| Step | Hyp | Ref
| Expression |
| 1 | | fucpropd.1 |
. . . . 5
⊢ (𝜑 → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
| 2 | | fucpropd.2 |
. . . . 5
⊢ (𝜑 →
(compf‘𝐴) = (compf‘𝐵)) |
| 3 | | fucpropd.3 |
. . . . 5
⊢ (𝜑 → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 4 | | fucpropd.4 |
. . . . 5
⊢ (𝜑 →
(compf‘𝐶) = (compf‘𝐷)) |
| 5 | | fucpropd.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ Cat) |
| 6 | | fucpropd.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ Cat) |
| 7 | | fucpropd.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 8 | | fucpropd.d |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | funcpropd 17947 |
. . . 4
⊢ (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷)) |
| 10 | 9 | opeq2d 4880 |
. . 3
⊢ (𝜑 → 〈(Base‘ndx),
(𝐴 Func 𝐶)〉 = 〈(Base‘ndx), (𝐵 Func 𝐷)〉) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8 | natpropd 18024 |
. . . 4
⊢ (𝜑 → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷)) |
| 12 | 11 | opeq2d 4880 |
. . 3
⊢ (𝜑 → 〈(Hom ‘ndx),
(𝐴 Nat 𝐶)〉 = 〈(Hom ‘ndx), (𝐵 Nat 𝐷)〉) |
| 13 | 9 | sqxpeqd 5717 |
. . . . 5
⊢ (𝜑 → ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) = ((𝐵 Func 𝐷) × (𝐵 Func 𝐷))) |
| 14 | 9 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶))) → (𝐴 Func 𝐶) = (𝐵 Func 𝐷)) |
| 15 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑓(𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) |
| 16 | | nfcsb1v 3923 |
. . . . . . 7
⊢
Ⅎ𝑓⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))) |
| 17 | 16 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) → Ⅎ𝑓⦋(1st ‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) |
| 18 | | fvexd 6921 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) → (1st ‘𝑣) ∈ V) |
| 19 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑔((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) |
| 20 | | nfcsb1v 3923 |
. . . . . . . . 9
⊢
Ⅎ𝑔⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))) |
| 21 | 20 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) → Ⅎ𝑔⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) |
| 22 | | fvexd 6921 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) → (2nd ‘𝑣) ∈ V) |
| 23 | 11 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷)) |
| 24 | 23 | oveqd 7448 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) → (𝑔(𝐴 Nat 𝐶)ℎ) = (𝑔(𝐵 Nat 𝐷)ℎ)) |
| 25 | 23 | oveqdr 7459 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ 𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ)) → (𝑓(𝐴 Nat 𝐶)𝑔) = (𝑓(𝐵 Nat 𝐷)𝑔)) |
| 26 | 1 | homfeqbas 17739 |
. . . . . . . . . . . 12
⊢ (𝜑 → (Base‘𝐴) = (Base‘𝐵)) |
| 27 | 26 | ad4antr 732 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (Base‘𝐴) = (Base‘𝐵)) |
| 28 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 29 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 30 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(comp‘𝐶) =
(comp‘𝐶) |
| 31 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(comp‘𝐷) =
(comp‘𝐷) |
| 32 | 3 | ad5antr 734 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 33 | 4 | ad5antr 734 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) →
(compf‘𝐶) = (compf‘𝐷)) |
| 34 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝐴) =
(Base‘𝐴) |
| 35 | | relfunc 17907 |
. . . . . . . . . . . . . . 15
⊢ Rel
(𝐴 Func 𝐶) |
| 36 | | simpllr 776 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑓 = (1st ‘𝑣)) |
| 37 | | simp-4r 784 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) |
| 38 | 37 | simpld 494 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶))) |
| 39 | | xp1st 8046 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) → (1st ‘𝑣) ∈ (𝐴 Func 𝐶)) |
| 40 | 38, 39 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st ‘𝑣) ∈ (𝐴 Func 𝐶)) |
| 41 | 36, 40 | eqeltrd 2841 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑓 ∈ (𝐴 Func 𝐶)) |
| 42 | | 1st2ndbr 8067 |
. . . . . . . . . . . . . . 15
⊢ ((Rel
(𝐴 Func 𝐶) ∧ 𝑓 ∈ (𝐴 Func 𝐶)) → (1st ‘𝑓)(𝐴 Func 𝐶)(2nd ‘𝑓)) |
| 43 | 35, 41, 42 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st ‘𝑓)(𝐴 Func 𝐶)(2nd ‘𝑓)) |
