Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumsplit1 Structured version   Visualization version   GIF version

Theorem fsumsplit1 42580
 Description: Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fsumsplit1.kph 𝑘𝜑
fsumsplit1.kd 𝑘𝐷
fsumsplit1.a (𝜑𝐴 ∈ Fin)
fsumsplit1.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumsplit1.c (𝜑𝐶𝐴)
fsumsplit1.bd (𝑘 = 𝐶𝐵 = 𝐷)
Assertion
Ref Expression
fsumsplit1 (𝜑 → Σ𝑘𝐴 𝐵 = (𝐷 + Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐷(𝑘)

Proof of Theorem fsumsplit1
StepHypRef Expression
1 uncom 4058 . . . . 5 ((𝐴 ∖ {𝐶}) ∪ {𝐶}) = ({𝐶} ∪ (𝐴 ∖ {𝐶}))
21a1i 11 . . . 4 (𝜑 → ((𝐴 ∖ {𝐶}) ∪ {𝐶}) = ({𝐶} ∪ (𝐴 ∖ {𝐶})))
3 fsumsplit1.c . . . . . 6 (𝜑𝐶𝐴)
43snssd 4699 . . . . 5 (𝜑 → {𝐶} ⊆ 𝐴)
5 undif 4378 . . . . 5 ({𝐶} ⊆ 𝐴 ↔ ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴)
64, 5sylib 221 . . . 4 (𝜑 → ({𝐶} ∪ (𝐴 ∖ {𝐶})) = 𝐴)
7 eqidd 2759 . . . 4 (𝜑𝐴 = 𝐴)
82, 6, 73eqtrrd 2798 . . 3 (𝜑𝐴 = ((𝐴 ∖ {𝐶}) ∪ {𝐶}))
98sumeq1d 15106 . 2 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ((𝐴 ∖ {𝐶}) ∪ {𝐶})𝐵)
10 fsumsplit1.kph . . 3 𝑘𝜑
11 fsumsplit1.kd . . 3 𝑘𝐷
12 fsumsplit1.a . . . 4 (𝜑𝐴 ∈ Fin)
13 diffi 8786 . . . 4 (𝐴 ∈ Fin → (𝐴 ∖ {𝐶}) ∈ Fin)
1412, 13syl 17 . . 3 (𝜑 → (𝐴 ∖ {𝐶}) ∈ Fin)
15 neldifsnd 4683 . . 3 (𝜑 → ¬ 𝐶 ∈ (𝐴 ∖ {𝐶}))
16 simpl 486 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∖ {𝐶})) → 𝜑)
17 eldifi 4032 . . . . 5 (𝑘 ∈ (𝐴 ∖ {𝐶}) → 𝑘𝐴)
1817adantl 485 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∖ {𝐶})) → 𝑘𝐴)
19 fsumsplit1.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2016, 18, 19syl2anc 587 . . 3 ((𝜑𝑘 ∈ (𝐴 ∖ {𝐶})) → 𝐵 ∈ ℂ)
21 fsumsplit1.bd . . 3 (𝑘 = 𝐶𝐵 = 𝐷)
2211a1i 11 . . . . . 6 (𝜑𝑘𝐷)
23 simpr 488 . . . . . . 7 ((𝜑𝑘 = 𝐶) → 𝑘 = 𝐶)
2423, 21syl 17 . . . . . 6 ((𝜑𝑘 = 𝐶) → 𝐵 = 𝐷)
2510, 22, 3, 24csbiedf 3835 . . . . 5 (𝜑𝐶 / 𝑘𝐵 = 𝐷)
2625eqcomd 2764 . . . 4 (𝜑𝐷 = 𝐶 / 𝑘𝐵)
273ancli 552 . . . . 5 (𝜑 → (𝜑𝐶𝐴))
28 nfcv 2919 . . . . . 6 𝑘𝐶
29 nfv 1915 . . . . . . . 8 𝑘 𝐶𝐴
3010, 29nfan 1900 . . . . . . 7 𝑘(𝜑𝐶𝐴)
3128nfcsb1 3828 . . . . . . . 8 𝑘𝐶 / 𝑘𝐵
32 nfcv 2919 . . . . . . . 8 𝑘
3331, 32nfel 2933 . . . . . . 7 𝑘𝐶 / 𝑘𝐵 ∈ ℂ
3430, 33nfim 1897 . . . . . 6 𝑘((𝜑𝐶𝐴) → 𝐶 / 𝑘𝐵 ∈ ℂ)
35 eleq1 2839 . . . . . . . 8 (𝑘 = 𝐶 → (𝑘𝐴𝐶𝐴))
3635anbi2d 631 . . . . . . 7 (𝑘 = 𝐶 → ((𝜑𝑘𝐴) ↔ (𝜑𝐶𝐴)))
37 csbeq1a 3819 . . . . . . . 8 (𝑘 = 𝐶𝐵 = 𝐶 / 𝑘𝐵)
3837eleq1d 2836 . . . . . . 7 (𝑘 = 𝐶 → (𝐵 ∈ ℂ ↔ 𝐶 / 𝑘𝐵 ∈ ℂ))
3936, 38imbi12d 348 . . . . . 6 (𝑘 = 𝐶 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝐶𝐴) → 𝐶 / 𝑘𝐵 ∈ ℂ)))
4028, 34, 39, 19vtoclgf 3483 . . . . 5 (𝐶𝐴 → ((𝜑𝐶𝐴) → 𝐶 / 𝑘𝐵 ∈ ℂ))
413, 27, 40sylc 65 . . . 4 (𝜑𝐶 / 𝑘𝐵 ∈ ℂ)
4226, 41eqeltrd 2852 . . 3 (𝜑𝐷 ∈ ℂ)
4310, 11, 14, 3, 15, 20, 21, 42fsumsplitsn 15148 . 2 (𝜑 → Σ𝑘 ∈ ((𝐴 ∖ {𝐶}) ∪ {𝐶})𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵 + 𝐷))
4410, 14, 20fsumclf 42577 . . 3 (𝜑 → Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵 ∈ ℂ)
4544, 42addcomd 10880 . 2 (𝜑 → (Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵 + 𝐷) = (𝐷 + Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
469, 43, 453eqtrd 2797 1 (𝜑 → Σ𝑘𝐴 𝐵 = (𝐷 + Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2111  Ⅎwnfc 2899  ⦋csb 3805   ∖ cdif 3855   ∪ cun 3856   ⊆ wss 3858  {csn 4522  (class class class)co 7150  Fincfn 8527  ℂcc 10573   + caddc 10578  Σcsu 15090 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-sup 8939  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-n0 11935  df-z 12021  df-uz 12283  df-rp 12431  df-fz 12940  df-fzo 13083  df-seq 13419  df-exp 13480  df-hash 13741  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-clim 14893  df-sum 15091 This theorem is referenced by:  dvnmul  42951  etransclem35  43277  etransclem44  43286
 Copyright terms: Public domain W3C validator