MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucpropd Structured version   Visualization version   GIF version

Theorem fucpropd 17866
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same functor categories. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
fucpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
fucpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
fucpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
fucpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
fucpropd.a (𝜑𝐴 ∈ Cat)
fucpropd.b (𝜑𝐵 ∈ Cat)
fucpropd.c (𝜑𝐶 ∈ Cat)
fucpropd.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
fucpropd (𝜑 → (𝐴 FuncCat 𝐶) = (𝐵 FuncCat 𝐷))

Proof of Theorem fucpropd
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucpropd.1 . . . . 5 (𝜑 → (Homf𝐴) = (Homf𝐵))
2 fucpropd.2 . . . . 5 (𝜑 → (compf𝐴) = (compf𝐵))
3 fucpropd.3 . . . . 5 (𝜑 → (Homf𝐶) = (Homf𝐷))
4 fucpropd.4 . . . . 5 (𝜑 → (compf𝐶) = (compf𝐷))
5 fucpropd.a . . . . 5 (𝜑𝐴 ∈ Cat)
6 fucpropd.b . . . . 5 (𝜑𝐵 ∈ Cat)
7 fucpropd.c . . . . 5 (𝜑𝐶 ∈ Cat)
8 fucpropd.d . . . . 5 (𝜑𝐷 ∈ Cat)
91, 2, 3, 4, 5, 6, 7, 8funcpropd 17787 . . . 4 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
109opeq2d 4837 . . 3 (𝜑 → ⟨(Base‘ndx), (𝐴 Func 𝐶)⟩ = ⟨(Base‘ndx), (𝐵 Func 𝐷)⟩)
111, 2, 3, 4, 5, 6, 7, 8natpropd 17865 . . . 4 (𝜑 → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷))
1211opeq2d 4837 . . 3 (𝜑 → ⟨(Hom ‘ndx), (𝐴 Nat 𝐶)⟩ = ⟨(Hom ‘ndx), (𝐵 Nat 𝐷)⟩)
139sqxpeqd 5665 . . . . 5 (𝜑 → ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) = ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)))
149adantr 481 . . . . 5 ((𝜑𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶))) → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
15 nfv 1917 . . . . . 6 𝑓(𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶)))
16 nfcsb1v 3880 . . . . . . 7 𝑓(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))
1716a1i 11 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) → 𝑓(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
18 fvexd 6857 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) → (1st𝑣) ∈ V)
19 nfv 1917 . . . . . . . 8 𝑔((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣))
20 nfcsb1v 3880 . . . . . . . . 9 𝑔(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))
2120a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → 𝑔(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
22 fvexd 6857 . . . . . . . 8 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → (2nd𝑣) ∈ V)
2311ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷))
2423oveqd 7374 . . . . . . . . . 10 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝑔(𝐴 Nat 𝐶)) = (𝑔(𝐵 Nat 𝐷)))
2523oveqdr 7385 . . . . . . . . . 10 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ 𝑏 ∈ (𝑔(𝐴 Nat 𝐶))) → (𝑓(𝐴 Nat 𝐶)𝑔) = (𝑓(𝐵 Nat 𝐷)𝑔))
261homfeqbas 17576 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
2726ad4antr 730 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (Base‘𝐴) = (Base‘𝐵))
28 eqid 2736 . . . . . . . . . . . 12 (Base‘𝐶) = (Base‘𝐶)
29 eqid 2736 . . . . . . . . . . . 12 (Hom ‘𝐶) = (Hom ‘𝐶)
30 eqid 2736 . . . . . . . . . . . 12 (comp‘𝐶) = (comp‘𝐶)
31 eqid 2736 . . . . . . . . . . . 12 (comp‘𝐷) = (comp‘𝐷)
323ad5antr 732 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → (Homf𝐶) = (Homf𝐷))
334ad5antr 732 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → (compf𝐶) = (compf𝐷))
34 eqid 2736 . . . . . . . . . . . . . 14 (Base‘𝐴) = (Base‘𝐴)
35 relfunc 17748 . . . . . . . . . . . . . . 15 Rel (𝐴 Func 𝐶)
36 simpllr 774 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑓 = (1st𝑣))
37 simp-4r 782 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶)))
3837simpld 495 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)))
39 xp1st 7953 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) → (1st𝑣) ∈ (𝐴 Func 𝐶))
4038, 39syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑣) ∈ (𝐴 Func 𝐶))
4136, 40eqeltrd 2838 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑓 ∈ (𝐴 Func 𝐶))
42 1st2ndbr 7974 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐶) ∧ 𝑓 ∈ (𝐴 Func 𝐶)) → (1st𝑓)(𝐴 Func 𝐶)(2nd𝑓))
4335, 41, 42sylancr 587 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑓)(𝐴 Func 𝐶)(2nd𝑓))
4434, 28, 43funcf1 17752 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑓):(Base‘𝐴)⟶(Base‘𝐶))
4544ffvelcdmda 7035 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((1st𝑓)‘𝑥) ∈ (Base‘𝐶))
46 simplr 767 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑔 = (2nd𝑣))
47 xp2nd 7954 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) → (2nd𝑣) ∈ (𝐴 Func 𝐶))
4838, 47syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (2nd𝑣) ∈ (𝐴 Func 𝐶))
4946, 48eqeltrd 2838 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑔 ∈ (𝐴 Func 𝐶))
50 1st2ndbr 7974 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶)) → (1st𝑔)(𝐴 Func 𝐶)(2nd𝑔))
5135, 49, 50sylancr 587 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑔)(𝐴 Func 𝐶)(2nd𝑔))
