| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsumsplit1 | Structured version Visualization version GIF version | ||
| Description: Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fsumsplit1.kph | ⊢ Ⅎ𝑘𝜑 |
| fsumsplit1.kd | ⊢ Ⅎ𝑘𝐷 |
| fsumsplit1.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsumsplit1.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| fsumsplit1.c | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| fsumsplit1.bd | ⊢ (𝑘 = 𝐶 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| fsumsplit1 | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (𝐷 + Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4105 | . . . . 5 ⊢ ((𝐴 ∖ {𝐶}) ∪ {𝐶}) = ({𝐶} ∪ (𝐴 ∖ {𝐶})) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → ((𝐴 ∖ {𝐶}) ∪ {𝐶}) = ({𝐶} ∪ (𝐴 ∖ {𝐶}))) |
| 3 | fsumsplit1.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
| 4 | 3 | snssd 4758 | . . . . 5 ⊢ (𝜑 → {𝐶} ⊆ 𝐴) |
| 5 | undif 4429 | . . . . 5 ⊢ ({𝐶} ⊆ 𝐴 ↔ ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴) | |
| 6 | 4, 5 | sylib 218 | . . . 4 ⊢ (𝜑 → ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴) |
| 7 | eqidd 2732 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐴) | |
| 8 | 2, 6, 7 | 3eqtrrd 2771 | . . 3 ⊢ (𝜑 → 𝐴 = ((𝐴 ∖ {𝐶}) ∪ {𝐶})) |
| 9 | 8 | sumeq1d 15607 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ ((𝐴 ∖ {𝐶}) ∪ {𝐶})𝐵) |
| 10 | fsumsplit1.kph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 11 | fsumsplit1.kd | . . 3 ⊢ Ⅎ𝑘𝐷 | |
| 12 | fsumsplit1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 13 | diffi 9084 | . . . 4 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ {𝐶}) ∈ Fin) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∖ {𝐶}) ∈ Fin) |
| 15 | neldifsnd 4742 | . . 3 ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴 ∖ {𝐶})) | |
| 16 | simpl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝐶})) → 𝜑) | |
| 17 | eldifi 4078 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∖ {𝐶}) → 𝑘 ∈ 𝐴) | |
| 18 | 17 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝐶})) → 𝑘 ∈ 𝐴) |
| 19 | fsumsplit1.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 20 | 16, 18, 19 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝐶})) → 𝐵 ∈ ℂ) |
| 21 | fsumsplit1.bd | . . 3 ⊢ (𝑘 = 𝐶 → 𝐵 = 𝐷) | |
| 22 | 11 | a1i 11 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑘𝐷) |
| 23 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝑘 = 𝐶) | |
| 24 | 23, 21 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 𝐷) |
| 25 | 10, 22, 3, 24 | csbiedf 3875 | . . . . 5 ⊢ (𝜑 → ⦋𝐶 / 𝑘⦌𝐵 = 𝐷) |
| 26 | 25 | eqcomd 2737 | . . . 4 ⊢ (𝜑 → 𝐷 = ⦋𝐶 / 𝑘⦌𝐵) |
| 27 | 3 | ancli 548 | . . . . 5 ⊢ (𝜑 → (𝜑 ∧ 𝐶 ∈ 𝐴)) |
| 28 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑘𝐶 | |
| 29 | nfv 1915 | . . . . . . . 8 ⊢ Ⅎ𝑘 𝐶 ∈ 𝐴 | |
| 30 | 10, 29 | nfan 1900 | . . . . . . 7 ⊢ Ⅎ𝑘(𝜑 ∧ 𝐶 ∈ 𝐴) |
| 31 | 28 | nfcsb1 3868 | . . . . . . . 8 ⊢ Ⅎ𝑘⦋𝐶 / 𝑘⦌𝐵 |
| 32 | nfcv 2894 | . . . . . . . 8 ⊢ Ⅎ𝑘ℂ | |
| 33 | 31, 32 | nfel 2909 | . . . . . . 7 ⊢ Ⅎ𝑘⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ |
| 34 | 30, 33 | nfim 1897 | . . . . . 6 ⊢ Ⅎ𝑘((𝜑 ∧ 𝐶 ∈ 𝐴) → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ) |
| 35 | eleq1 2819 | . . . . . . . 8 ⊢ (𝑘 = 𝐶 → (𝑘 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
| 36 | 35 | anbi2d 630 | . . . . . . 7 ⊢ (𝑘 = 𝐶 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝐶 ∈ 𝐴))) |
| 37 | csbeq1a 3859 | . . . . . . . 8 ⊢ (𝑘 = 𝐶 → 𝐵 = ⦋𝐶 / 𝑘⦌𝐵) | |
| 38 | 37 | eleq1d 2816 | . . . . . . 7 ⊢ (𝑘 = 𝐶 → (𝐵 ∈ ℂ ↔ ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ)) |
| 39 | 36, 38 | imbi12d 344 | . . . . . 6 ⊢ (𝑘 = 𝐶 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝐶 ∈ 𝐴) → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ))) |
| 40 | 28, 34, 39, 19 | vtoclgf 3521 | . . . . 5 ⊢ (𝐶 ∈ 𝐴 → ((𝜑 ∧ 𝐶 ∈ 𝐴) → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ)) |
| 41 | 3, 27, 40 | sylc 65 | . . . 4 ⊢ (𝜑 → ⦋𝐶 / 𝑘⦌𝐵 ∈ ℂ) |
| 42 | 26, 41 | eqeltrd 2831 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 43 | 10, 11, 14, 3, 15, 20, 21, 42 | fsumsplitsn 15651 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ ((𝐴 ∖ {𝐶}) ∪ {𝐶})𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵 + 𝐷)) |
| 44 | 10, 14, 20 | fsumclf 15645 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵 ∈ ℂ) |
| 45 | 44, 42 | addcomd 11315 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵 + 𝐷) = (𝐷 + Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
| 46 | 9, 43, 45 | 3eqtrd 2770 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = (𝐷 + Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 ⦋csb 3845 ∖ cdif 3894 ∪ cun 3895 ⊆ wss 3897 {csn 4573 (class class class)co 7346 Fincfn 8869 ℂcc 11004 + caddc 11009 Σcsu 15593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 |
| This theorem is referenced by: sticksstones22 42260 unitscyglem4 42290 dvnmul 46040 etransclem35 46366 etransclem44 46375 |
| Copyright terms: Public domain | W3C validator |