
2 fucpropd.2 . . . . 5 (πœ‘ β†’ (compfβ€˜π΄) = (compfβ€˜π΅))
3 fucpropd.3 . . . . 5 (πœ‘ β†’ (Homf β€˜πΆ) = (Homf β€˜π·))
4 fucpropd.4 . . . . 5 (πœ‘ β†’ (compfβ€˜πΆ) = (compfβ€˜π·))
5 fucpropd.a . . . . 5 (πœ‘ β†’ 𝐴 ∈ Cat)
6 fucpropd.b . . . . 5 (πœ‘ β†’ 𝐡 ∈ Cat)
7 fucpropd.c . . . . 5 (πœ‘ β†’ 𝐢 ∈ Cat)
8 fucpropd.d . . . . 5 (πœ‘ β†’ 𝐷 ∈ Cat)
91, 2, 3, 4, 5, 6, 7, 8funcpropd 17855 . . . 4 (πœ‘ β†’ (𝐴 Func 𝐢) = (𝐡 Func 𝐷))
109opeq2d 4879 . . 3 (πœ‘ β†’ ⟨(Baseβ€˜ndx), (𝐴 Func 𝐢)⟩ = ⟨(Baseβ€˜ndx), (𝐡 Func 𝐷)⟩)
111, 2, 3, 4, 5, 6, 7, 8natpropd 17933 . . . 4 (πœ‘ β†’ (𝐴 Nat 𝐢) = (𝐡 Nat 𝐷))
1211opeq2d 4879 . . 3 (πœ‘ β†’ ⟨(Hom β€˜ndx), (𝐴 Nat 𝐢)⟩ = ⟨(Hom β€˜ndx), (𝐡 Nat 𝐷)⟩)
139sqxpeqd 5707 . . . . 5 (πœ‘ β†’ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) = ((𝐡 Func 𝐷) Γ— (𝐡 Func 𝐷)))
149adantr 479 . . . . 5 ((πœ‘ ∧ 𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢))) β†’ (𝐴 Func 𝐢) = (𝐡 Func 𝐷))
15 nfv 1915 . . . . . 6 Ⅎ𝑓(πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢)))
16 nfcsb1v 3917 . . . . . . 7 Ⅎ𝑓⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐡 Nat 𝐷)β„Ž), π‘Ž ∈ (𝑓(𝐡 Nat 𝐷)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))
1716a1i 11 . . . . . 6 ((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) β†’ Ⅎ𝑓⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐡 Nat 𝐷)β„Ž), π‘Ž ∈ (𝑓(𝐡 Nat 𝐷)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))
18 fvexd 6905 . . . . . 6 ((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) β†’ (1st β€˜π‘£) ∈ V)
19 nfv 1915 . . . . . . . 8 Ⅎ𝑔((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£))
20 nfcsb1v 3917 . . . . . . . . 9 Ⅎ𝑔⦋(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐡 Nat 𝐷)β„Ž), π‘Ž ∈ (𝑓(𝐡 Nat 𝐷)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))
2120a1i 11 . . . . . . . 8 (((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) β†’ Ⅎ𝑔⦋(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐡 Nat 𝐷)β„Ž), π‘Ž ∈ (𝑓(𝐡 Nat 𝐷)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))
22 fvexd 6905 . . . . . . . 8 (((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) β†’ (2nd β€˜π‘£) ∈ V)
2311ad3antrrr 726 . . . . . . . . . . 11 ((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) β†’ (𝐴 Nat 𝐢) = (𝐡 Nat 𝐷))
2423oveqd 7428 . . . . . . . . . 10 ((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) β†’ (𝑔(𝐴 Nat 𝐢)β„Ž) = (𝑔(𝐡 Nat 𝐷)β„Ž))
2523oveqdr 7439 . . . . . . . . . 10 (((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ 𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž)) β†’ (𝑓(𝐴 Nat 𝐢)𝑔) = (𝑓(𝐡 Nat 𝐷)𝑔))
261homfeqbas 17644 . . . . . . . . . . . 12 (πœ‘ β†’ (Baseβ€˜π΄) = (Baseβ€˜π΅))
2726ad4antr 728 . . . . . . . . . . 11 (((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) β†’ (Baseβ€˜π΄) = (Baseβ€˜π΅))
28 eqid 2730 . . . . . . . . . . . 12 (Baseβ€˜πΆ) = (Baseβ€˜πΆ)
29 eqid 2730 . . . . . . . . . . . 12 (Hom β€˜πΆ) = (Hom β€˜πΆ)
30 eqid 2730 . . . . . . . . . . . 12 (compβ€˜πΆ) = (compβ€˜πΆ)
31 eqid 2730 . . . . . . . . . . . 12 (compβ€˜π·) = (compβ€˜π·)
323ad5antr 730 . . . . . . . . . . . 12 ((((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) ∧ π‘₯ ∈ (Baseβ€˜π΄)) β†’ (Homf β€˜πΆ) = (Homf β€˜π·))
334ad5antr 730 . . . . . . . . . . . 12 ((((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) ∧ π‘₯ ∈ (Baseβ€˜π΄)) β†’ (compfβ€˜πΆ) = (compfβ€˜π·))
34 eqid 2730 . . . . . . . . . . . . . 14 (Baseβ€˜π΄) = (Baseβ€˜π΄)
35 relfunc 17816 . . . . . . . . . . . . . . 15 Rel (𝐴 Func 𝐢)