| 44 | 34, 28, 43 | funcf1 17911 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st ‘𝑓):(Base‘𝐴)⟶(Base‘𝐶)) |
| 45 | 44 | ffvelcdmda 7104 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((1st ‘𝑓)‘𝑥) ∈ (Base‘𝐶)) |
| 46 | | simplr 769 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑔 = (2nd ‘𝑣)) |
| 47 | | xp2nd 8047 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) → (2nd ‘𝑣) ∈ (𝐴 Func 𝐶)) |
| 48 | 38, 47 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (2nd ‘𝑣) ∈ (𝐴 Func 𝐶)) |
| 49 | 46, 48 | eqeltrd 2841 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑔 ∈ (𝐴 Func 𝐶)) |
| 50 | | 1st2ndbr 8067 |
. . . . . . . . . . . . . . 15
⊢ ((Rel
(𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶)) → (1st ‘𝑔)(𝐴 Func 𝐶)(2nd ‘𝑔)) |
| 51 | 35, 49, 50 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st ‘𝑔)(𝐴 Func 𝐶)(2nd ‘𝑔)) |
| 52 | 34, 28, 51 | funcf1 17911 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st ‘𝑔):(Base‘𝐴)⟶(Base‘𝐶)) |
| 53 | 52 | ffvelcdmda 7104 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((1st ‘𝑔)‘𝑥) ∈ (Base‘𝐶)) |
| 54 | 37 | simprd 495 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → ℎ ∈ (𝐴 Func 𝐶)) |
| 55 | | 1st2ndbr 8067 |
. . . . . . . . . . . . . . 15
⊢ ((Rel
(𝐴 Func 𝐶) ∧ ℎ ∈ (𝐴 Func 𝐶)) → (1st ‘ℎ)(𝐴 Func 𝐶)(2nd ‘ℎ)) |
| 56 | 35, 54, 55 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st ‘ℎ)(𝐴 Func 𝐶)(2nd ‘ℎ)) |
| 57 | 34, 28, 56 | funcf1 17911 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st ‘ℎ):(Base‘𝐴)⟶(Base‘𝐶)) |
| 58 | 57 | ffvelcdmda 7104 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((1st ‘ℎ)‘𝑥) ∈ (Base‘𝐶)) |
| 59 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (𝐴 Nat 𝐶) = (𝐴 Nat 𝐶) |
| 60 | | simplrr 778 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔)) |
| 61 | 59, 60 | nat1st2nd 17999 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑎 ∈ (〈(1st ‘𝑓), (2nd ‘𝑓)〉(𝐴 Nat 𝐶)〈(1st ‘𝑔), (2nd ‘𝑔)〉)) |
| 62 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑥 ∈ (Base‘𝐴)) |
| 63 | 59, 61, 34, 29, 62 | natcl 18001 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑎‘𝑥) ∈ (((1st ‘𝑓)‘𝑥)(Hom ‘𝐶)((1st ‘𝑔)‘𝑥))) |
| 64 | | simplrl 777 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ)) |
| 65 | 59, 64 | nat1st2nd 17999 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑏 ∈ (〈(1st ‘𝑔), (2nd ‘𝑔)〉(𝐴 Nat 𝐶)〈(1st ‘ℎ), (2nd ‘ℎ)〉)) |
| 66 | 59, 65, 34, 29, 62 | natcl 18001 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑏‘𝑥) ∈ (((1st ‘𝑔)‘𝑥)(Hom ‘𝐶)((1st ‘ℎ)‘𝑥))) |
| 67 | 28, 29, 30, 31, 32, 33, 45, 53, 58, 63, 66 | comfeqval 17751 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐶)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)) = ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))) |
| 68 | 27, 67 | mpteq12dva 5231 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐶)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))) = (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))) |
| 69 | 24, 25, 68 | mpoeq123dva 7507 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) → (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐶)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))) = (𝑏 ∈ (𝑔(𝐵 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) |
| 70 | | csbeq1a 3913 |
. . . . . . . . . 10
⊢ (𝑔 = (2nd ‘𝑣) → (𝑏 ∈ (𝑔(𝐵 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))) = ⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) |
| 71 | 70 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) → (𝑏 ∈ (𝑔(𝐵 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))) = ⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) |
| 72 | 69, 71 | eqtrd 2777 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) ∧ 𝑔 = (2nd ‘𝑣)) → (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐶)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))) = ⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) |
| 73 | 19, 21, 22, 72 | csbiedf 3929 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) → ⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐶)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))) = ⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) |