5234, 28, 51funcf1 17752 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑔):(Base‘𝐴)⟶(Base‘𝐶))
5352ffvelcdmda 7035 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((1st𝑔)‘𝑥) ∈ (Base‘𝐶))
5437simprd 496 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → ∈ (𝐴 Func 𝐶))
55 1st2ndbr 7974 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐶) ∧ ∈ (𝐴 Func 𝐶)) → (1st)(𝐴 Func 𝐶)(2nd))
5635, 54, 55sylancr 587 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st)(𝐴 Func 𝐶)(2nd))
5734, 28, 56funcf1 17752 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st):(Base‘𝐴)⟶(Base‘𝐶))
5857ffvelcdmda 7035 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((1st)‘𝑥) ∈ (Base‘𝐶))
59 eqid 2736 . . . . . . . . . . . . 13 (𝐴 Nat 𝐶) = (𝐴 Nat 𝐶)
60 simplrr 776 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))
6159, 60nat1st2nd 17838 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑎 ∈ (⟨(1st𝑓), (2nd𝑓)⟩(𝐴 Nat 𝐶)⟨(1st𝑔), (2nd𝑔)⟩))
62 simpr 485 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑥 ∈ (Base‘𝐴))
6359, 61, 34, 29, 62natcl 17840 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑎𝑥) ∈ (((1st𝑓)‘𝑥)(Hom ‘𝐶)((1st𝑔)‘𝑥)))
64 simplrl 775 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑏 ∈ (𝑔(𝐴 Nat 𝐶)))
6559, 64nat1st2nd 17838 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑏 ∈ (⟨(1st𝑔), (2nd𝑔)⟩(𝐴 Nat 𝐶)⟨(1st), (2nd)⟩))
6659, 65, 34, 29, 62natcl 17840 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑏𝑥) ∈ (((1st𝑔)‘𝑥)(Hom ‘𝐶)((1st)‘𝑥)))
6728, 29, 30, 31, 32, 33, 45, 53, 58, 63, 66comfeqval 17588 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)) = ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))
6827, 67mpteq12dva 5194 . . . . . . . . . 10 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥))) = (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))
6924, 25, 68mpoeq123dva 7431 . . . . . . . . 9 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
70 csbeq1a 3869 . . . . . . . . . 10 (𝑔 = (2nd𝑣) → (𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))) = (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7170adantl 482 . . . . . . . . 9 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))) = (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7269, 71eqtrd 2776 . . . . . . . 8 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7319, 21, 22, 72csbiedf 3886 . . . . . . 7 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
74 csbeq1a 3869 . . . . . . . 8 (𝑓 = (1st𝑣) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))) = (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7574adantl 482 . . . . . . 7 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))) = (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7673, 75eqtrd 2776 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7715, 17, 18, 76csbiedf 3886 . . . . 5 ((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) → (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7813, 14, 77mpoeq123dva 7431 . . . 4 (𝜑 → (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))))
7978opeq2d 4837 . . 3 (𝜑 → ⟨(comp‘ndx), (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))))⟩ = ⟨(comp‘ndx), (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))⟩)
8010, 12, 79tpeq123d 4709 . 2 (𝜑 → {⟨(Base‘ndx), (𝐴 Func 𝐶)⟩, ⟨(Hom ‘ndx), (𝐴 Nat 𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))))⟩} = {⟨(Base‘ndx), (𝐵 Func 𝐷)⟩, ⟨(Hom ‘ndx), (𝐵 Nat 𝐷)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))⟩})
81 eqid 2736 . . 3 (𝐴 FuncCat 𝐶) = (𝐴 FuncCat 𝐶)
82 eqid 2736 . . 3 (𝐴 Func 𝐶) = (𝐴 Func 𝐶)
83 eqidd 2737 . . 3 (𝜑 → (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥))))))
8481, 82, 59, 34, 30, 5, 7, 83fucval 17846 . 2 (𝜑 → (𝐴 FuncCat 𝐶) = {⟨(Base‘ndx), (𝐴 Func 𝐶)⟩, ⟨(Hom ‘ndx), (𝐴 Nat 𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))))⟩})
85 eqid 2736 . . 3 (𝐵 FuncCat 𝐷) = (𝐵 FuncCat 𝐷)
86 eqid 2736 . . 3 (𝐵 Func 𝐷) = (𝐵 Func 𝐷)
87 eqid 2736 . . 3 (𝐵 Nat 𝐷) = (𝐵 Nat 𝐷)
88 eqid 2736 . . 3 (Base‘𝐵) = (Base‘𝐵)
89 eqidd 2737 . . 3 (𝜑 → (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))))
9085, 86, 87, 88, 31, 6, 8, 89fucval 17846 . 2 (𝜑 → (𝐵 FuncCat 𝐷) = {⟨(Base‘ndx), (𝐵 Func 𝐷)⟩, ⟨(Hom ‘ndx), (𝐵 Nat 𝐷)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))⟩})
9180, 84, 903eqtr4d 2786 1 (𝜑 → (𝐴 FuncCat 𝐶) = (𝐵 FuncCat 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wnfc 2887  Vcvv 3445  csb 3855  {ctp 4590  cop 4592   class class class wbr 5105  cmpt 5188   × cxp 5631  Rel wrel 5638  cfv 6496  (class class class)co 7357  cmpo 7359  1st c1st 7919  2nd c2nd 7920  ndxcnx 17065  Basecbs 17083  Hom chom 17144  compcco 17145  Catccat 17544  Homf chomf 17546  compfccomf 17547   Func cfunc 17740   Nat cnat 17828   FuncCat cfuc 17829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-map 8767  df-ixp 8836  df-cat 17548  df-cid 17549  df-homf 17550  df-comf 17551  df-func 17744  df-nat 17830  df-fuc 17831
This theorem is referenced by:  oyoncl  18159
  Copyright terms: Public domain W3C validator