36 simpllr 772 . . . . . . . . . . . . . . . 16 (((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) β†’ 𝑓 = (1st β€˜π‘£))
37 simp-4r 780 . . . . . . . . . . . . . . . . . 18 (((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) β†’ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢)))
3837simpld 493 . . . . . . . . . . . . . . . . 17 (((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) β†’ 𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)))
39 xp1st 8009 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) β†’ (1st β€˜π‘£) ∈ (𝐴 Func 𝐢))
4038, 39syl 17 . . . . . . . . . . . . . . . 16 (((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) β†’ (1st β€˜π‘£) ∈ (𝐴 Func 𝐢))
4136, 40eqeltrd 2831 . . . . . . . . . . . . . . 15 (((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) β†’ 𝑓 ∈ (𝐴 Func 𝐢))
42 1st2ndbr 8030 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐢) ∧ 𝑓 ∈ (𝐴 Func 𝐢)) β†’ (1st β€˜π‘“)(𝐴 Func 𝐢)(2nd β€˜π‘“))
4335, 41, 42sylancr 585 . . . . . . . . . . . . . 14 (((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) β†’ (1st β€˜π‘“)(𝐴 Func 𝐢)(2nd β€˜π‘“))
4434, 28, 43funcf1 17820 . . . . . . . . . . . . 13 (((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) β†’ (1st β€˜π‘“):(Baseβ€˜π΄)⟢(Baseβ€˜πΆ))
4544ffvelcdmda 7085 . . . . . . . . . . . 12 ((((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) ∧ π‘₯ ∈ (Baseβ€˜π΄)) β†’ ((1st β€˜π‘“)β€˜π‘₯) ∈ (Baseβ€˜πΆ))
46 simplr 765 . . . . . . . . . . . . . . . 16 (((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) β†’ 𝑔 = (2nd β€˜π‘£))
47 xp2nd 8010 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) β†’ (2nd β€˜π‘£) ∈ (𝐴 Func 𝐢))
4838, 47syl 17 . . . . . . . . . . . . . . . 16 (((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) β†’ (2nd β€˜π‘£) ∈ (𝐴 Func 𝐢))
4946, 48eqeltrd 2831 . . . . . . . . . . . . . . 15 (((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) β†’ 𝑔 ∈ (𝐴 Func 𝐢))
50 1st2ndbr 8030 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐢) ∧ 𝑔 ∈ (𝐴 Func 𝐢)) β†’ (1st β€˜π‘”)(𝐴 Func 𝐢)(2nd β€˜π‘”))
5135, 49, 50sylancr 585 . . . . . . . . . . . . . 14 (((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) β†’ (1st β€˜π‘”)(𝐴 Func 𝐢)(2nd β€˜π‘”))
5234, 28, 51funcf1 17820 . . . . . . . . . . . . 13 (((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) β†’ (1st β€˜π‘”):(Baseβ€˜π΄)⟢(Baseβ€˜πΆ))
5352ffvelcdmda 7085 . . . . . . . . . . . 12 ((((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) ∧ π‘₯ ∈ (Baseβ€˜π΄)) β†’ ((1st β€˜π‘”)β€˜π‘₯) ∈ (Baseβ€˜πΆ))
5437simprd 494 . . . . . . . . . . . . . . 15 (((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) β†’ β„Ž ∈ (𝐴 Func 𝐢))
55 1st2ndbr 8030 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐢) ∧ β„Ž ∈ (𝐴 Func 𝐢)) β†’ (1st β€˜β„Ž)(𝐴 Func 𝐢)(2nd β€˜β„Ž))
5635, 54, 55sylancr 585 . . . . . . . . . . . . . 14 (((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) β†’ (1st β€˜β„Ž)(𝐴 Func 𝐢)(2nd β€˜β„Ž))
5734, 28, 56funcf1 17820 . . . . . . . . . . . . 13 (((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) β†’ (1st β€˜β„Ž):(Baseβ€˜π΄)⟢(Baseβ€˜πΆ))
5857ffvelcdmda 7085 . . . . . . . . . . . 12 ((((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) ∧ π‘₯ ∈ (Baseβ€˜π΄)) β†’ ((1st β€˜β„Ž)β€˜π‘₯) ∈ (Baseβ€˜πΆ))
59 eqid 2730 . . . . . . . . . . . . 13 (𝐴 Nat 𝐢) = (𝐴 Nat 𝐢)
60 simplrr 774 . . . . . . . . . . . . . 14 ((((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) ∧ π‘₯ ∈ (Baseβ€˜π΄)) β†’ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))