| 74 | | csbeq1a 3913 |
. . . . . . . 8
⊢ (𝑓 = (1st ‘𝑣) →
⦋(2nd ‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))) = ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) |
| 75 | 74 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) → ⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))) = ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) |
| 76 | 73, 75 | eqtrd 2777 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st ‘𝑣)) → ⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐶)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))) = ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) |
| 77 | 15, 17, 18, 76 | csbiedf 3929 |
. . . . 5
⊢ ((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ℎ ∈ (𝐴 Func 𝐶))) → ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐶)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))) = ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) |
| 78 | 13, 14, 77 | mpoeq123dva 7507 |
. . . 4
⊢ (𝜑 → (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ℎ ∈ (𝐴 Func 𝐶) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐶)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) = (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ℎ ∈ (𝐵 Func 𝐷) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))) |
| 79 | 78 | opeq2d 4880 |
. . 3
⊢ (𝜑 → 〈(comp‘ndx),
(𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ℎ ∈ (𝐴 Func 𝐶) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐶)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉 = 〈(comp‘ndx), (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ℎ ∈ (𝐵 Func 𝐷) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉) |
| 80 | 10, 12, 79 | tpeq123d 4748 |
. 2
⊢ (𝜑 → {〈(Base‘ndx),
(𝐴 Func 𝐶)〉, 〈(Hom ‘ndx), (𝐴 Nat 𝐶)〉, 〈(comp‘ndx), (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ℎ ∈ (𝐴 Func 𝐶) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐶)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉} = {〈(Base‘ndx),
(𝐵 Func 𝐷)〉, 〈(Hom ‘ndx), (𝐵 Nat 𝐷)〉, 〈(comp‘ndx), (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ℎ ∈ (𝐵 Func 𝐷) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉}) |
| 81 | | eqid 2737 |
. . 3
⊢ (𝐴 FuncCat 𝐶) = (𝐴 FuncCat 𝐶) |
| 82 | | eqid 2737 |
. . 3
⊢ (𝐴 Func 𝐶) = (𝐴 Func 𝐶) |
| 83 | | eqidd 2738 |
. . 3
⊢ (𝜑 → (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ℎ ∈ (𝐴 Func 𝐶) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐶)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) = (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ℎ ∈ (𝐴 Func 𝐶) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐶)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))) |
| 84 | 81, 82, 59, 34, 30, 5, 7, 83 | fucval 18006 |
. 2
⊢ (𝜑 → (𝐴 FuncCat 𝐶) = {〈(Base‘ndx), (𝐴 Func 𝐶)〉, 〈(Hom ‘ndx), (𝐴 Nat 𝐶)〉, 〈(comp‘ndx), (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ℎ ∈ (𝐴 Func 𝐶) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)ℎ), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐶)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉}) |
| 85 | | eqid 2737 |
. . 3
⊢ (𝐵 FuncCat 𝐷) = (𝐵 FuncCat 𝐷) |
| 86 | | eqid 2737 |
. . 3
⊢ (𝐵 Func 𝐷) = (𝐵 Func 𝐷) |
| 87 | | eqid 2737 |
. . 3
⊢ (𝐵 Nat 𝐷) = (𝐵 Nat 𝐷) |
| 88 | | eqid 2737 |
. . 3
⊢
(Base‘𝐵) =
(Base‘𝐵) |
| 89 | | eqidd 2738 |
. . 3
⊢ (𝜑 → (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ℎ ∈ (𝐵 Func 𝐷) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥))))) = (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ℎ ∈ (𝐵 Func 𝐷) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))) |
| 90 | 85, 86, 87, 88, 31, 6, 8, 89 | fucval 18006 |
. 2
⊢ (𝜑 → (𝐵 FuncCat 𝐷) = {〈(Base‘ndx), (𝐵 Func 𝐷)〉, 〈(Hom ‘ndx), (𝐵 Nat 𝐷)〉, 〈(comp‘ndx), (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ℎ ∈ (𝐵 Func 𝐷) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)ℎ), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝐷)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉}) |
| 91 | 80, 84, 90 | 3eqtr4d 2787 |
1
⊢ (𝜑 → (𝐴 FuncCat 𝐶) = (𝐵 FuncCat 𝐷)) |