![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumsplit1 | Structured version Visualization version GIF version |
Description: Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fsumsplit1.kph | ⊢ Ⅎ𝑘𝜑 |
fsumsplit1.kd | ⊢ Ⅎ𝑘𝐷 |
fsumsplit1.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumsplit1.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
fsumsplit1.c | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
fsumsplit1.bd | ⊢ (𝑘 = 𝐶 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
fsumsplit1 | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (𝐷 + Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 3953 | . . . . 5 ⊢ ((𝐴 ∖ {𝐶}) ∪ {𝐶}) = ({𝐶} ∪ (𝐴 ∖ {𝐶})) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → ((𝐴 ∖ {𝐶}) ∪ {𝐶}) = ({𝐶} ∪ (𝐴 ∖ {𝐶}))) |
3 | fsumsplit1.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
4 | 3 | snssd 4526 | . . . . 5 ⊢ (𝜑 → {𝐶} ⊆ 𝐴) |
5 | undif 4241 | . . . . 5 ⊢ ({𝐶} ⊆ 𝐴 ↔ ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴) | |
6 | 4, 5 | sylib 210 | . . . 4 ⊢ (𝜑 → ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴) |
7 | eqidd 2798 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐴) | |
8 | 2, 6, 7 | 3eqtrrd 2836 | . . 3 ⊢ (𝜑 → 𝐴 = ((𝐴 ∖ {𝐶}) ∪ {𝐶})) |
9 | 8 | sumeq1d 14768 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ ((𝐴 ∖ {𝐶}) ∪ {𝐶})𝐵) |
10 | fsumsplit1.kph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
11 | fsumsplit1.kd | . . 3 ⊢ Ⅎ𝑘𝐷 | |
12 | fsumsplit1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
13 | diffi 8432 | . . . 4 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ {𝐶}) ∈ Fin) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∖ {𝐶}) ∈ Fin) |
15 | neldifsnd 4510 | . . 3 ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴 ∖ {𝐶})) | |
16 | simpl 475 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝐶})) → 𝜑) | |
17 | eldifi 3928 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∖ {𝐶}) → 𝑘 ∈ 𝐴) | |
18 | 17 | adantl 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝐶})) → 𝑘 ∈ 𝐴) |
19 | fsumsplit1.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
20 | 16, 18, 19 | syl2anc 580 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝐶})) → 𝐵 ∈ ℂ) |
21 | fsumsplit1.bd | . . 3 ⊢ (𝑘 = 𝐶 → 𝐵 = 𝐷) | |
22 | 11 | a1i 11 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑘𝐷) |
23 | simpr 478 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝑘 = 𝐶) | |
24 | 23, 21 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 𝐷) |
25 | 10, 22, 3, 24 | csbiedf 3747 | . . . . 5 ⊢ (𝜑 → ⦋𝐶 / 𝑘⦌𝐵 = 𝐷) |
26 | 25 | eqcomd 2803 | . . . 4 ⊢ (𝜑 → 𝐷 = ⦋𝐶 / 𝑘⦌𝐵) |
27 | 3 | ancli 545 | . . . . 5 ⊢ (𝜑 → (𝜑 ∧ 𝐶 ∈ 𝐴)) |
28 | nfcv 2939 | . . . . . 6 ⊢ Ⅎ𝑘𝐶 | |
29 | nfv 2010 | . . . . . . . 8 ⊢ Ⅎ𝑘 𝐶 ∈ 𝐴 | |
30 | 10, 29 | nfan 1999 | . . . . . . 7 ⊢ Ⅎ𝑘(𝜑 ∧ 𝐶 ∈ 𝐴) |
31 | 28 | nfcsb1 3741 | . . . . . . . 8 ⊢ Ⅎ𝑘⦋𝐶 / 𝑘⦌𝐵 |
32 | nfcv 2939 | . . . . . . . 8 ⊢ Ⅎ𝑘ℂ | |
33 | 31, 32 | nfel 2952 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ |
34 | 30, 33 | nfim 1996 | . . . . . 6 ⊢ Ⅎ𝑘((𝜑 ∧ 𝐶 ∈ 𝐴) → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ) |
35 | eleq1 2864 | . . . . . . . 8 ⊢ (𝑘 = 𝐶 → (𝑘 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
36 | 35 | anbi2d 623 | . . . . . . 7 ⊢ (𝑘 = 𝐶 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝐶 ∈ 𝐴))) |
37 | csbeq1a 3735 | . . . . . . . 8 ⊢ (𝑘 = 𝐶 → 𝐵 = ⦋𝐶 / 𝑘⦌𝐵) | |
38 | 37 | eleq1d 2861 | . . . . . . 7 ⊢ (𝑘 = 𝐶 → (𝐵 ∈ ℂ ↔ ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ)) |
39 | 36, 38 | imbi12d 336 | . . . . . 6 ⊢ (𝑘 = 𝐶 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝐶 ∈ 𝐴) → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ))) |
40 | 28, 34, 39, 19 | vtoclgf 3449 | . . . . 5 ⊢ (𝐶 ∈ 𝐴 → ((𝜑 ∧ 𝐶 ∈ 𝐴) → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ)) |
41 | 3, 27, 40 | sylc 65 | . . . 4 ⊢ (𝜑 → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ) |
42 | 26, 41 | eqeltrd 2876 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
43 | 10, 11, 14, 3, 15, 20, 21, 42 | fsumsplitsn 14811 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ ((𝐴 ∖ {𝐶}) ∪ {𝐶})𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵 + 𝐷)) |
44 | 10, 14, 20 | fsumclf 40532 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵 ∈ ℂ) |
45 | 44, 42 | addcomd 10526 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵 + 𝐷) = (𝐷 + Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
46 | 9, 43, 45 | 3eqtrd 2835 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (𝐷 + Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 Ⅎwnf 1879 ∈ wcel 2157 Ⅎwnfc 2926 ⦋csb 3726 ∖ cdif 3764 ∪ cun 3765 ⊆ wss 3767 {csn 4366 (class class class)co 6876 Fincfn 8193 ℂcc 10220 + caddc 10225 Σcsu 14753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-inf2 8786 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 ax-pre-sup 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-se 5270 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-isom 6108 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-oadd 7801 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-sup 8588 df-oi 8655 df-card 9049 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-div 10975 df-nn 11311 df-2 11372 df-3 11373 df-n0 11577 df-z 11663 df-uz 11927 df-rp 12071 df-fz 12577 df-fzo 12717 df-seq 13052 df-exp 13111 df-hash 13367 df-cj 14176 df-re 14177 df-im 14178 df-sqrt 14312 df-abs 14313 df-clim 14556 df-sum 14754 |
This theorem is referenced by: dvnmul 40889 etransclem35 41216 etransclem44 41225 |
Copyright terms: Public domain | W3C validator |