6159, 60nat1st2nd 17906 . . . . . . . . . . . . 13 ((((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) ∧ π‘₯ ∈ (Baseβ€˜π΄)) β†’ π‘Ž ∈ (⟨(1st β€˜π‘“), (2nd β€˜π‘“)⟩(𝐴 Nat 𝐢)⟨(1st β€˜π‘”), (2nd β€˜π‘”)⟩))
62 simpr 483 . . . . . . . . . . . . 13 ((((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) ∧ π‘₯ ∈ (Baseβ€˜π΄)) β†’ π‘₯ ∈ (Baseβ€˜π΄))
6359, 61, 34, 29, 62natcl 17908 . . . . . . . . . . . 12 ((((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) ∧ π‘₯ ∈ (Baseβ€˜π΄)) β†’ (π‘Žβ€˜π‘₯) ∈ (((1st β€˜π‘“)β€˜π‘₯)(Hom β€˜πΆ)((1st β€˜π‘”)β€˜π‘₯)))
64 simplrl 773 . . . . . . . . . . . . . 14 ((((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) ∧ π‘₯ ∈ (Baseβ€˜π΄)) β†’ 𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž))
6559, 64nat1st2nd 17906 . . . . . . . . . . . . 13 ((((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) ∧ π‘₯ ∈ (Baseβ€˜π΄)) β†’ 𝑏 ∈ (⟨(1st β€˜π‘”), (2nd β€˜π‘”)⟩(𝐴 Nat 𝐢)⟨(1st β€˜β„Ž), (2nd β€˜β„Ž)⟩))
6659, 65, 34, 29, 62natcl 17908 . . . . . . . . . . . 12 ((((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) ∧ π‘₯ ∈ (Baseβ€˜π΄)) β†’ (π‘β€˜π‘₯) ∈ (((1st β€˜π‘”)β€˜π‘₯)(Hom β€˜πΆ)((1st β€˜β„Ž)β€˜π‘₯)))
6728, 29, 30, 31, 32, 33, 45, 53, 58, 63, 66comfeqval 17656 . . . . . . . . . . 11 ((((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) ∧ π‘₯ ∈ (Baseβ€˜π΄)) β†’ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜πΆ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)) = ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))
6827, 67mpteq12dva 5236 . . . . . . . . . 10 (((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž) ∧ π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔))) β†’ (π‘₯ ∈ (Baseβ€˜π΄) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜πΆ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))) = (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))
6924, 25, 68mpoeq123dva 7485 . . . . . . . . 9 ((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) β†’ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž), π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΄) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜πΆ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) = (𝑏 ∈ (𝑔(𝐡 Nat 𝐷)β„Ž), π‘Ž ∈ (𝑓(𝐡 Nat 𝐷)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))
70 csbeq1a 3906 . . . . . . . . . 10 (𝑔 = (2nd β€˜π‘£) β†’ (𝑏 ∈ (𝑔(𝐡 Nat 𝐷)β„Ž), π‘Ž ∈ (𝑓(𝐡 Nat 𝐷)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) = ⦋(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐡 Nat 𝐷)β„Ž), π‘Ž ∈ (𝑓(𝐡 Nat 𝐷)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))
7170adantl 480 . . . . . . . . 9 ((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) β†’ (𝑏 ∈ (𝑔(𝐡 Nat 𝐷)β„Ž), π‘Ž ∈ (𝑓(𝐡 Nat 𝐷)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) = ⦋(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐡 Nat 𝐷)β„Ž), π‘Ž ∈ (𝑓(𝐡 Nat 𝐷)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))
7269, 71eqtrd 2770 . . . . . . . 8 ((((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) ∧ 𝑔 = (2nd β€˜π‘£)) β†’ (𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž), π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΄) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜πΆ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) = ⦋(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐡 Nat 𝐷)β„Ž), π‘Ž ∈ (𝑓(𝐡 Nat 𝐷)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))
