MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumsplit1 Structured version   Visualization version   GIF version

Theorem fsumsplit1 15781
Description: Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fsumsplit1.kph 𝑘𝜑
fsumsplit1.kd 𝑘𝐷
fsumsplit1.a (𝜑𝐴 ∈ Fin)
fsumsplit1.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumsplit1.c (𝜑𝐶𝐴)
fsumsplit1.bd (𝑘 = 𝐶𝐵 = 𝐷)
Assertion
Ref Expression
fsumsplit1 (𝜑 → Σ𝑘𝐴 𝐵 = (𝐷 + Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐷(𝑘)

Proof of Theorem fsumsplit1
StepHypRef Expression
1 uncom 4158 . . . . 5 ((𝐴 ∖ {𝐶}) ∪ {𝐶}) = ({𝐶} ∪ (𝐴 ∖ {𝐶}))
21a1i 11 . . . 4 (𝜑 → ((𝐴 ∖ {𝐶}) ∪ {𝐶}) = ({𝐶} ∪ (𝐴 ∖ {𝐶})))
3 fsumsplit1.c . . . . . 6 (𝜑𝐶𝐴)
43snssd 4809 . . . . 5 (𝜑 → {𝐶} ⊆ 𝐴)
5 undif 4482 . . . . 5 ({𝐶} ⊆ 𝐴 ↔ ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴)
64, 5sylib 218 . . . 4 (𝜑 → ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴)
7 eqidd 2738 . . . 4 (𝜑𝐴 = 𝐴)
82, 6, 73eqtrrd 2782 . . 3 (𝜑𝐴 = ((𝐴 ∖ {𝐶}) ∪ {𝐶}))
98sumeq1d 15736 . 2 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ((𝐴 ∖ {𝐶}) ∪ {𝐶})𝐵)
10 fsumsplit1.kph . . 3 𝑘𝜑
11 fsumsplit1.kd . . 3 𝑘𝐷
12 fsumsplit1.a . . . 4 (𝜑𝐴 ∈ Fin)
13 diffi 9215 . . . 4 (𝐴 ∈ Fin → (𝐴 ∖ {𝐶}) ∈ Fin)
1412, 13syl 17 . . 3 (𝜑 → (𝐴 ∖ {𝐶}) ∈ Fin)
15 neldifsnd 4793 . . 3 (𝜑 → ¬ 𝐶 ∈ (𝐴 ∖ {𝐶}))
16 simpl 482 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∖ {𝐶})) → 𝜑)
17 eldifi 4131 . . . . 5 (𝑘 ∈ (𝐴 ∖ {𝐶}) → 𝑘𝐴)
1817adantl 481 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∖ {𝐶})) → 𝑘𝐴)
19 fsumsplit1.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2016, 18, 19syl2anc 584 . . 3 ((𝜑𝑘 ∈ (𝐴 ∖ {𝐶})) → 𝐵 ∈ ℂ)
21 fsumsplit1.bd . . 3 (𝑘 = 𝐶𝐵 = 𝐷)
2211a1i 11 . . . . . 6 (𝜑𝑘𝐷)
23 simpr 484 . . . . . . 7 ((𝜑𝑘 = 𝐶) → 𝑘 = 𝐶)
2423, 21syl 17 . . . . . 6 ((𝜑𝑘 = 𝐶) → 𝐵 = 𝐷)
2510, 22, 3, 24csbiedf 3929 . . . . 5 (𝜑𝐶 / 𝑘𝐵 = 𝐷)
2625eqcomd 2743 . . . 4 (𝜑𝐷 = 𝐶 / 𝑘𝐵)
273ancli 548 . . . . 5 (𝜑 → (𝜑𝐶𝐴))
28 nfcv 2905 . . . . . 6 𝑘𝐶
29 nfv 1914 . . . . . . . 8 𝑘 𝐶𝐴
3010, 29nfan 1899 . . . . . . 7 𝑘(𝜑𝐶𝐴)
3128nfcsb1 3922 . . . . . . . 8 𝑘𝐶 / 𝑘𝐵
32 nfcv 2905 . . . . . . . 8 𝑘
3331, 32nfel 2920 . . . . . . 7 𝑘𝐶 / 𝑘𝐵 ∈ ℂ
3430, 33nfim 1896 . . . . . 6 𝑘((𝜑𝐶𝐴) → 𝐶 / 𝑘𝐵 ∈ ℂ)
35 eleq1 2829 . . . . . . . 8 (𝑘 = 𝐶 → (𝑘𝐴𝐶𝐴))
3635anbi2d 630 . . . . . . 7 (𝑘 = 𝐶 → ((𝜑𝑘𝐴) ↔ (𝜑𝐶𝐴)))
37 csbeq1a 3913 . . . . . . . 8 (𝑘 = 𝐶𝐵 = 𝐶 / 𝑘𝐵)
3837eleq1d 2826 . . . . . . 7 (𝑘 = 𝐶 → (𝐵 ∈ ℂ ↔ 𝐶 / 𝑘𝐵 ∈ ℂ))
3936, 38imbi12d 344 . . . . . 6 (𝑘 = 𝐶 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝐶𝐴) → 𝐶 / 𝑘𝐵 ∈ ℂ)))
4028, 34, 39, 19vtoclgf 3569 . . . . 5 (𝐶𝐴 → ((𝜑𝐶𝐴) → 𝐶 / 𝑘𝐵 ∈ ℂ))
413, 27, 40sylc 65 . . . 4 (𝜑𝐶 / 𝑘𝐵 ∈ ℂ)
4226, 41eqeltrd 2841 . . 3 (𝜑𝐷 ∈ ℂ)
4310, 11, 14, 3, 15, 20, 21, 42fsumsplitsn 15780 . 2 (𝜑 → Σ𝑘 ∈ ((𝐴 ∖ {𝐶}) ∪ {𝐶})𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵 + 𝐷))
4410, 14, 20fsumclf 15774 . . 3 (𝜑 → Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵 ∈ ℂ)
4544, 42addcomd 11463 . 2 (𝜑 → (Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵 + 𝐷) = (𝐷 + Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
469, 43, 453eqtrd 2781 1 (𝜑 → Σ𝑘𝐴 𝐵 = (𝐷 + Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2108  wnfc 2890  csb 3899  cdif 3948  cun 3949  wss 3951  {csn 4626  (class class class)co 7431  Fincfn 8985  cc 11153   + caddc 11158  Σcsu 15722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723
This theorem is referenced by:  sticksstones22  42169  unitscyglem4  42199  dvnmul  45958  etransclem35  46284  etransclem44  46293
  Copyright terms: Public domain W3C validator