| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsumsplit1 | Structured version Visualization version GIF version | ||
| Description: Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fsumsplit1.kph | ⊢ Ⅎ𝑘𝜑 |
| fsumsplit1.kd | ⊢ Ⅎ𝑘𝐷 |
| fsumsplit1.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsumsplit1.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| fsumsplit1.c | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| fsumsplit1.bd | ⊢ (𝑘 = 𝐶 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| fsumsplit1 | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (𝐷 + Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4133 | . . . . 5 ⊢ ((𝐴 ∖ {𝐶}) ∪ {𝐶}) = ({𝐶} ∪ (𝐴 ∖ {𝐶})) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → ((𝐴 ∖ {𝐶}) ∪ {𝐶}) = ({𝐶} ∪ (𝐴 ∖ {𝐶}))) |
| 3 | fsumsplit1.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
| 4 | 3 | snssd 4785 | . . . . 5 ⊢ (𝜑 → {𝐶} ⊆ 𝐴) |
| 5 | undif 4457 | . . . . 5 ⊢ ({𝐶} ⊆ 𝐴 ↔ ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴) | |
| 6 | 4, 5 | sylib 218 | . . . 4 ⊢ (𝜑 → ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴) |
| 7 | eqidd 2736 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐴) | |
| 8 | 2, 6, 7 | 3eqtrrd 2775 | . . 3 ⊢ (𝜑 → 𝐴 = ((𝐴 ∖ {𝐶}) ∪ {𝐶})) |
| 9 | 8 | sumeq1d 15716 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ ((𝐴 ∖ {𝐶}) ∪ {𝐶})𝐵) |
| 10 | fsumsplit1.kph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 11 | fsumsplit1.kd | . . 3 ⊢ Ⅎ𝑘𝐷 | |
| 12 | fsumsplit1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 13 | diffi 9189 | . . . 4 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ {𝐶}) ∈ Fin) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∖ {𝐶}) ∈ Fin) |
| 15 | neldifsnd 4769 | . . 3 ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴 ∖ {𝐶})) | |
| 16 | simpl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝐶})) → 𝜑) | |
| 17 | eldifi 4106 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∖ {𝐶}) → 𝑘 ∈ 𝐴) | |
| 18 | 17 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝐶})) → 𝑘 ∈ 𝐴) |
| 19 | fsumsplit1.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 20 | 16, 18, 19 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝐶})) → 𝐵 ∈ ℂ) |
| 21 | fsumsplit1.bd | . . 3 ⊢ (𝑘 = 𝐶 → 𝐵 = 𝐷) | |
| 22 | 11 | a1i 11 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑘𝐷) |
| 23 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝑘 = 𝐶) | |
| 24 | 23, 21 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 𝐷) |
| 25 | 10, 22, 3, 24 | csbiedf 3904 | . . . . 5 ⊢ (𝜑 → ⦋𝐶 / 𝑘⦌𝐵 = 𝐷) |
| 26 | 25 | eqcomd 2741 | . . . 4 ⊢ (𝜑 → 𝐷 = ⦋𝐶 / 𝑘⦌𝐵) |
| 27 | 3 | ancli 548 | . . . . 5 ⊢ (𝜑 → (𝜑 ∧ 𝐶 ∈ 𝐴)) |
| 28 | nfcv 2898 | . . . . . 6 ⊢ Ⅎ𝑘𝐶 | |
| 29 | nfv 1914 | . . . . . . . 8 ⊢ Ⅎ𝑘 𝐶 ∈ 𝐴 | |
| 30 | 10, 29 | nfan 1899 | . . . . . . 7 ⊢ Ⅎ𝑘(𝜑 ∧ 𝐶 ∈ 𝐴) |
| 31 | 28 | nfcsb1 3897 | . . . . . . . 8 ⊢ Ⅎ𝑘⦋𝐶 / 𝑘⦌𝐵 |
| 32 | nfcv 2898 | . . . . . . . 8 ⊢ Ⅎ𝑘ℂ | |
| 33 | 31, 32 | nfel 2913 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ |
| 34 | 30, 33 | nfim 1896 | . . . . . 6 ⊢ Ⅎ𝑘((𝜑 ∧ 𝐶 ∈ 𝐴) → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ) |
| 35 | eleq1 2822 | . . . . . . . 8 ⊢ (𝑘 = 𝐶 → (𝑘 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
| 36 | 35 | anbi2d 630 | . . . . . . 7 ⊢ (𝑘 = 𝐶 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝐶 ∈ 𝐴))) |
| 37 | csbeq1a 3888 | . . . . . . . 8 ⊢ (𝑘 = 𝐶 → 𝐵 = ⦋𝐶 / 𝑘⦌𝐵) | |
| 38 | 37 | eleq1d 2819 | . . . . . . 7 ⊢ (𝑘 = 𝐶 → (𝐵 ∈ ℂ ↔ ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ)) |
| 39 | 36, 38 | imbi12d 344 | . . . . . 6 ⊢ (𝑘 = 𝐶 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝐶 ∈ 𝐴) → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ))) |
| 40 | 28, 34, 39, 19 | vtoclgf 3548 | . . . . 5 ⊢ (𝐶 ∈ 𝐴 → ((𝜑 ∧ 𝐶 ∈ 𝐴) → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ)) |
| 41 | 3, 27, 40 | sylc 65 | . . . 4 ⊢ (𝜑 → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ) |
| 42 | 26, 41 | eqeltrd 2834 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 43 | 10, 11, 14, 3, 15, 20, 21, 42 | fsumsplitsn 15760 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ ((𝐴 ∖ {𝐶}) ∪ {𝐶})𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵 + 𝐷)) |
| 44 | 10, 14, 20 | fsumclf 15754 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵 ∈ ℂ) |
| 45 | 44, 42 | addcomd 11437 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵 + 𝐷) = (𝐷 + Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
| 46 | 9, 43, 45 | 3eqtrd 2774 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (𝐷 + Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 Ⅎwnfc 2883 ⦋csb 3874 ∖ cdif 3923 ∪ cun 3924 ⊆ wss 3926 {csn 4601 (class class class)co 7405 Fincfn 8959 ℂcc 11127 + caddc 11132 Σcsu 15702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 |
| This theorem is referenced by: sticksstones22 42181 unitscyglem4 42211 dvnmul 45972 etransclem35 46298 etransclem44 46307 |
| Copyright terms: Public domain | W3C validator |