7319, 21, 22, 72csbiedf 3923 . . . . . . 7 (((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) β†’ ⦋(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž), π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΄) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜πΆ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) = ⦋(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐡 Nat 𝐷)β„Ž), π‘Ž ∈ (𝑓(𝐡 Nat 𝐷)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))
74 csbeq1a 3906 . . . . . . . 8 (𝑓 = (1st β€˜π‘£) β†’ ⦋(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐡 Nat 𝐷)β„Ž), π‘Ž ∈ (𝑓(𝐡 Nat 𝐷)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) = ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐡 Nat 𝐷)β„Ž), π‘Ž ∈ (𝑓(𝐡 Nat 𝐷)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))
7574adantl 480 . . . . . . 7 (((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) β†’ ⦋(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐡 Nat 𝐷)β„Ž), π‘Ž ∈ (𝑓(𝐡 Nat 𝐷)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) = ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐡 Nat 𝐷)β„Ž), π‘Ž ∈ (𝑓(𝐡 Nat 𝐷)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))
7673, 75eqtrd 2770 . . . . . 6 (((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) ∧ 𝑓 = (1st β€˜π‘£)) β†’ ⦋(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž), π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΄) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜πΆ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) = ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐡 Nat 𝐷)β„Ž), π‘Ž ∈ (𝑓(𝐡 Nat 𝐷)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))
7715, 17, 18, 76csbiedf 3923 . . . . 5 ((πœ‘ ∧ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)) ∧ β„Ž ∈ (𝐴 Func 𝐢))) β†’ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž), π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΄) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜πΆ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))) = ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐡 Nat 𝐷)β„Ž), π‘Ž ∈ (𝑓(𝐡 Nat 𝐷)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))
7813, 14, 77mpoeq123dva 7485 . . . 4 (πœ‘ β†’ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)), β„Ž ∈ (𝐴 Func 𝐢) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž), π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΄) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜πΆ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))) = (𝑣 ∈ ((𝐡 Func 𝐷) Γ— (𝐡 Func 𝐷)), β„Ž ∈ (𝐡 Func 𝐷) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐡 Nat 𝐷)β„Ž), π‘Ž ∈ (𝑓(𝐡 Nat 𝐷)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))))
7978opeq2d 4879 . . 3 (πœ‘ β†’ ⟨(compβ€˜ndx), (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)), β„Ž ∈ (𝐴 Func 𝐢) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž), π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΄) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜πΆ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))⟩ = ⟨(compβ€˜ndx), (𝑣 ∈ ((𝐡 Func 𝐷) Γ— (𝐡 Func 𝐷)), β„Ž ∈ (𝐡 Func 𝐷) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐡 Nat 𝐷)β„Ž), π‘Ž ∈ (𝑓(𝐡 Nat 𝐷)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))⟩)
8010, 12, 79tpeq123d 4751 . 2 (πœ‘ β†’ {⟨(Baseβ€˜ndx), (𝐴 Func 𝐢)⟩, ⟨(Hom β€˜ndx), (𝐴 Nat 𝐢)⟩, ⟨(compβ€˜ndx), (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)), β„Ž ∈ (𝐴 Func 𝐢) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž), π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΄) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜πΆ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))⟩} = {⟨(Baseβ€˜ndx), (𝐡 Func 𝐷)⟩, ⟨(Hom β€˜ndx), (𝐡 Nat 𝐷)⟩, ⟨(compβ€˜ndx), (𝑣 ∈ ((𝐡 Func 𝐷) Γ— (𝐡 Func 𝐷)), β„Ž ∈ (𝐡 Func 𝐷) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐡 Nat 𝐷)β„Ž), π‘Ž ∈ (𝑓(𝐡 Nat 𝐷)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))⟩})
81 eqid 2730 . . 3 (𝐴 FuncCat 𝐢) = (𝐴 FuncCat 𝐢)
82 eqid 2730 . . 3 (𝐴 Func 𝐢) = (𝐴 Func 𝐢)
83 eqidd 2731 . . 3 (πœ‘ β†’ (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)), β„Ž ∈ (𝐴 Func 𝐢) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž), π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΄) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜πΆ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))) = (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)), β„Ž ∈ (𝐴 Func 𝐢) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž), π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΄) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜πΆ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))))
8481, 82, 59, 34, 30, 5, 7, 83fucval 17914 . 2 (πœ‘ β†’ (𝐴 FuncCat 𝐢) = {⟨(Baseβ€˜ndx), (𝐴 Func 𝐢)⟩, ⟨(Hom β€˜ndx), (𝐴 Nat 𝐢)⟩, ⟨(compβ€˜ndx), (𝑣 ∈ ((𝐴 Func 𝐢) Γ— (𝐴 Func 𝐢)), β„Ž ∈ (𝐴 Func 𝐢) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐴 Nat 𝐢)β„Ž), π‘Ž ∈ (𝑓(𝐴 Nat 𝐢)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΄) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜πΆ)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))⟩})
85 eqid 2730 . . 3 (𝐡 FuncCat 𝐷) = (𝐡 FuncCat 𝐷)
86 eqid 2730 . . 3 (𝐡 Func 𝐷) = (𝐡 Func 𝐷)
87 eqid 2730 . . 3 (𝐡 Nat 𝐷) = (𝐡 Nat 𝐷)
88 eqid 2730 . . 3 (Baseβ€˜π΅) = (Baseβ€˜π΅)
89 eqidd 2731 . . 3 (πœ‘ β†’ (𝑣 ∈ ((𝐡 Func 𝐷) Γ— (𝐡 Func 𝐷)), β„Ž ∈ (𝐡 Func 𝐷) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐡 Nat 𝐷)β„Ž), π‘Ž ∈ (𝑓(𝐡 Nat 𝐷)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))) = (𝑣 ∈ ((𝐡 Func 𝐷) Γ— (𝐡 Func 𝐷)), β„Ž ∈ (𝐡 Func 𝐷) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐡 Nat 𝐷)β„Ž), π‘Ž ∈ (𝑓(𝐡 Nat 𝐷)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯))))))
9085, 86, 87, 88, 31, 6, 8, 89fucval 17914 . 2 (πœ‘ β†’ (𝐡 FuncCat 𝐷) = {⟨(Baseβ€˜ndx), (𝐡 Func 𝐷)⟩, ⟨(Hom β€˜ndx), (𝐡 Nat 𝐷)⟩, ⟨(compβ€˜ndx), (𝑣 ∈ ((𝐡 Func 𝐷) Γ— (𝐡 Func 𝐷)), β„Ž ∈ (𝐡 Func 𝐷) ↦ ⦋(1st β€˜π‘£) / π‘“β¦Œβ¦‹(2nd β€˜π‘£) / π‘”β¦Œ(𝑏 ∈ (𝑔(𝐡 Nat 𝐷)β„Ž), π‘Ž ∈ (𝑓(𝐡 Nat 𝐷)𝑔) ↦ (π‘₯ ∈ (Baseβ€˜π΅) ↦ ((π‘β€˜π‘₯)(⟨((1st β€˜π‘“)β€˜π‘₯), ((1st β€˜π‘”)β€˜π‘₯)⟩(compβ€˜π·)((1st β€˜β„Ž)β€˜π‘₯))(π‘Žβ€˜π‘₯)))))⟩})
9180, 84, 903eqtr4d 2780 1 (πœ‘ β†’ (𝐴 FuncCat 𝐢) = (𝐡 FuncCat 𝐷))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104  β„²wnfc 2881  Vcvv 3472  β¦‹csb 3892  {ctp 4631  βŸ¨cop 4633   class class class wbr 5147   ↦ cmpt 5230   Γ— cxp 5673  Rel wrel 5680  β€˜cfv 6542  (class class class)co 7411   ∈ cmpo 7413  1st c1st 7975  2nd c2nd 7976  ndxcnx 17130  Basecbs 17148  Hom chom 17212  compcco 17213  Catccat 17612  Homf chomf 17614  compfccomf 17615   Func cfunc 17808   Nat cnat 17896   FuncCat cfuc 17897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-map 8824  df-ixp 8894  df-cat 17616  df-cid 17617  df-homf 17618  df-comf 17619  df-func 17812  df-nat 17898  df-fuc 17899
This theorem is referenced by:  oyoncl  18227
  Copyright terms: Public domain W3C validator